Example #1
0
void oskar_dftw(
        int normalise,
        int num_in,
        double wavenumber,
        const oskar_Mem* weights_in,
        const oskar_Mem* x_in,
        const oskar_Mem* y_in,
        const oskar_Mem* z_in,
        int offset_coord_out,
        int num_out,
        const oskar_Mem* x_out,
        const oskar_Mem* y_out,
        const oskar_Mem* z_out,
        const oskar_Mem* data,
        int offset_out,
        oskar_Mem* output,
        int* status)
{
    if (*status) return;
    const int location = oskar_mem_location(output);
    const int type = oskar_mem_precision(output);
    const int is_dbl = oskar_mem_is_double(output);
    const int is_3d = (z_in != NULL && z_out != NULL);
    const int is_data = (data != NULL);
    const int is_matrix = oskar_mem_is_matrix(output);
    if (!oskar_mem_is_complex(output) || !oskar_mem_is_complex(weights_in) ||
            oskar_mem_is_matrix(weights_in))
    {
        *status = OSKAR_ERR_BAD_DATA_TYPE;
        return;
    }
    if (oskar_mem_location(weights_in) != location ||
            oskar_mem_location(x_in) != location ||
            oskar_mem_location(y_in) != location ||
            oskar_mem_location(x_out) != location ||
            oskar_mem_location(y_out) != location)
    {
        *status = OSKAR_ERR_LOCATION_MISMATCH;
        return;
    }
    if (oskar_mem_precision(weights_in) != type ||
            oskar_mem_type(x_in) != type ||
            oskar_mem_type(y_in) != type ||
            oskar_mem_type(x_out) != type ||
            oskar_mem_type(y_out) != type)
    {
        *status = OSKAR_ERR_TYPE_MISMATCH;
        return;
    }
    if (is_data)
    {
        if (oskar_mem_location(data) != location)
        {
            *status = OSKAR_ERR_LOCATION_MISMATCH;
            return;
        }
        if (!oskar_mem_is_complex(data) ||
                oskar_mem_type(data) != oskar_mem_type(output) ||
                oskar_mem_precision(data) != type)
        {
            *status = OSKAR_ERR_TYPE_MISMATCH;
            return;
        }
    }
    if (is_3d)
    {
        if (oskar_mem_location(z_in) != location ||
                oskar_mem_location(z_out) != location)
        {
            *status = OSKAR_ERR_LOCATION_MISMATCH;
            return;
        }
        if (oskar_mem_type(z_in) != type || oskar_mem_type(z_out) != type)
        {
            *status = OSKAR_ERR_TYPE_MISMATCH;
            return;
        }
    }
    oskar_mem_ensure(output, (size_t) offset_out + num_out, status);
    if (*status) return;
    if (location == OSKAR_CPU)
    {
        if (is_data)
        {
            if (is_matrix)
            {
                if (is_3d)
                {
                    if (is_dbl)
                        dftw_m2m_3d_double(num_in, wavenumber,
                                oskar_mem_double2_const(weights_in, status),
                                oskar_mem_double_const(x_in, status),
                                oskar_mem_double_const(y_in, status),
                                oskar_mem_double_const(z_in, status),
                                offset_coord_out, num_out,
                                oskar_mem_double_const(x_out, status),
                                oskar_mem_double_const(y_out, status),
                                oskar_mem_double_const(z_out, status),
                                oskar_mem_double4c_const(data, status),
                                offset_out,
                                oskar_mem_double4c(output, status), 0);
                    else
                        dftw_m2m_3d_float(num_in, (float)wavenumber,
                                oskar_mem_float2_const(weights_in, status),
                                oskar_mem_float_const(x_in, status),
                                oskar_mem_float_const(y_in, status),
                                oskar_mem_float_const(z_in, status),
                                offset_coord_out, num_out,
                                oskar_mem_float_const(x_out, status),
                                oskar_mem_float_const(y_out, status),
                                oskar_mem_float_const(z_out, status),
                                oskar_mem_float4c_const(data, status),
                                offset_out,
                                oskar_mem_float4c(output, status), 0);
                }
                else
                {
                    if (is_dbl)
                        dftw_m2m_2d_double(num_in, wavenumber,
                                oskar_mem_double2_const(weights_in, status),
                                oskar_mem_double_const(x_in, status),
                                oskar_mem_double_const(y_in, status), 0,
                                offset_coord_out, num_out,
                                oskar_mem_double_const(x_out, status),
                                oskar_mem_double_const(y_out, status), 0,
                                oskar_mem_double4c_const(data, status),
                                offset_out,
                                oskar_mem_double4c(output, status), 0);
                    else
                        dftw_m2m_2d_float(num_in, (float)wavenumber,
                                oskar_mem_float2_const(weights_in, status),
                                oskar_mem_float_const(x_in, status),
                                oskar_mem_float_const(y_in, status), 0,
                                offset_coord_out, num_out,
                                oskar_mem_float_const(x_out, status),
                                oskar_mem_float_const(y_out, status), 0,
                                oskar_mem_float4c_const(data, status),
                                offset_out,
                                oskar_mem_float4c(output, status), 0);
                }
            }
            else
            {
                if (is_3d)
                {
                    if (is_dbl)
                        dftw_c2c_3d_double(num_in, wavenumber,
