static void process_render(struct userdata *u, pa_usec_t now) {
    size_t ate = 0;

    pa_assert(u);

    /* This is the configured latency. Sink inputs connected to us
    might not have a single frame more than the maxrequest value
    queued. Hence: at maximum read this many bytes from the sink
    inputs. */

    /* Fill the buffer up the latency size */
    while (u->timestamp < now + u->block_usec) {
        pa_memchunk chunk;

        pa_sink_render(u->sink, u->sink->thread_info.max_request, &chunk);
        pa_memblock_unref(chunk.memblock);

/*         pa_log_debug("Ate %lu bytes.", (unsigned long) chunk.length); */
        u->timestamp += pa_bytes_to_usec(chunk.length, &u->sink->sample_spec);

        ate += chunk.length;

        if (ate >= u->sink->thread_info.max_request)
            break;
    }

/*     pa_log_debug("Ate in sum %lu bytes (of %lu)", (unsigned long) ate, (unsigned long) nbytes); */
}
Example #2
0
static void process_samples(struct example_sink_userdata *u, uint64_t expected_bytes)
{
    pa_assert(u);

    while (u->rendered_bytes < expected_bytes) {
        /* read chunk from every connected sink input, mix them, allocate
         * memblock, fill it with mixed samples, and return it to us.
         */
        pa_memchunk chunk;
        pa_sink_render(u->sink, 0, &chunk);

        /* start reading chunk's memblock */
        const char *buf = pa_memblock_acquire(chunk.memblock);

        /* write samples from memblock to the file */
        ssize_t sz =
            write_samples(u->output_fd, buf + chunk.index, chunk.length);

        if (sz != chunk.length) {
            break;
        }

        u->rendered_bytes += chunk.length;

        /* finish reading memblock */
        pa_memblock_release(chunk.memblock);

        /* return memblock to the pool */
        pa_memblock_unref(chunk.memblock);
    }
}
Example #3
0
static void process_render(struct userdata *u, pa_usec_t now) {
    pa_memchunk chunk;
    int request_bytes;
    //int index;

    pa_assert(u);

    if (u->got_max_latency) {
        return;
    }

    //index = 0;
    while (u->timestamp < now + u->block_usec) {
        //index++;
        //if (index > 3) {
            /* used when u->block_usec and
               u->sink->thread_info.max_request get big
               using got_max_latency now */
        //    return;
        //}
        request_bytes = u->sink->thread_info.max_request;
        request_bytes = MIN(request_bytes, 16 * 1024);
        pa_sink_render(u->sink, request_bytes, &chunk);
        //pa_log("bytes %d index %d", chunk.length, index);
        data_send(u, &chunk);
        pa_memblock_unref(chunk.memblock);
        u->timestamp += pa_bytes_to_usec(chunk.length, &u->sink->sample_spec);
    }
}
Example #4
0
/* Called from I/O thread context */
static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk) {
    struct userdata *u;
    float *src, *dst;
    size_t fs;
    unsigned n, h, c;
    pa_memchunk tchunk;

    pa_sink_input_assert_ref(i);
    pa_assert(chunk);
    pa_assert_se(u = i->userdata);

    /* Hmm, process any rewind request that might be queued up */
    pa_sink_process_rewind(u->sink, 0);

    while (pa_memblockq_peek(u->memblockq, &tchunk) < 0) {
        pa_memchunk nchunk;

        pa_sink_render(u->sink, nbytes, &nchunk);
        pa_memblockq_push(u->memblockq, &nchunk);
        pa_memblock_unref(nchunk.memblock);
    }

    tchunk.length = PA_MIN(nbytes, tchunk.length);
    pa_assert(tchunk.length > 0);

    fs = pa_frame_size(&i->sample_spec);
    n = (unsigned) (PA_MIN(tchunk.length, u->block_size) / fs);

    pa_assert(n > 0);

    chunk->index = 0;
    chunk->length = n*fs;
    chunk->memblock = pa_memblock_new(i->sink->core->mempool, chunk->length);

    pa_memblockq_drop(u->memblockq, chunk->length);

    src = (float*) ((uint8_t*) pa_memblock_acquire(tchunk.memblock) + tchunk.index);
    dst = (float*) pa_memblock_acquire(chunk->memblock);

    for (h = 0; h < (u->channels / u->max_ladspaport_count); h++) {
        for (c = 0; c < u->input_count; c++)
            pa_sample_clamp(PA_SAMPLE_FLOAT32NE, u->input[c], sizeof(float), src+ h*u->max_ladspaport_count + c, u->channels*sizeof(float), n);
        u->descriptor->run(u->handle[h], n);
        for (c = 0; c < u->output_count; c++)
            pa_sample_clamp(PA_SAMPLE_FLOAT32NE, dst + h*u->max_ladspaport_count + c, u->channels*sizeof(float), u->output[c], sizeof(float), n);
    }

    pa_memblock_release(tchunk.memblock);
    pa_memblock_release(chunk->memblock);

    pa_memblock_unref(tchunk.memblock);

    return 0;
}
/* Called from I/O thread context */
static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk) {
    struct userdata *u;

    pa_sink_input_assert_ref(i);
    pa_assert(chunk);
    pa_assert_se(u = i->userdata);

