Example #1
0
void oskar_vis_block_write_ms(const oskar_VisBlock* blk,
        const oskar_VisHeader* header, oskar_MeasurementSet* ms, int* status)
{
    const oskar_Mem *in_acorr, *in_xcorr, *in_uu, *in_vv, *in_ww;
    oskar_Mem *temp_vis = 0, *temp_uu = 0, *temp_vv = 0, *temp_ww = 0;
    double exposure_sec, interval_sec, t_start_mjd, t_start_sec;
    double ra_rad, dec_rad, ref_freq_hz;
    unsigned int a1, a2, num_baseln_in, num_baseln_out, num_channels;
    unsigned int num_pols_in, num_pols_out, num_stations, num_times, b, c, t;
    unsigned int i, i_out, prec, start_time_index, start_chan_index;
    unsigned int have_autocorr, have_crosscorr;
    const void *xcorr, *acorr;
    void* out;

    /* Check if safe to proceed. */
    if (*status) return;

    /* Pull data from visibility structures. */
    num_pols_out     = oskar_ms_num_pols(ms);
    num_pols_in      = oskar_vis_block_num_pols(blk);
    num_stations     = oskar_vis_block_num_stations(blk);
    num_baseln_in    = oskar_vis_block_num_baselines(blk);
    num_channels     = oskar_vis_block_num_channels(blk);
    num_times        = oskar_vis_block_num_times(blk);
    in_acorr         = oskar_vis_block_auto_correlations_const(blk);
    in_xcorr         = oskar_vis_block_cross_correlations_const(blk);
    in_uu            = oskar_vis_block_baseline_uu_metres_const(blk);
    in_vv            = oskar_vis_block_baseline_vv_metres_const(blk);
    in_ww            = oskar_vis_block_baseline_ww_metres_const(blk);
    have_autocorr    = oskar_vis_block_has_auto_correlations(blk);
    have_crosscorr   = oskar_vis_block_has_cross_correlations(blk);
    start_time_index = oskar_vis_block_start_time_index(blk);
    start_chan_index = oskar_vis_block_start_channel_index(blk);
    ra_rad           = oskar_vis_header_phase_centre_ra_deg(header) * D2R;
    dec_rad          = oskar_vis_header_phase_centre_dec_deg(header) * D2R;
    exposure_sec     = oskar_vis_header_time_average_sec(header);
    interval_sec     = oskar_vis_header_time_inc_sec(header);
    t_start_mjd      = oskar_vis_header_time_start_mjd_utc(header);
    ref_freq_hz      = oskar_vis_header_freq_start_hz(header);
    prec             = oskar_mem_precision(in_xcorr);
    t_start_sec      = t_start_mjd * 86400.0 +
            interval_sec * (start_time_index + 0.5);

    /* Check that there is something to write. */
    if (!have_autocorr && !have_crosscorr) return;

    /* Get number of output baselines. */
    num_baseln_out = num_baseln_in;
    if (have_autocorr)
        num_baseln_out += num_stations;

    /* Check polarisation dimension consistency:
     * num_pols_in can be less than num_pols_out, but not vice-versa. */
    if (num_pols_in > num_pols_out)
    {
        *status = OSKAR_ERR_DIMENSION_MISMATCH;
        return;
    }

    /* Check the dimensions match. */
    if (oskar_ms_num_pols(ms) != num_pols_out ||
            oskar_ms_num_stations(ms) != num_stations)
    {
        *status = OSKAR_ERR_DIMENSION_MISMATCH;
        return;
    }

    /* Check the reference frequencies match. */
    if (fabs(oskar_ms_ref_freq_hz(ms) - ref_freq_hz) > 1e-10)
    {
        *status = OSKAR_ERR_VALUE_MISMATCH;
        return;
    }

    /* Check the phase centres are the same. */
    if (fabs(oskar_ms_phase_centre_ra_rad(ms) - ra_rad) > 1e-10 ||
            fabs(oskar_ms_phase_centre_dec_rad(ms) - dec_rad) > 1e-10)
    {
        *status = OSKAR_ERR_VALUE_MISMATCH;
        return;
    }