                                oskar_mem_double2_const(weights_in, status),
                                oskar_mem_double_const(x_in, status),
                                oskar_mem_double_const(y_in, status),
                                oskar_mem_double_const(z_in, status),
                                offset_coord_out, num_out,
                                oskar_mem_double_const(x_out, status),
                                oskar_mem_double_const(y_out, status),
                                oskar_mem_double_const(z_out, status),
                                oskar_mem_double2_const(data, status),
                                offset_out,
                                oskar_mem_double2(output, status), 0);
                    else
                        dftw_c2c_3d_float(num_in, (float)wavenumber,
                                oskar_mem_float2_const(weights_in, status),
                                oskar_mem_float_const(x_in, status),
                                oskar_mem_float_const(y_in, status),
                                oskar_mem_float_const(z_in, status),
                                offset_coord_out, num_out,
                                oskar_mem_float_const(x_out, status),
                                oskar_mem_float_const(y_out, status),
                                oskar_mem_float_const(z_out, status),
                                oskar_mem_float2_const(data, status),
                                offset_out,
                                oskar_mem_float2(output, status), 0);
                }
                else
                {
                    if (is_dbl)
                        dftw_c2c_2d_double(num_in, wavenumber,
                                oskar_mem_double2_const(weights_in, status),
                                oskar_mem_double_const(x_in, status),
                                oskar_mem_double_const(y_in, status), 0,
                                offset_coord_out, num_out,
                                oskar_mem_double_const(x_out, status),
                                oskar_mem_double_const(y_out, status), 0,
                                oskar_mem_double2_const(data, status),
                                offset_out,
                                oskar_mem_double2(output, status), 0);
                    else
                        dftw_c2c_2d_float(num_in, (float)wavenumber,
                                oskar_mem_float2_const(weights_in, status),
                                oskar_mem_float_const(x_in, status),
                                oskar_mem_float_const(y_in, status), 0,
                                offset_coord_out, num_out,
                                oskar_mem_float_const(x_out, status),
                                oskar_mem_float_const(y_out, status), 0,
                                oskar_mem_float2_const(data, status),
                                offset_out,
                                oskar_mem_float2(output, status), 0);
                }
            }
        }
        else
        {
            if (is_3d)
            {
                if (is_dbl)
                    dftw_o2c_3d_double(num_in, wavenumber,
                            oskar_mem_double2_const(weights_in, status),
                            oskar_mem_double_const(x_in, status),
                            oskar_mem_double_const(y_in, status),
                            oskar_mem_double_const(z_in, status),
                            offset_coord_out, num_out,
                            oskar_mem_double_const(x_out, status),
                            oskar_mem_double_const(y_out, status),
                            oskar_mem_double_const(z_out, status),
                            0, offset_out,
                            oskar_mem_double2(output, status), 0);
                else
                    dftw_o2c_3d_float(num_in, (float)wavenumber,
                            oskar_mem_float2_const(weights_in, status),
                            oskar_mem_float_const(x_in, status),
                            oskar_mem_float_const(y_in, status),
                            oskar_mem_float_const(z_in, status),
                            offset_coord_out, num_out,
                            oskar_mem_float_const(x_out, status),
                            oskar_mem_float_const(y_out, status),
                            oskar_mem_float_const(z_out, status),
                            0, offset_out,
                            oskar_mem_float2(output, status), 0);
            }
            else
            {
                if (is_dbl)
                    dftw_o2c_2d_double(num_in, wavenumber,
                            oskar_mem_double2_const(weights_in, status),
                            oskar_mem_double_const(x_in, status),
                            oskar_mem_double_const(y_in, status), 0,
                            offset_coord_out, num_out,
                            oskar_mem_double_const(x_out, status),
                            oskar_mem_double_const(y_out, status), 0,
                            0, offset_out,
                            oskar_mem_double2(output, status), 0);
                else
                    dftw_o2c_2d_float(num_in, (float)wavenumber,
                            oskar_mem_float2_const(weights_in, status),
                            oskar_mem_float_const(x_in, status),
                            oskar_mem_float_const(y_in, status), 0,
                            offset_coord_out, num_out,
                            oskar_mem_float_const(x_out, status),
                            oskar_mem_float_const(y_out, status), 0,
                            0, offset_out,
                            oskar_mem_float2(output, status), 0);
            }
        }
    }
    else
    {
        size_t local_size[] = {256, 1, 1}, global_size[] = {1, 1, 1};
        const void* np = 0;
        const char* k = 0;
        int max_in_chunk;
        float wavenumber_f = (float) wavenumber;