    /* Hmm, process any rewind request that might be queued up */
    pa_sink_process_rewind(u->sink, 0);

    pa_sink_render(u->sink, nbytes, chunk);
    return 0;
}
static int process_sink_render(struct userdata *u)
{
    pa_assert(u);

    if (u->memchunk_sink.length <= 0)
        pa_sink_render(u->sink, libvchan_buffer_space(u->play_ctrl), &u->memchunk_sink);

    pa_assert(u->memchunk_sink.length > 0);

    for (;;) {
        ssize_t l;
        void *p;

        p = pa_memblock_acquire(u->memchunk_sink.memblock);
        l = write_to_vchan(u->play_ctrl, (char *) p +
                           u->memchunk_sink.index, u->memchunk_sink.length);
        pa_memblock_release(u->memchunk_sink.memblock);

        pa_assert(l != 0);

        if (l < 0) {

            if (errno == EINTR)
                continue;
            else if (errno == EAGAIN)
                return 0;
            else {
                pa_log
                ("Failed to write data to VCHAN: %s",
                 pa_cstrerror(errno));
                return -1;
            }

        } else {

            u->memchunk_sink.index += (size_t) l;
            u->memchunk_sink.length -= (size_t) l;

            if (u->memchunk_sink.length <= 0) {
                pa_memblock_unref(u->memchunk_sink.memblock);
                pa_memchunk_reset(&u->memchunk_sink);
            }
        }

        return 0;
    }
}
Example #7
0
static int process_render(struct userdata *u) {
    pa_assert(u);


    if (u->memchunk.length <= 0)
        pa_sink_render(u->sink, ioring->usable_buffer_space, &u->memchunk);


    pa_assert(u->memchunk.length > 0);

    xc_evtchn_notify(xce, xen_evtchn_port);
    for (;;) {
        ssize_t l;
        void *p;

        p = pa_memblock_acquire(u->memchunk.memblock);
	    /* xen: write data to ring buffer & notify backend */
        l = ring_write(ioring, (uint8_t*)p + u->memchunk.index, u->memchunk.length);

        pa_memblock_release(u->memchunk.memblock);

        pa_assert(l != 0);

        if (l < 0) {
            if (errno == EINTR)
                continue;
            else if (errno == EAGAIN)
                return 0;
            else {
                pa_log("Failed to write data to FIFO: %s", pa_cstrerror(errno));
                return -1;
            }

        } else {

            u->memchunk.index += (size_t) l;
            u->memchunk.length -= (size_t) l;

            if (u->memchunk.length <= 0) {
                pa_memblock_unref(u->memchunk.memblock);
                pa_memchunk_reset(&u->memchunk);
            }
        }

        return 0;
    }
}
Example #8
0
static void process_render(struct userdata *u, pa_usec_t now) {
    pa_memchunk chunk;
    int request_bytes;

    pa_assert(u);
    if (u->got_max_latency) {
        return;
    }
    pa_log_debug("process_render: u->block_usec %d", u->block_usec);
    while (u->timestamp < now + u->block_usec) {
        request_bytes = u->sink->thread_info.max_request;
        request_bytes = MIN(request_bytes, 16 * 1024);
        pa_sink_render(u->sink, request_bytes, &chunk);
        data_send(u, &chunk);
        pa_memblock_unref(chunk.memblock);
        u->timestamp += pa_bytes_to_usec(chunk.length, &u->sink->sample_spec);
    }
}
Example #9
0
static int process_render(struct userdata *u) {
    pa_assert(u);

    if (u->memchunk.length <= 0)
        pa_sink_render(u->sink, u->buffer_size, &u->memchunk);

    pa_assert(u->memchunk.length > 0);

    for (;;) {
        ssize_t l;
        void *p;

        p = pa_memblock_acquire(u->memchunk.memblock);
        l = pa_write(u->fd, (uint8_t*) p + u->memchunk.index, u->memchunk.length, &u->write_type);
        pa_memblock_release(u->memchunk.memblock);

        pa_assert(l != 0);

        if (l < 0) {

            if (errno == EINTR)
                continue;
            else if (errno == EAGAIN)
                return 0;
            else {
                pa_log("Failed to write data to FIFO: %s", pa_cstrerror(errno));
                return -1;
            }

        } else {

            u->memchunk.index += (size_t) l;
            u->memchunk.length -= (size_t) l;

            if (u->memchunk.length <= 0) {
                pa_memblock_unref(u->memchunk.memblock);
                pa_memchunk_reset(&u->memchunk);
            }
        }

        return 0;
    }
}
Example #10
0
static void process_render(struct context *context, pa_usec_t now)
{
	pa_memchunk chunk;
	int request_bytes;

	pa_assert(context);

	if (context->got_max_latency)
	{
		return;
	}

	pa_log_debug("process_render: u->block_usec %lu", context->block_usec);
	while (context->timestamp < now + context->block_usec)
	{
		request_bytes = context->sink->thread_info.max_request;
		request_bytes = MIN(request_bytes, 16 * 1024);
		pa_sink_render(context->sink, request_bytes, &chunk);
		pa_log("process_render: %lu bytes", chunk.length);
		data_send(context, &chunk);
		pa_memblock_unref(chunk.memblock);
		context->timestamp += pa_bytes_to_usec(chunk.length, &context->sink->sample_spec);
	}
}
Example #11
0
static void thread_func(void *userdata) {
    struct userdata *u = userdata;
    unsigned short revents = 0;
    int ret;

    pa_assert(u);

    pa_log_debug("Thread starting up");

    if (u->core->high_priority)
        pa_make_realtime();

    pa_thread_mq_install(&u->thread_mq);
    pa_rtpoll_install(u->rtpoll);

    for (;;) {
        /* Render some data and write it to the dsp */

        if (u->sink && PA_SINK_OPENED(u->sink->thread_info.state)) {
            audio_info_t info;
            int err;
            size_t len;

            err = ioctl(u->fd, AUDIO_GETINFO, &info);
            pa_assert(err >= 0);