    /* Add visibilities and u,v,w coordinates. */
    temp_vis = oskar_mem_create(prec | OSKAR_COMPLEX, OSKAR_CPU,
            num_baseln_out * num_channels * num_pols_out, status);
    temp_uu = oskar_mem_create(prec, OSKAR_CPU, num_baseln_out, status);
    temp_vv = oskar_mem_create(prec, OSKAR_CPU, num_baseln_out, status);
    temp_ww = oskar_mem_create(prec, OSKAR_CPU, num_baseln_out, status);
    xcorr   = oskar_mem_void_const(in_xcorr);
    acorr   = oskar_mem_void_const(in_acorr);
    out     = oskar_mem_void(temp_vis);
    if (prec == OSKAR_DOUBLE)
    {
        const double *uu_in, *vv_in, *ww_in;
        double *uu_out, *vv_out, *ww_out;
        uu_in = oskar_mem_double_const(in_uu, status);
        vv_in = oskar_mem_double_const(in_vv, status);
        ww_in = oskar_mem_double_const(in_ww, status);
        uu_out = oskar_mem_double(temp_uu, status);
        vv_out = oskar_mem_double(temp_vv, status);
        ww_out = oskar_mem_double(temp_ww, status);
        for (t = 0; t < num_times; ++t)
        {
            /* Construct the baseline coordinates for the given time. */
            int start_row = (start_time_index + t) * num_baseln_out;
            for (a1 = 0, b = 0, i_out = 0; a1 < num_stations; ++a1)
            {
                if (have_autocorr)
                {
                    uu_out[i_out] = 0.0;
                    vv_out[i_out] = 0.0;
                    ww_out[i_out] = 0.0;
                    ++i_out;
                }
                if (have_crosscorr)
                {
                    for (a2 = a1 + 1; a2 < num_stations; ++a2, ++b, ++i_out)
                    {
                        i = num_baseln_in * t + b;
                        uu_out[i_out] = uu_in[i];
                        vv_out[i_out] = vv_in[i];
                        ww_out[i_out] = ww_in[i];
                    }
                }
            }