        /* Select the kernel. */
        switch (is_dbl * DBL | is_3d * D3 | is_data * DAT | is_matrix * MAT)
        {
        case D2 | FLT:             k = "dftw_o2c_2d_float";  break;
        case D2 | DBL:             k = "dftw_o2c_2d_double"; break;
        case D3 | FLT:             k = "dftw_o2c_3d_float";  break;
        case D3 | DBL:             k = "dftw_o2c_3d_double"; break;
        case D2 | FLT | DAT:       k = "dftw_c2c_2d_float";  break;
        case D2 | DBL | DAT:       k = "dftw_c2c_2d_double"; break;
        case D3 | FLT | DAT:       k = "dftw_c2c_3d_float";  break;
        case D3 | DBL | DAT:       k = "dftw_c2c_3d_double"; break;
        case D2 | FLT | DAT | MAT: k = "dftw_m2m_2d_float";  break;
        case D2 | DBL | DAT | MAT: k = "dftw_m2m_2d_double"; break;
        case D3 | FLT | DAT | MAT: k = "dftw_m2m_3d_float";  break;
        case D3 | DBL | DAT | MAT: k = "dftw_m2m_3d_double"; break;
        default:
            *status = OSKAR_ERR_FUNCTION_NOT_AVAILABLE;
            return;
        }
        if (oskar_device_is_nv(location))
            local_size[0] = (size_t) get_block_size(num_out);
        oskar_device_check_local_size(location, 0, local_size);
        global_size[0] = oskar_device_global_size(
                (size_t) num_out, local_size[0]);