            /*
             * Since we cannot modify the size of the output buffer we fake it
             * by not filling it more than u->buffer_size.
             */
            len = u->buffer_size;
            len -= u->written_bytes - (info.play.samples * u->frame_size);

            /* The sample counter can sometimes go backwards :( */
            if (len > u->buffer_size)
                len = 0;

            if (info.play.error) {
                pa_log_debug("Solaris buffer underflow!");
                clear_underflow(u);
            }

            len -= len % u->frame_size;

            while (len) {
                void *p;
                ssize_t r;

                if (!u->memchunk.length)
                    pa_sink_render(u->sink, len, &u->memchunk);

                pa_assert(u->memchunk.length);

                p = pa_memblock_acquire(u->memchunk.memblock);
                r = pa_write(u->fd, (uint8_t*) p + u->memchunk.index, u->memchunk.length, NULL);
                pa_memblock_release(u->memchunk.memblock);

                if (r < 0) {
                    if (errno == EINTR)
                        continue;
                    else if (errno != EAGAIN) {
                        pa_log("Failed to read data from DSP: %s", pa_cstrerror(errno));
                        goto fail;
                    }
                } else {
                    pa_assert(r % u->frame_size == 0);

                    u->memchunk.index += r;
                    u->memchunk.length -= r;

                    if (u->memchunk.length <= 0) {
                        pa_memblock_unref(u->memchunk.memblock);
                        pa_memchunk_reset(&u->memchunk);
                    }

                    len -= r;
                    u->written_bytes += r;
                }
            }
        }

        /* Try to read some data and pass it on to the source driver */

        if (u->source && PA_SOURCE_OPENED(u->source->thread_info.state) && ((revents & POLLIN))) {
            pa_memchunk memchunk;
            int err;
            size_t l;
            void *p;
            ssize_t r;
            audio_info_t info;

            err = ioctl(u->fd, AUDIO_GETINFO, &info);
            pa_assert(err >= 0);

            if (info.record.error) {
                pa_log_debug("Solaris buffer overflow!");
                clear_overflow(u);
            }

            err = ioctl(u->fd, I_NREAD, &l);
            pa_assert(err >= 0);

            if (l > 0) {
                /* This is to make sure it fits in the memory pool. Also, a page
                   should be the most efficient transfer size. */
                if (l > u->page_size)
                    l = u->page_size;

                memchunk.memblock = pa_memblock_new(u->core->mempool, l);
                pa_assert(memchunk.memblock);

                p = pa_memblock_acquire(memchunk.memblock);
                r = pa_read(u->fd, p, l, NULL);
                pa_memblock_release(memchunk.memblock);

                if (r < 0) {
                    pa_memblock_unref(memchunk.memblock);
                    if (errno != EAGAIN) {
                        pa_log("Failed to read data from DSP: %s", pa_cstrerror(errno));
                        goto fail;
                    }
                } else {
                    memchunk.index = 0;
                    memchunk.length = r;

                    pa_source_post(u->source, &memchunk);
                    pa_memblock_unref(memchunk.memblock);

                    u->read_bytes += r;

                    revents &= ~POLLIN;
                }
            }
        }

        if (u->fd >= 0) {
            struct pollfd *pollfd;

            pollfd = pa_rtpoll_item_get_pollfd(u->rtpoll_item, NULL);
            pollfd->events =
                ((u->source && PA_SOURCE_OPENED(u->source->thread_info.state)) ? POLLIN : 0);
        }

        /* Hmm, nothing to do. Let's sleep */
        if ((ret = pa_rtpoll_run(u->rtpoll, 1)) < 0)
            goto fail;

        if (ret == 0)
            goto finish;

        if (u->fd >= 0) {
            struct pollfd *pollfd;

            pollfd = pa_rtpoll_item_get_pollfd(u->rtpoll_item, NULL);

            if (pollfd->revents & ~(POLLOUT|POLLIN)) {
                pa_log("DSP shutdown.");
                goto fail;
            }

            revents = pollfd->revents;
        } else
            revents = 0;
    }

fail:
    /* We have to continue processing messages until we receive the
     * SHUTDOWN message */
    pa_asyncmsgq_post(u->thread_mq.outq, PA_MSGOBJECT(u->core), PA_CORE_MESSAGE_UNLOAD_MODULE, u->module, 0, NULL, NULL);
    pa_asyncmsgq_wait_for(u->thread_mq.inq, PA_MESSAGE_SHUTDOWN);

finish:
    pa_log_debug("Thread shutting down");
}
Example #12
0
static void thread_func(void *userdata) {
    struct userdata *u = userdata;
    int write_type = 0, read_type = 0;
    short revents = 0;

    pa_assert(u);

    pa_log_debug("Thread starting up");

    if (u->core->realtime_scheduling)
        pa_make_realtime(u->core->realtime_priority);

    pa_thread_mq_install(&u->thread_mq);

    for (;;) {
        int ret;

/*        pa_log("loop");    */

        if (PA_UNLIKELY(u->sink && u->sink->thread_info.rewind_requested))
            pa_sink_process_rewind(u->sink, 0);

        /* Render some data and write it to the dsp */

        if (u->sink && PA_SINK_IS_OPENED(u->sink->thread_info.state) && ((revents & POLLOUT) || u->use_mmap || u->use_getospace)) {

            if (u->use_mmap) {

                if ((ret = mmap_write(u)) < 0)
                    goto fail;

                revents &= ~POLLOUT;

                if (ret > 0)
                    continue;