            for (c = 0, i_out = 0; c < num_channels; ++c)
            {
                /* Construct amplitude data for the given time and channel. */
                if (num_pols_in == 4)
                {
                    for (a1 = 0, b = 0; a1 < num_stations; ++a1)
                    {
                        if (have_autocorr)
                        {
                            i = num_stations * (t * num_channels + c) + a1;
                            ((double4c*)out)[i_out++] =
                                    ((const double4c*)acorr)[i];
                        }
                        if (have_crosscorr)
                        {
                            for (a2 = a1 + 1; a2 < num_stations; ++b, ++a2)
                            {
                                i = num_baseln_in * (t * num_channels + c) + b;
                                ((double4c*)out)[i_out++] =
                                        ((const double4c*)xcorr)[i];
                            }
                        }
                    }
                }
                else if (num_pols_in == 1 && num_pols_out == 1)
                {
                    for (a1 = 0, b = 0; a1 < num_stations; ++a1)
                    {
                        if (have_autocorr)
                        {
                            i = num_stations * (t * num_channels + c) + a1;
                            ((double2*)out)[i_out++] =
                                    ((const double2*)acorr)[i];
                        }
                        if (have_crosscorr)
                        {
                            for (a2 = a1 + 1; a2 < num_stations; ++b, ++a2)
                            {
                                i = num_baseln_in * (t * num_channels + c) + b;
                                ((double2*)out)[i_out++] =
                                        ((const double2*)xcorr)[i];
                            }
                        }
                    }
                }
                else
                {
                    double2 vis_amp, *out_;
                    out_ = (double2*)out;
                    for (a1 = 0, b = 0; a1 < num_stations; ++a1)
                    {
                        if (have_autocorr)
                        {
                            i = num_stations * (t * num_channels + c) + a1;
                            vis_amp = ((const double2*)acorr)[i];
                            out_[i_out + 0] = vis_amp;  /* XX */
                            out_[i_out + 1].x = 0.0;    /* XY */
                            out_[i_out + 1].y = 0.0;    /* XY */
                            out_[i_out + 2].x = 0.0;    /* YX */
                            out_[i_out + 2].y = 0.0;    /* YX */
                            out_[i_out + 3] = vis_amp;  /* YY */
                            i_out += 4;
                        }
                        if (have_crosscorr)
                        {
                            for (a2 = a1 + 1; a2 < num_stations; ++b, ++a2)
                            {
                                i = num_baseln_in * (t * num_channels + c) + b;
                                vis_amp = ((const double2*)xcorr)[i];
                                out_[i_out + 0] = vis_amp;  /* XX */
                                out_[i_out + 1].x = 0.0;    /* XY */
                                out_[i_out + 1].y = 0.0;    /* XY */
                                out_[i_out + 2].x = 0.0;    /* YX */
                                out_[i_out + 2].y = 0.0;    /* YX */
                                out_[i_out + 3] = vis_amp;  /* YY */
                                i_out += 4;
                            }
                        }
                    }
                }
            }
            oskar_ms_write_coords_d(ms, start_row, num_baseln_out,
                    uu_out, vv_out, ww_out, exposure_sec, interval_sec,
                    t_start_sec + (t * interval_sec));
            oskar_ms_write_vis_d(ms, start_row, start_chan_index,
                    num_channels, num_baseln_out, (const double*)out);
        }
    }
    else if (prec == OSKAR_SINGLE)
    {
        const float *uu_in, *vv_in, *ww_in;
        float *uu_out, *vv_out, *ww_out;
        uu_in = oskar_mem_float_const(in_uu, status);
        vv_in = oskar_mem_float_const(in_vv, status);
        ww_in = oskar_mem_float_const(in_ww, status);
        uu_out = oskar_mem_float(temp_uu, status);
        vv_out = oskar_mem_float(temp_vv, status);
        ww_out = oskar_mem_float(temp_ww, status);
        for (t = 0; t < num_times; ++t)
        {
            /* Construct the baseline coordinates for the given time. */
            int start_row = (start_time_index + t) * num_baseln_out;
            for (a1 = 0, b = 0, i_out = 0; a1 < num_stations; ++a1)
            {
                if (have_autocorr)
                {
                    uu_out[i_out] = 0.0;
                    vv_out[i_out] = 0.0;
                    ww_out[i_out] = 0.0;
                    ++i_out;
                }
                if (have_crosscorr)
                {
                    for (a2 = a1 + 1; a2 < num_stations; ++a2, ++b, ++i_out)
                    {
                        i = num_baseln_in * t + b;
                        uu_out[i_out] = uu_in[i];
                        vv_out[i_out] = vv_in[i];
                        ww_out[i_out] = ww_in[i];
                    }
                }
            }