        /* max_in_chunk must be multiple of 16. */
        max_in_chunk = is_3d ? (is_dbl ? 384 : 800) : (is_dbl ? 448 : 896);
        if (is_data && is_3d && !is_dbl) max_in_chunk = 768;
        const size_t element_size = is_dbl ? sizeof(double) : sizeof(float);
        const size_t local_mem_size = max_in_chunk * element_size;
        const size_t arg_size_local[] = {
                2 * local_mem_size, 2 * local_mem_size,
                (is_3d ? local_mem_size : 0)
        };

        /* Set kernel arguments. */
        const oskar_Arg args[] = {
                {INT_SZ, &num_in},
                {is_dbl ? DBL_SZ : FLT_SZ,
                        is_dbl ? (void*)&wavenumber : (void*)&wavenumber_f},
                {PTR_SZ, oskar_mem_buffer_const(weights_in)},
                {PTR_SZ, oskar_mem_buffer_const(x_in)},
                {PTR_SZ, oskar_mem_buffer_const(y_in)},
                {PTR_SZ, is_3d ? oskar_mem_buffer_const(z_in) : &np},
                {INT_SZ, &offset_coord_out},
                {INT_SZ, &num_out},
                {PTR_SZ, oskar_mem_buffer_const(x_out)},
                {PTR_SZ, oskar_mem_buffer_const(y_out)},
                {PTR_SZ, is_3d ? oskar_mem_buffer_const(z_out) : &np},
                {PTR_SZ, is_data ? oskar_mem_buffer_const(data) : &np},
                {INT_SZ, &offset_out},
                {PTR_SZ, oskar_mem_buffer(output)},
                {INT_SZ, &max_in_chunk}
        };
        oskar_device_launch_kernel(k, location, 1, local_size, global_size,
                sizeof(args) / sizeof(oskar_Arg), args,
                sizeof(arg_size_local) / sizeof(size_t), arg_size_local,
                status);
    }
    if (normalise)
        oskar_mem_scale_real(output, 1. / num_in, offset_out, num_out, status);
}
int main(int argc, char** argv)
{
    // ===== Declare options ==================================================
    oskar::OptionParser opt("oskar_vis_to_ascii_table", oskar_version_string());
    opt.set_description("Converts an OSKAR visibility binary file to an ASCII "
            "table format with the following columns:\n "
            "[1] index, [2] baseline-uu, [3] baseline-vv, [4] baseline-ww "
            "[5] Real, [6] Imag. "
            "The table is written out in baseline-time order where baseline "
            "is the fastest varying dimension");
    opt.add_required("OSKAR vis file");
    opt.add_optional("output file name");
    opt.add_flag("-c", "Channel index to write to file. (default = 0)", 1, "0",
            false, "--channel");
    opt.add_flag("-p", "Polarisation ID to write to file. (default = 0) "
            "(0=I, 1=Q, 2=U, 3=V, 4=XX, 5=XY, 6=YX, 7=YY)",
            1, "0", false, "--polarisation");
    opt.add_flag("-t", "Time index to write to file. (default = all)", 1, "",
            false, "--time");
    opt.add_flag("-w", "Output baseline coordinates in wavelengths. "
            "(default = metres)", false, "--baseline_wavelengths");
    opt.add_flag("-h", "Write a summary header in the ASCII table. ");
    opt.add_flag("-v", "Verbose mode.");
    opt.add_flag("--csv", "Write in CSV format");
    opt.add_flag("-s", "Write output table to standard output instead of to file.",
            false, "--stdout");
    if (!opt.check_options(argc, argv)) return EXIT_FAILURE;

    // ===== Read options ====================================================
    const char* vis_file = opt.get_arg(0);
    std::string txt_file;
    if (opt.num_args() == 2)
        txt_file = std::string(opt.get_arg(1));
    else {
        txt_file = std::string(vis_file) + ".txt";
    }
    int c = 0, p = 0, t = -1;
    if (opt.is_set("-c")) c = opt.get_int("-c");
    if (opt.is_set("-p")) p = opt.get_int("-p");
    if (opt.is_set("-t")) t = opt.get_int("-t");
    bool metres = !opt.is_set("-w");
    bool write_header = opt.is_set("-h");
    bool csv = opt.is_set("--csv");
    bool verbose = opt.is_set("-v");

    // ===== Write table ======================================================
    int status = 0;
    oskar_Binary* h = oskar_binary_create(vis_file, 'r', &status);
    oskar_Vis* vis = oskar_vis_read(h, &status);
    if (status)
    {
        fprintf(stderr, "ERROR: Unable to read specified visibility file: %s\n",
                vis_file);
        oskar_vis_free(vis, &status);
        oskar_binary_free(h);
        return status;
    }
    oskar_binary_free(h);

    int num_chan = oskar_vis_num_channels(vis);
    int num_times = oskar_vis_num_times(vis);
    int num_baselines = oskar_vis_num_baselines(vis);
    int num_pol = oskar_vis_num_pols(vis);
    int num_stations = oskar_vis_num_stations(vis);
    int total_vis = num_chan * num_times * num_baselines * num_pol;
    double freq_start_hz = oskar_vis_freq_start_hz(vis);
    double freq_inc_hz = oskar_vis_freq_inc_hz(vis);
    double freq_hz = freq_start_hz + c * freq_inc_hz;
    double lambda_m = 299792458.0 / freq_hz;

    if (t != -1 && t > num_times-1) {
        fprintf(stderr, "ERROR: Time index out of range.\n");
        return EXIT_FAILURE;
    }
    if (c > num_chan-1) {
        fprintf(stderr, "ERROR: Channel index out of range.\n");
        return EXIT_FAILURE;
    }