            } else {
                ssize_t l;
                pa_bool_t loop = FALSE, work_done = FALSE;

                l = (ssize_t) u->out_fragment_size;

                if (u->use_getospace) {
                    audio_buf_info info;

                    if (ioctl(u->fd, SNDCTL_DSP_GETOSPACE, &info) < 0) {
                        pa_log_info("Device doesn't support SNDCTL_DSP_GETOSPACE: %s", pa_cstrerror(errno));
                        u->use_getospace = FALSE;
                    } else {
                        l = info.bytes;

                        /* We loop only if GETOSPACE worked and we
                         * actually *know* that we can write more than
                         * one fragment at a time */
                        loop = TRUE;
                    }
                }

                /* Round down to multiples of the fragment size,
                 * because OSS needs that (at least some versions
                 * do) */
                l = (l/(ssize_t) u->out_fragment_size) * (ssize_t) u->out_fragment_size;

                /* Hmm, so poll() signalled us that we can read
                 * something, but GETOSPACE told us there was nothing?
                 * Hmm, make the best of it, try to read some data, to
                 * avoid spinning forever. */
                if (l <= 0 && (revents & POLLOUT)) {
                    l = (ssize_t) u->out_fragment_size;
                    loop = FALSE;
                }

                while (l > 0) {
                    void *p;
                    ssize_t t;

                    if (u->memchunk.length <= 0)
                        pa_sink_render(u->sink, (size_t) l, &u->memchunk);

                    pa_assert(u->memchunk.length > 0);

                    p = pa_memblock_acquire(u->memchunk.memblock);
                    t = pa_write(u->fd, (uint8_t*) p + u->memchunk.index, u->memchunk.length, &write_type);
                    pa_memblock_release(u->memchunk.memblock);

/*                     pa_log("wrote %i bytes of %u", t, l); */

                    pa_assert(t != 0);

                    if (t < 0) {

                        if (errno == EINTR)
                            continue;

                        else if (errno == EAGAIN) {
                            pa_log_debug("EAGAIN");

                            revents &= ~POLLOUT;
                            break;

                        } else {
                            pa_log("Failed to write data to DSP: %s", pa_cstrerror(errno));
                            goto fail;
                        }

                    } else {

                        u->memchunk.index += (size_t) t;
                        u->memchunk.length -= (size_t) t;

                        if (u->memchunk.length <= 0) {
                            pa_memblock_unref(u->memchunk.memblock);
                            pa_memchunk_reset(&u->memchunk);
                        }

                        l -= t;

                        revents &= ~POLLOUT;
                        work_done = TRUE;
                    }

                    if (!loop)
                        break;
                }

                if (work_done)
                    continue;
            }
        }

        /* Try to read some data and pass it on to the source driver. */

        if (u->source && PA_SOURCE_IS_OPENED(u->source->thread_info.state) && ((revents & POLLIN) || u->use_mmap || u->use_getispace)) {

            if (u->use_mmap) {

                if ((ret = mmap_read(u)) < 0)
                    goto fail;

                revents &= ~POLLIN;

                if (ret > 0)
                    continue;

            } else {

                void *p;
                ssize_t l;
                pa_memchunk memchunk;
                pa_bool_t loop = FALSE, work_done = FALSE;

                l = (ssize_t) u->in_fragment_size;

                if (u->use_getispace) {
                    audio_buf_info info;

                    if (ioctl(u->fd, SNDCTL_DSP_GETISPACE, &info) < 0) {
                        pa_log_info("Device doesn't support SNDCTL_DSP_GETISPACE: %s", pa_cstrerror(errno));
                        u->use_getispace = FALSE;
                    } else {
                        l = info.bytes;
                        loop = TRUE;
                    }
                }

                l = (l/(ssize_t) u->in_fragment_size) * (ssize_t) u->in_fragment_size;

                if (l <= 0 && (revents & POLLIN)) {
                    l = (ssize_t) u->in_fragment_size;
                    loop = FALSE;
                }

                while (l > 0) {
                    ssize_t t;
                    size_t k;

                    pa_assert(l > 0);

                    memchunk.memblock = pa_memblock_new(u->core->mempool, (size_t) -1);

                    k = pa_memblock_get_length(memchunk.memblock);

                    if (k > (size_t) l)
                        k = (size_t) l;

                    k = (k/u->frame_size)*u->frame_size;

                    p = pa_memblock_acquire(memchunk.memblock);
                    t = pa_read(u->fd, p, k, &read_type);
                    pa_memblock_release(memchunk.memblock);

                    pa_assert(t != 0); /* EOF cannot happen */

/*                     pa_log("read %i bytes of %u", t, l); */

                    if (t < 0) {
                        pa_memblock_unref(memchunk.memblock);

                        if (errno == EINTR)
                            continue;

                        else if (errno == EAGAIN) {
                            pa_log_debug("EAGAIN");

                            revents &= ~POLLIN;
                            break;

                        } else {
                            pa_log("Failed to read data from DSP: %s", pa_cstrerror(errno));
                            goto fail;
                        }

                    } else {
                        memchunk.index = 0;
                        memchunk.length = (size_t) t;

                        pa_source_post(u->source, &memchunk);
                        pa_memblock_unref(memchunk.memblock);

                        l -= t;

                        revents &= ~POLLIN;
                        work_done = TRUE;
                    }

                    if (!loop)
                        break;
                }

                if (work_done)
                    continue;
            }
        }

/*         pa_log("loop2 revents=%i", revents); */

        if (u->rtpoll_item) {
            struct pollfd *pollfd;

            pa_assert(u->fd >= 0);

            pollfd = pa_rtpoll_item_get_pollfd(u->rtpoll_item, NULL);
            pollfd->events = (short)
                (((u->source && PA_SOURCE_IS_OPENED(u->source->thread_info.state)) ? POLLIN : 0) |
                 ((u->sink && PA_SINK_IS_OPENED(u->sink->thread_info.state)) ? POLLOUT : 0));
        }

