Example #1
0
/**
 * Insert a point so that is splits an existing edge. This function
 * assumes that the point is on the edge itself and between its
 * end-points.
 * If the edge being split is constrained, then the function returns a
 * list containing both parts resulted from the splitting. In that case,
 * THE RETURNED EDGES MUST BE UNREFERENCED!
 */
GList*
p2tr_cdt_split_edge (P2trCDT   *self,
                     P2trEdge  *e,
                     P2trPoint *C)
{
    /*      W
     *     /|\
     *    / | \
     *   /  |  \      E.Mirror.Tri: YXW
     * X*---*---*Y    E: X->Y
     *   \  |C /      E.Tri: XYV
     *    \ | /
     *     \|/
     *      V
     */
    P2trPoint *X = P2TR_EDGE_START (e), *Y = e->end;
    P2trPoint *V = (e->tri != NULL) ? p2tr_triangle_get_opposite_point(e->tri, e) : NULL;
    P2trPoint *W = (e->mirror->tri != NULL) ? p2tr_triangle_get_opposite_point (e->mirror->tri, e->mirror) : NULL;
    gboolean   constrained = e->constrained;
    P2trEdge  *XC, *CY;
    GList     *new_tris = NULL, *fan = NULL, *new_edges = NULL;

    p2tr_edge_remove (e);

    XC = p2tr_mesh_new_edge (self->mesh, X, C, constrained);
    CY = p2tr_mesh_new_edge (self->mesh, C, Y, constrained);

    fan = p2tr_utils_new_reversed_pointer_list (4, W, X, V, Y);
    new_tris = p2tr_cdt_triangulate_fan (self, C, fan);
    g_list_free (fan);

    /* Now make this a CDT again
     * The new triangles will be unreffed by the flip_fix function, which
     * is good since we receive them with an extra reference!
     */
    p2tr_cdt_flip_fix (self, new_tris);
    g_list_free (new_tris);

    if (constrained)
    {
        /* If this was a subsegment, then both parts of the subsegment
         * should exist */
        if (p2tr_edge_is_removed (XC) || p2tr_edge_is_removed (CY))
            p2tr_exception_geometric ("Subsegments gone!");
        else
        {
            new_edges = g_list_prepend (new_edges, CY);
            new_edges = g_list_prepend (new_edges, XC);
        }
    }
    else
    {
        p2tr_edge_unref (XC);
        p2tr_edge_unref (CY);
    }

    p2tr_cdt_on_new_point (self, C);

    return new_edges;
}
Example #2
0
void
p2tr_cdt_validate_unused (P2trCDT* self)
{
  P2trEdge *ed;
  P2trTriangle *tri;
  P2trHashSetIter iter;

  p2tr_hash_set_iter_init (&iter, self->mesh->edges);
  while (p2tr_hash_set_iter_next (&iter, (gpointer*)&ed))
    {
      g_assert (ed->mirror != NULL);
      g_assert (! p2tr_edge_is_removed (ed));
    }

  p2tr_hash_set_iter_init (&iter, self->mesh->triangles);
  while (p2tr_hash_set_iter_next (&iter, (gpointer*)&tri))
    g_assert (! p2tr_triangle_is_removed (tri));
}
Example #3
0
void
p2tr_cdt_flip_fix (P2trCDT     *self,
                   P2trVEdgeSet *candidates)
{
  P2trEdge *edge;
  P2trVEdge *vedge;

  while (p2tr_vedge_set_pop (candidates, &vedge))
    {
      if (! p2tr_vedge_try_get_and_unref (vedge, &edge))
        continue;

      if (! edge->constrained
          /* TODO: we probably don't need this check... */
          && ! p2tr_edge_is_removed (edge))
        {
          /* If the edge is not constrained, then it should be
           * a part of two triangles */
          P2trPoint *A  = P2TR_EDGE_START(edge), *B = edge->end;
          P2trPoint *C1 = p2tr_triangle_get_opposite_point (edge->tri, edge, FALSE);
          P2trPoint *C2 = p2tr_triangle_get_opposite_point (edge->mirror->tri, edge->mirror, FALSE);

          P2trEdge *flipped = p2tr_cdt_try_flip (self, edge);
          if (flipped != NULL)
            {
              p2tr_vedge_set_add (candidates, p2tr_point_get_edge_to (A, C1, TRUE));
              p2tr_vedge_set_add (candidates, p2tr_point_get_edge_to (A, C2, TRUE));
              p2tr_vedge_set_add (candidates, p2tr_point_get_edge_to (B, C1, TRUE));
              p2tr_vedge_set_add (candidates, p2tr_point_get_edge_to (B, C2, TRUE));
              p2tr_edge_unref (flipped);
            }
        }

      p2tr_edge_unref (edge);
    }
}