    FILE* out;
    if (!opt.is_set("-s")) {
        out = fopen(txt_file.c_str(), "w");
        if (out == NULL) return EXIT_FAILURE;
    }
    else {
        out = stdout;
    }

    const oskar_Mem* uu = oskar_vis_baseline_uu_metres_const(vis);
    const oskar_Mem* vv = oskar_vis_baseline_vv_metres_const(vis);
    const oskar_Mem* ww = oskar_vis_baseline_ww_metres_const(vis);
    const oskar_Mem* amp = oskar_vis_amplitude_const(vis);
    // amplitudes dims: channel x times x baselines x pol
    int amp_offset = c * num_times * num_baselines;
    if (t != -1) amp_offset += t * num_baselines;
    // baseline dims: times x baselines
    int baseline_offset = 0;
    if (t != -1) baseline_offset = t * num_baselines;
    int type = oskar_mem_type(uu);

    int num_vis_out = num_baselines;
    if (t == -1) num_vis_out *= num_times;

    if (verbose) {
        write_header_(stdout, total_vis, num_chan, num_times, num_baselines,
                num_pol, num_stations, num_vis_out, c, freq_hz, lambda_m, p, t,
                metres);
#if 0
        fprintf(stdout, "amp_offset      = %i\n", amp_offset);
        fprintf(stdout, "baseline_offset = %i\n", baseline_offset);
#endif
    }

    // Write header if specified
    if (write_header)
    {
        write_header_(out, total_vis, num_chan, num_times, num_baselines,
                num_pol, num_stations, num_vis_out, c, freq_hz, lambda_m, p, t,
                metres);
        char pre = '#';
        fprintf(out, "%c\n", pre);
        fprintf(out, "%c %s %-14s %-15s %-15s %-23s %-15s\n",
                pre, "Idx", " uu", "  vv", "  ww", "  Amp. Re.", "  Amp. Im.");
    }

    if (type == OSKAR_DOUBLE)
    {
        const double* uu_ = oskar_mem_double_const(uu, &status);
        const double* vv_ = oskar_mem_double_const(vv, &status);
        const double* ww_ = oskar_mem_double_const(ww, &status);
        const double4c* amp_ = oskar_mem_double4c_const(amp, &status);
        int aIdx = amp_offset;
        int bIdx = baseline_offset;
        for (int i = 0; i < num_vis_out; ++i, ++bIdx, ++aIdx)
        {
            double2 a = getPolAmp_<double2, double4c>(amp_[aIdx], p);
            double buu = (metres)? uu_[bIdx] : uu_[bIdx]/lambda_m;
            double bvv = (metres)? vv_[bIdx] : vv_[bIdx]/lambda_m;
            double bww = (metres)? ww_[bIdx] : ww_[bIdx]/lambda_m;
            writeData_<double, double2>(i, buu, bvv, bww, a, csv, out);
        }
    }
    else // OSKAR_SINGLE
    {
        const float* uu_ = oskar_mem_float_const(uu, &status);
        const float* vv_ = oskar_mem_float_const(vv, &status);
        const float* ww_ = oskar_mem_float_const(ww, &status);
        const float4c* amp_ = oskar_mem_float4c_const(amp, &status);
        int aIdx = amp_offset;
        int bIdx = baseline_offset;
        for (int i = 0; i < num_vis_out; ++i, ++bIdx, ++aIdx)
        {
            float2 a = getPolAmp_<float2, float4c>(amp_[aIdx], p);
            float buu = (metres)? uu_[bIdx] : uu_[bIdx]/lambda_m;
            float bvv = (metres)? vv_[bIdx] : vv_[bIdx]/lambda_m;
            float bww = (metres)? ww_[bIdx] : ww_[bIdx]/lambda_m;
            writeData_<float, float2>(i, buu, bvv, bww, a, csv, out);
        }
    }

    fclose(out);
    oskar_vis_free(vis, &status);

    return status;
}
/* Wrapper. */
void oskar_evaluate_cross_power(int num_sources,
        int num_stations, const oskar_Mem* jones, oskar_Mem* out,
        int *status)
{
    int type, location;