        /* Hmm, nothing to do. Let's sleep */
        if ((ret = pa_rtpoll_run(u->rtpoll, TRUE)) < 0)
            goto fail;

        if (ret == 0)
            goto finish;

        if (u->rtpoll_item) {
            struct pollfd *pollfd;

            pollfd = pa_rtpoll_item_get_pollfd(u->rtpoll_item, NULL);

            if (pollfd->revents & ~(POLLOUT|POLLIN)) {
                pa_log("DSP shutdown.");
                goto fail;
            }

            revents = pollfd->revents;
        } else
            revents = 0;
    }

fail:
    /* If this was no regular exit from the loop we have to continue
     * processing messages until we received PA_MESSAGE_SHUTDOWN */
    pa_asyncmsgq_post(u->thread_mq.outq, PA_MSGOBJECT(u->core), PA_CORE_MESSAGE_UNLOAD_MODULE, u->module, 0, NULL, NULL);
    pa_asyncmsgq_wait_for(u->thread_mq.inq, PA_MESSAGE_SHUTDOWN);

finish:
    pa_log_debug("Thread shutting down");
}
/* Called from I/O thread context */
static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk) {
    struct userdata *u;
    float *src, *dst;
    unsigned n;
    pa_memchunk tchunk;

    unsigned j, k, l;
    float sum_right, sum_left;
    float current_sample;

    pa_sink_input_assert_ref(i);
    pa_assert(chunk);
    pa_assert_se(u = i->userdata);

    /* Hmm, process any rewind request that might be queued up */
    pa_sink_process_rewind(u->sink, 0);

    while (pa_memblockq_peek(u->memblockq, &tchunk) < 0) {
        pa_memchunk nchunk;

        pa_sink_render(u->sink, nbytes * u->sink_fs / u->fs, &nchunk);
        pa_memblockq_push(u->memblockq, &nchunk);
        pa_memblock_unref(nchunk.memblock);
    }

    tchunk.length = PA_MIN(nbytes * u->sink_fs / u->fs, tchunk.length);
    pa_assert(tchunk.length > 0);

    n = (unsigned) (tchunk.length / u->sink_fs);

    pa_assert(n > 0);

    chunk->index = 0;
    chunk->length = n * u->fs;
    chunk->memblock = pa_memblock_new(i->sink->core->mempool, chunk->length);

    pa_memblockq_drop(u->memblockq, n * u->sink_fs);

    src = pa_memblock_acquire_chunk(&tchunk);
    dst = pa_memblock_acquire(chunk->memblock);

    for (l = 0; l < n; l++) {
        memcpy(((char*) u->input_buffer) + u->input_buffer_offset * u->sink_fs, ((char *) src) + l * u->sink_fs, u->sink_fs);

        sum_right = 0;
        sum_left = 0;

        /* fold the input buffer with the impulse response */
        for (j = 0; j < u->hrir_samples; j++) {
            for (k = 0; k < u->channels; k++) {
                current_sample = u->input_buffer[((u->input_buffer_offset + j) % u->hrir_samples) * u->channels + k];

                sum_left += current_sample * u->hrir_data[j * u->hrir_channels + u->mapping_left[k]];
                sum_right += current_sample * u->hrir_data[j * u->hrir_channels + u->mapping_right[k]];
            }
        }

        dst[2 * l] = PA_CLAMP_UNLIKELY(sum_left, -1.0f, 1.0f);
        dst[2 * l + 1] = PA_CLAMP_UNLIKELY(sum_right, -1.0f, 1.0f);

        u->input_buffer_offset--;
        if (u->input_buffer_offset < 0)
            u->input_buffer_offset += u->hrir_samples;
    }

    pa_memblock_release(tchunk.memblock);
    pa_memblock_release(chunk->memblock);

    pa_memblock_unref(tchunk.memblock);

    return 0;
}
Example #14
0
/* Called from I/O thread context */
static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk) {
    struct userdata *u;
    float *src, *dst;
    size_t fs;
    unsigned n, c;
    pa_memchunk tchunk;
    pa_usec_t current_latency PA_GCC_UNUSED;

    pa_sink_input_assert_ref(i);
    pa_assert(chunk);
    pa_assert_se(u = i->userdata);

    /* Hmm, process any rewind request that might be queued up */
    pa_sink_process_rewind(u->sink, 0);

    /* (1) IF YOU NEED A FIXED BLOCK SIZE USE
     * pa_memblockq_peek_fixed_size() HERE INSTEAD. NOTE THAT FILTERS
     * WHICH CAN DEAL WITH DYNAMIC BLOCK SIZES ARE HIGHLY
     * PREFERRED. */
    while (pa_memblockq_peek(u->memblockq, &tchunk) < 0) {
        pa_memchunk nchunk;

        pa_sink_render(u->sink, nbytes, &nchunk);
        pa_memblockq_push(u->memblockq, &nchunk);
        pa_memblock_unref(nchunk.memblock);
    }

    /* (2) IF YOU NEED A FIXED BLOCK SIZE, THIS NEXT LINE IS NOT
     * NECESSARY */
    tchunk.length = PA_MIN(nbytes, tchunk.length);
    pa_assert(tchunk.length > 0);

    fs = pa_frame_size(&i->sample_spec);
    n = (unsigned) (tchunk.length / fs);

    pa_assert(n > 0);

    chunk->index = 0;
    chunk->length = n*fs;
    chunk->memblock = pa_memblock_new(i->sink->core->mempool, chunk->length);

    pa_memblockq_drop(u->memblockq, chunk->length);

    src = pa_memblock_acquire_chunk(&tchunk);
    dst = pa_memblock_acquire(chunk->memblock);