            for (c = 0, i_out = 0; c < num_channels; ++c)
            {
                /* Construct amplitude data for the given time and channel. */
                if (num_pols_in == 4)
                {
                    for (a1 = 0, b = 0; a1 < num_stations; ++a1)
                    {
                        if (have_autocorr)
                        {
                            i = num_stations * (t * num_channels + c) + a1;
                            ((float4c*)out)[i_out++] =
                                    ((const float4c*)acorr)[i];
                        }
                        if (have_crosscorr)
                        {
                            for (a2 = a1 + 1; a2 < num_stations; ++b, ++a2)
                            {
                                i = num_baseln_in * (t * num_channels + c) + b;
                                ((float4c*)out)[i_out++] =
                                        ((const float4c*)xcorr)[i];
                            }
                        }
                    }
                }
                else if (num_pols_in == 1 && num_pols_out == 1)
                {
                    for (a1 = 0, b = 0; a1 < num_stations; ++a1)
                    {
                        if (have_autocorr)
                        {
                            i = num_stations * (t * num_channels + c) + a1;
                            ((float2*)out)[i_out++] =
                                    ((const float2*)acorr)[i];
                        }
                        if (have_crosscorr)
                        {
                            for (a2 = a1 + 1; a2 < num_stations; ++b, ++a2)
                            {
                                i = num_baseln_in * (t * num_channels + c) + b;
                                ((float2*)out)[i_out++] =
                                        ((const float2*)xcorr)[i];
                            }
                        }
                    }
                }
                else
                {
                    float2 vis_amp, *out_;
                    out_ = (float2*)out;
                    for (a1 = 0, b = 0; a1 < num_stations; ++a1)
                    {
                        if (have_autocorr)
                        {
                            i = num_stations * (t * num_channels + c) + a1;
                            vis_amp = ((const float2*)acorr)[i];
                            out_[i_out + 0] = vis_amp;  /* XX */
                            out_[i_out + 1].x = 0.0;    /* XY */
                            out_[i_out + 1].y = 0.0;    /* XY */
                            out_[i_out + 2].x = 0.0;    /* YX */
                            out_[i_out + 2].y = 0.0;    /* YX */
                            out_[i_out + 3] = vis_amp;  /* YY */
                            i_out += 4;
                        }
                        if (have_crosscorr)
                        {
                            for (a2 = a1 + 1; a2 < num_stations; ++b, ++a2)
                            {
                                i = num_baseln_in * (t * num_channels + c) + b;
                                vis_amp = ((const float2*)xcorr)[i];
                                out_[i_out + 0] = vis_amp;  /* XX */
                                out_[i_out + 1].x = 0.0;    /* XY */
                                out_[i_out + 1].y = 0.0;    /* XY */
                                out_[i_out + 2].x = 0.0;    /* YX */
                                out_[i_out + 2].y = 0.0;    /* YX */
                                out_[i_out + 3] = vis_amp;  /* YY */
                                i_out += 4;
                            }
                        }
                    }
                }
            }
            oskar_ms_write_coords_f(ms, start_row, num_baseln_out,
                    uu_out, vv_out, ww_out, exposure_sec, interval_sec,
                    t_start_sec + (t * interval_sec));
            oskar_ms_write_vis_f(ms, start_row, start_chan_index,
                    num_channels, num_baseln_out, (const float*)out);
        }
    }
    else
    {
        *status = OSKAR_ERR_BAD_DATA_TYPE;
    }

    /* Cleanup. */
    oskar_mem_free(temp_vis, status);
    oskar_mem_free(temp_uu, status);
    oskar_mem_free(temp_vv, status);
    oskar_mem_free(temp_ww, status);
}
Example #2
0
/*
 * Translation layer from new file format to old structure.
 * This will be deleted when the old oskar_Vis structure is fully retired.
 */
oskar_Vis* oskar_vis_read_new(oskar_Binary* h, int* status)
{
    oskar_VisHeader* hdr = 0;
    oskar_VisBlock* blk = 0;
    oskar_Vis* vis = 0;
    oskar_Mem* amp = 0;
    const oskar_Mem* xcorr = 0;
    int amp_type, max_times_per_block, num_channels, num_stations, num_times;
    int i, num_blocks;
    double freq_ref_hz, freq_inc_hz, time_ref_mjd_utc, time_inc_sec;

    /* Try to read the new header. */
    hdr = oskar_vis_header_read(h, status);
    if (*status)
    {
        oskar_vis_header_free(hdr, status);
        return 0;
    }

    /* Create the old vis structure. */
    amp_type = oskar_vis_header_amp_type(hdr);
    max_times_per_block = oskar_vis_header_max_times_per_block(hdr);
    num_channels = oskar_vis_header_num_channels_total(hdr);
    num_stations = oskar_vis_header_num_stations(hdr);
    num_times = oskar_vis_header_num_times_total(hdr);
    vis = oskar_vis_create(amp_type, OSKAR_CPU, num_channels, num_times,
            num_stations, status);
    if (*status)
    {
        oskar_vis_header_free(hdr, status);
        oskar_vis_free(vis, status);
        return 0;
    }