    /* Check if safe to proceed. */
    if (*status) return;

    /* Check type and location. */
    type = oskar_mem_type(jones);
    location = oskar_mem_location(jones);
    if (type != oskar_mem_type(out))
    {
        *status = OSKAR_ERR_TYPE_MISMATCH;
        return;
    }
    if (location != oskar_mem_location(out))
    {
        *status = OSKAR_ERR_LOCATION_MISMATCH;
        return;
    }

    /* Switch on type and location combination. */
    if (type == OSKAR_SINGLE_COMPLEX_MATRIX)
    {
        if (location == OSKAR_GPU)
        {
#ifdef OSKAR_HAVE_CUDA
            oskar_evaluate_cross_power_cuda_f(num_sources,
                    num_stations, oskar_mem_float4c_const(jones, status),
                    oskar_mem_float4c(out, status));
            oskar_device_check_error(status);
#else
            *status = OSKAR_ERR_CUDA_NOT_AVAILABLE;
#endif
        }
        else if (location == OSKAR_CPU)
        {
            oskar_evaluate_cross_power_omp_f(num_sources,
                    num_stations, oskar_mem_float4c_const(jones, status),
                    oskar_mem_float4c(out, status));
        }
    }
    else if (type == OSKAR_DOUBLE_COMPLEX_MATRIX)
    {
        if (location == OSKAR_GPU)
        {
#ifdef OSKAR_HAVE_CUDA
            oskar_evaluate_cross_power_cuda_d(num_sources,
                    num_stations, oskar_mem_double4c_const(jones, status),
                    oskar_mem_double4c(out, status));
            oskar_device_check_error(status);
#else
            *status = OSKAR_ERR_CUDA_NOT_AVAILABLE;
#endif
        }
        else if (location == OSKAR_CPU)
        {
            oskar_evaluate_cross_power_omp_d(num_sources,
                    num_stations, oskar_mem_double4c_const(jones, status),
                    oskar_mem_double4c(out, status));
        }
    }

    /* Scalar versions. */
    else if (type == OSKAR_SINGLE_COMPLEX)
    {
        if (location == OSKAR_GPU)
        {
#ifdef OSKAR_HAVE_CUDA
            oskar_evaluate_cross_power_scalar_cuda_f(num_sources,
                    num_stations, oskar_mem_float2_const(jones, status),
                    oskar_mem_float2(out, status));
            oskar_device_check_error(status);
#else
            *status = OSKAR_ERR_CUDA_NOT_AVAILABLE;
#endif
        }
        else if (location == OSKAR_CPU)
        {
            oskar_evaluate_cross_power_scalar_omp_f(num_sources,
                    num_stations, oskar_mem_float2_const(jones, status),
                    oskar_mem_float2(out, status));
        }
    }
    else if (type == OSKAR_DOUBLE_COMPLEX)
    {
        if (location == OSKAR_GPU)
        {
#ifdef OSKAR_HAVE_CUDA
            oskar_evaluate_cross_power_scalar_cuda_d(num_sources,
                    num_stations, oskar_mem_double2_const(jones, status),
                    oskar_mem_double2(out, status));
            oskar_device_check_error(status);
#else
            *status = OSKAR_ERR_CUDA_NOT_AVAILABLE;
#endif
        }
        else if (location == OSKAR_CPU)
        {
            oskar_evaluate_cross_power_scalar_omp_d(num_sources,
                    num_stations, oskar_mem_double2_const(jones, status),
                    oskar_mem_double2(out, status));
        }
    }
    else
    {
        *status = OSKAR_ERR_BAD_DATA_TYPE;
    }
}