    /* (3) PUT YOUR CODE HERE TO DO SOMETHING WITH THE DATA */

    /* As an example, copy input to output */
    for (c = 0; c < u->channels; c++) {
        pa_sample_clamp(PA_SAMPLE_FLOAT32NE,
                        dst+c, u->channels * sizeof(float),
                        src+c, u->channels * sizeof(float),
                        n);
    }

    pa_memblock_release(tchunk.memblock);
    pa_memblock_release(chunk->memblock);

    pa_memblock_unref(tchunk.memblock);

    /* (4) IF YOU NEED THE LATENCY FOR SOMETHING ACQUIRE IT LIKE THIS: */
    current_latency =
        /* Get the latency of the master sink */
        pa_sink_get_latency_within_thread(i->sink) +

        /* Add the latency internal to our sink input on top */
        pa_bytes_to_usec(pa_memblockq_get_length(i->thread_info.render_memblockq), &i->sink->sample_spec);

    return 0;
}
Example #15
0
static void thread_func(void *userdata) {
    struct userdata *u = userdata;
    int write_type = 0;

    pa_assert(u);

    pa_log_debug("Thread starting up");

    pa_thread_mq_install(&u->thread_mq);

    pa_smoother_set_time_offset(u->smoother, pa_rtclock_now());

    for (;;) {
        int ret;

        if (PA_SINK_IS_OPENED(u->sink->thread_info.state))
            if (u->sink->thread_info.rewind_requested)
                pa_sink_process_rewind(u->sink, 0);

        if (u->rtpoll_item) {
            struct pollfd *pollfd;
            pollfd = pa_rtpoll_item_get_pollfd(u->rtpoll_item, NULL);

            /* Render some data and write it to the fifo */
            if (PA_SINK_IS_OPENED(u->sink->thread_info.state) && pollfd->revents) {
                pa_usec_t usec;
                int64_t n;

                for (;;) {
                    ssize_t l;
                    void *p;

                    if (u->memchunk.length <= 0)
                        pa_sink_render(u->sink, u->block_size, &u->memchunk);

                    pa_assert(u->memchunk.length > 0);

                    p = pa_memblock_acquire(u->memchunk.memblock);
                    l = pa_write(u->fd, (uint8_t*) p + u->memchunk.index, u->memchunk.length, &write_type);
                    pa_memblock_release(u->memchunk.memblock);

                    pa_assert(l != 0);

                    if (l < 0) {

                        if (errno == EINTR)
                            continue;
                        else if (errno == EAGAIN) {

                            /* OK, we filled all socket buffers up
                             * now. */
                            goto filled_up;

                        } else {
                            pa_log("Failed to write data to FIFO: %s", pa_cstrerror(errno));
                            goto fail;
                        }

                    } else {
                        u->offset += l;

                        u->memchunk.index += (size_t) l;
                        u->memchunk.length -= (size_t) l;

                        if (u->memchunk.length <= 0) {
                            pa_memblock_unref(u->memchunk.memblock);
                            pa_memchunk_reset(&u->memchunk);
                        }

                        pollfd->revents = 0;

                        if (u->memchunk.length > 0)

                            /* OK, we wrote less that we asked for,
                             * hence we can assume that the socket
                             * buffers are full now */
                            goto filled_up;
                    }
                }

            filled_up:

                /* At this spot we know that the socket buffers are
                 * fully filled up. This is the best time to estimate
                 * the playback position of the server */

                n = u->offset;

#ifdef SIOCOUTQ
                {
                    int l;
                    if (ioctl(u->fd, SIOCOUTQ, &l) >= 0 && l > 0)
                        n -= l;
                }
#endif

                usec = pa_bytes_to_usec((uint64_t) n, &u->sink->sample_spec);

                if (usec > u->latency)
                    usec -= u->latency;
                else
                    usec = 0;

                pa_smoother_put(u->smoother, pa_rtclock_now(), usec);
            }

            /* Hmm, nothing to do. Let's sleep */
            pollfd->events = (short) (PA_SINK_IS_OPENED(u->sink->thread_info.state) ? POLLOUT : 0);
        }

        if ((ret = pa_rtpoll_run(u->rtpoll, TRUE)) < 0)
            goto fail;

        if (ret == 0)
            goto finish;

        if (u->rtpoll_item) {
            struct pollfd* pollfd;

            pollfd = pa_rtpoll_item_get_pollfd(u->rtpoll_item, NULL);

            if (pollfd->revents & ~POLLOUT) {
                pa_log("FIFO shutdown.");
                goto fail;
            }
        }
    }

fail:
    /* If this was no regular exit from the loop we have to continue
     * processing messages until we received PA_MESSAGE_SHUTDOWN */
    pa_asyncmsgq_post(u->thread_mq.outq, PA_MSGOBJECT(u->core), PA_CORE_MESSAGE_UNLOAD_MODULE, u->module, 0, NULL, NULL);
    pa_asyncmsgq_wait_for(u->thread_mq.inq, PA_MESSAGE_SHUTDOWN);

finish:
    pa_log_debug("Thread shutting down");
}
Example #16
0
static void thread_func(void *userdata) {
    struct userdata *u = userdata;
    unsigned short revents = 0;
    int ret, err;
    audio_info_t info;

    pa_assert(u);

    pa_log_debug("Thread starting up");

    if (u->core->realtime_scheduling)
        pa_make_realtime(u->core->realtime_priority);

    pa_thread_mq_install(&u->thread_mq);

    pa_smoother_set_time_offset(u->smoother, pa_rtclock_now());

    for (;;) {
        /* Render some data and write it to the dsp */

        if (PA_UNLIKELY(u->sink->thread_info.rewind_requested))
            process_rewind(u);

        if (u->sink && PA_SINK_IS_OPENED(u->sink->thread_info.state)) {
            pa_usec_t xtime0, ysleep_interval, xsleep_interval;
            uint64_t buffered_bytes;

            err = ioctl(u->fd, AUDIO_GETINFO, &info);
            if (err < 0) {
                pa_log("AUDIO_GETINFO ioctl failed: %s", pa_cstrerror(errno));
                goto fail;
            }

            if (info.play.error) {
                pa_log_debug("buffer under-run!");