    /* Copy station coordinates and metadata. */
    freq_ref_hz = oskar_vis_header_freq_start_hz(hdr);
    freq_inc_hz = oskar_vis_header_freq_inc_hz(hdr);
    time_ref_mjd_utc = oskar_vis_header_time_start_mjd_utc(hdr);
    time_inc_sec = oskar_vis_header_time_inc_sec(hdr);
    oskar_mem_copy(oskar_vis_station_x_offset_ecef_metres(vis),
            oskar_vis_header_station_x_offset_ecef_metres_const(hdr), status);
    oskar_mem_copy(oskar_vis_station_y_offset_ecef_metres(vis),
            oskar_vis_header_station_y_offset_ecef_metres_const(hdr), status);
    oskar_mem_copy(oskar_vis_station_z_offset_ecef_metres(vis),
            oskar_vis_header_station_z_offset_ecef_metres_const(hdr), status);
    oskar_mem_copy(oskar_vis_settings(vis),
            oskar_vis_header_settings_const(hdr), status);
    oskar_mem_copy(oskar_vis_telescope_path(vis),
            oskar_vis_header_telescope_path_const(hdr), status);
    oskar_vis_set_channel_bandwidth_hz(vis,
            oskar_vis_header_channel_bandwidth_hz(hdr));
    oskar_vis_set_freq_inc_hz(vis, freq_inc_hz);
    oskar_vis_set_freq_start_hz(vis, freq_ref_hz);
    oskar_vis_set_phase_centre(vis,
            oskar_vis_header_phase_centre_ra_deg(hdr),
            oskar_vis_header_phase_centre_dec_deg(hdr));
    oskar_vis_set_telescope_position(vis,
            oskar_vis_header_telescope_lon_deg(hdr),
            oskar_vis_header_telescope_lat_deg(hdr),
            oskar_vis_header_telescope_alt_metres(hdr));
    oskar_vis_set_time_average_sec(vis,
            oskar_vis_header_time_average_sec(hdr));
    oskar_vis_set_time_inc_sec(vis, time_inc_sec);
    oskar_vis_set_time_start_mjd_utc(vis, time_ref_mjd_utc);

    /* Create a visibility block to read into. */
    blk = oskar_vis_block_create_from_header(OSKAR_CPU, hdr, status);
    amp = oskar_vis_amplitude(vis);
    xcorr = oskar_vis_block_cross_correlations_const(blk);

    /* Work out the number of blocks. */
    num_blocks = (num_times + max_times_per_block - 1) / max_times_per_block;
    for (i = 0; i < num_blocks; ++i)
    {
        int block_length, num_baselines, time_offset, total_baselines, t, c;

        /* Read the block. */
        oskar_vis_block_read(blk, hdr, h, i, status);
        num_baselines = oskar_vis_block_num_baselines(blk);
        block_length = oskar_vis_block_num_times(blk);

        /* Copy the baseline coordinate data. */
        time_offset = i * max_times_per_block * num_baselines;
        total_baselines = num_baselines * block_length;
        oskar_mem_copy_contents(oskar_vis_baseline_uu_metres(vis),
                oskar_vis_block_baseline_uu_metres_const(blk),
                time_offset, 0, total_baselines, status);
        oskar_mem_copy_contents(oskar_vis_baseline_vv_metres(vis),
                oskar_vis_block_baseline_vv_metres_const(blk),
                time_offset, 0, total_baselines, status);
        oskar_mem_copy_contents(oskar_vis_baseline_ww_metres(vis),
                oskar_vis_block_baseline_ww_metres_const(blk),
                time_offset, 0, total_baselines, status);

        /* Fill the array in the old dimension order. */
        for (t = 0; t < block_length; ++t)
        {
            for (c = 0; c < num_channels; ++c)
            {
                oskar_mem_copy_contents(amp, xcorr, num_baselines *
                        (c * num_times + i * max_times_per_block + t),
                        num_baselines * (t * num_channels + c),
                        num_baselines, status);
            }
        }
    }

    /* Clean up and return. */
    oskar_vis_block_free(blk, status);
    oskar_vis_header_free(hdr, status);
    return vis;
}