                AUDIO_INITINFO(&info);
                info.play.error = 0;
                if (ioctl(u->fd, AUDIO_SETINFO, &info) < 0)
                    pa_log("AUDIO_SETINFO: %s", pa_cstrerror(errno));

                pa_smoother_reset(u->smoother, pa_rtclock_now(), true);
            }

            for (;;) {
                void *p;
                ssize_t w;
                size_t len;
                int write_type = 1;

                /*
                 * Since we cannot modify the size of the output buffer we fake it
                 * by not filling it more than u->buffer_size.
                 */
                xtime0 = pa_rtclock_now();
                buffered_bytes = get_playback_buffered_bytes(u);
                if (buffered_bytes >= (uint64_t)u->buffer_size)
                    break;

                len = u->buffer_size - buffered_bytes;
                len -= len % u->frame_size;

                if (len < (size_t) u->minimum_request)
                    break;

                if (!u->memchunk.length)
                    pa_sink_render(u->sink, u->sink->thread_info.max_request, &u->memchunk);

                len = PA_MIN(u->memchunk.length, len);

                p = pa_memblock_acquire(u->memchunk.memblock);
                w = pa_write(u->fd, (uint8_t*) p + u->memchunk.index, len, &write_type);
                pa_memblock_release(u->memchunk.memblock);

                if (w <= 0) {
                    if (errno == EINTR) {
                        continue;
                    } else if (errno == EAGAIN) {
                        /* We may have realtime priority so yield the CPU to ensure that fd can become writable again. */
                        pa_log_debug("EAGAIN with %llu bytes buffered.", buffered_bytes);
                        break;
                    } else {
                        pa_log("Failed to write data to DSP: %s", pa_cstrerror(errno));
                        goto fail;
                    }
                } else {
                    pa_assert(w % u->frame_size == 0);

                    u->written_bytes += w;
                    u->memchunk.index += w;
                    u->memchunk.length -= w;
                    if (u->memchunk.length <= 0) {
                        pa_memblock_unref(u->memchunk.memblock);
                        pa_memchunk_reset(&u->memchunk);
                    }
                }
            }

            ysleep_interval = pa_bytes_to_usec(buffered_bytes / 2, &u->sink->sample_spec);
            xsleep_interval = pa_smoother_translate(u->smoother, xtime0, ysleep_interval);
            pa_rtpoll_set_timer_absolute(u->rtpoll, xtime0 + PA_MIN(xsleep_interval, ysleep_interval));
        } else
            pa_rtpoll_set_timer_disabled(u->rtpoll);

        /* Try to read some data and pass it on to the source driver */

        if (u->source && PA_SOURCE_IS_OPENED(u->source->thread_info.state) && (revents & POLLIN)) {
            pa_memchunk memchunk;
            void *p;
            ssize_t r;
            size_t len;

            err = ioctl(u->fd, AUDIO_GETINFO, &info);
            pa_assert(err >= 0);

            if (info.record.error) {
                pa_log_debug("buffer overflow!");

                AUDIO_INITINFO(&info);
                info.record.error = 0;
                if (ioctl(u->fd, AUDIO_SETINFO, &info) < 0)
                    pa_log("AUDIO_SETINFO: %s", pa_cstrerror(errno));
            }

            err = ioctl(u->fd, I_NREAD, &len);
            pa_assert(err >= 0);

            if (len > 0) {
                memchunk.memblock = pa_memblock_new(u->core->mempool, len);
                pa_assert(memchunk.memblock);

                p = pa_memblock_acquire(memchunk.memblock);
                r = pa_read(u->fd, p, len, NULL);
                pa_memblock_release(memchunk.memblock);

                if (r < 0) {
                    pa_memblock_unref(memchunk.memblock);
                    if (errno == EAGAIN)
                        break;
                    else {
                        pa_log("Failed to read data from DSP: %s", pa_cstrerror(errno));
                        goto fail;
                    }
                } else {
                    u->read_bytes += r;

                    memchunk.index = 0;
                    memchunk.length = r;

                    pa_source_post(u->source, &memchunk);
                    pa_memblock_unref(memchunk.memblock);

                    revents &= ~POLLIN;
                }
            }
        }

        if (u->rtpoll_item) {
            struct pollfd *pollfd;

            pa_assert(u->fd >= 0);

            pollfd = pa_rtpoll_item_get_pollfd(u->rtpoll_item, NULL);
            pollfd->events = (u->source && PA_SOURCE_IS_OPENED(u->source->thread_info.state)) ? POLLIN : 0;
        }

        /* Hmm, nothing to do. Let's sleep */
        if ((ret = pa_rtpoll_run(u->rtpoll, true)) < 0)
            goto fail;

        if (ret == 0)
            goto finish;

        if (u->rtpoll_item) {
            struct pollfd *pollfd;

            pollfd = pa_rtpoll_item_get_pollfd(u->rtpoll_item, NULL);

            if (pollfd->revents & ~(POLLOUT|POLLIN)) {
                pa_log("DSP shutdown.");
                goto fail;
            }

            revents = pollfd->revents;
        } else
            revents = 0;
    }

fail:
    /* We have to continue processing messages until we receive the
     * SHUTDOWN message */
    pa_asyncmsgq_post(u->thread_mq.outq, PA_MSGOBJECT(u->core), PA_CORE_MESSAGE_UNLOAD_MODULE, u->module, 0, NULL, NULL);
    pa_asyncmsgq_wait_for(u->thread_mq.inq, PA_MESSAGE_SHUTDOWN);

finish:
    pa_log_debug("Thread shutting down");
}
Example #17
0
static void thread_func(void *userdata) {
    struct userdata *u = userdata;
    int write_type = 0;
    pa_memchunk silence;
    uint32_t silence_overhead = 0;
    double silence_ratio = 0;

    pa_assert(u);

    pa_log_debug("Thread starting up");

    pa_thread_mq_install(&u->thread_mq);

    pa_smoother_set_time_offset(u->smoother, pa_rtclock_now());

    /* Create a chunk of memory that is our encoded silence sample. */
    pa_memchunk_reset(&silence);

    for (;;) {
        int ret;

        if (PA_UNLIKELY(u->sink->thread_info.rewind_requested))
            pa_sink_process_rewind(u->sink, 0);

        if (u->rtpoll_item) {
            struct pollfd *pollfd;
            pollfd = pa_rtpoll_item_get_pollfd(u->rtpoll_item, NULL);

            /* Render some data and write it to the fifo */
            if (/*PA_SINK_IS_OPENED(u->sink->thread_info.state) && */pollfd->revents) {
                pa_usec_t usec;
                int64_t n;
                void *p;

                if (!silence.memblock) {
                    pa_memchunk silence_tmp;

                    pa_memchunk_reset(&silence_tmp);
                    silence_tmp.memblock = pa_memblock_new(u->core->mempool, 4096);
                    silence_tmp.length = 4096;
                    p = pa_memblock_acquire(silence_tmp.memblock);
                    memset(p, 0, 4096);
                    pa_memblock_release(silence_tmp.memblock);
                    pa_raop_client_encode_sample(u->raop, &silence_tmp, &silence);
                    pa_assert(0 == silence_tmp.length);
                    silence_overhead = silence_tmp.length - 4096;
                    silence_ratio = silence_tmp.length / 4096;
                    pa_memblock_unref(silence_tmp.memblock);
                }

                for (;;) {
                    ssize_t l;

                    if (u->encoded_memchunk.length <= 0) {
                        if (u->encoded_memchunk.memblock)
                            pa_memblock_unref(u->encoded_memchunk.memblock);
                        if (PA_SINK_IS_OPENED(u->sink->thread_info.state)) {
                            size_t rl;

                            /* We render real data */
                            if (u->raw_memchunk.length <= 0) {
                                if (u->raw_memchunk.memblock)
                                    pa_memblock_unref(u->raw_memchunk.memblock);
                                pa_memchunk_reset(&u->raw_memchunk);

                                /* Grab unencoded data */
                                pa_sink_render(u->sink, u->block_size, &u->raw_memchunk);
                            }
                            pa_assert(u->raw_memchunk.length > 0);

                            /* Encode it */
                            rl = u->raw_memchunk.length;
                            u->encoding_overhead += u->next_encoding_overhead;
                            pa_raop_client_encode_sample(u->raop, &u->raw_memchunk, &u->encoded_memchunk);
                            u->next_encoding_overhead = (u->encoded_memchunk.length - (rl - u->raw_memchunk.length));
                            u->encoding_ratio = u->encoded_memchunk.length / (rl - u->raw_memchunk.length);
                        } else {
                            /* We render some silence into our memchunk */
                            memcpy(&u->encoded_memchunk, &silence, sizeof(pa_memchunk));
                            pa_memblock_ref(silence.memblock);

                            /* Calculate/store some values to be used with the smoother */
                            u->next_encoding_overhead = silence_overhead;
                            u->encoding_ratio = silence_ratio;
                        }
                    }
                    pa_assert(u->encoded_memchunk.length > 0);

                    p = pa_memblock_acquire(u->encoded_memchunk.memblock);
                    l = pa_write(u->fd, (uint8_t*) p + u->encoded_memchunk.index, u->encoded_memchunk.length, &write_type);
                    pa_memblock_release(u->encoded_memchunk.memblock);

                    pa_assert(l != 0);

                    if (l < 0) {

                        if (errno == EINTR)
                            continue;
                        else if (errno == EAGAIN) {

                            /* OK, we filled all socket buffers up
                             * now. */
                            goto filled_up;

                        } else {
                            pa_log("Failed to write data to FIFO: %s", pa_cstrerror(errno));
                            goto fail;
                        }

                    } else {
                        u->offset += l;

                        u->encoded_memchunk.index += l;
                        u->encoded_memchunk.length -= l;

                        pollfd->revents = 0;

                        if (u->encoded_memchunk.length > 0) {
                            /* we've completely written the encoded data, so update our overhead */
                            u->encoding_overhead += u->next_encoding_overhead;

                            /* OK, we wrote less that we asked for,
                             * hence we can assume that the socket
                             * buffers are full now */
                            goto filled_up;
                        }
                    }
                }

filled_up:

                /* At this spot we know that the socket buffers are
                 * fully filled up. This is the best time to estimate
                 * the playback position of the server */

                n = u->offset - u->encoding_overhead;

#ifdef SIOCOUTQ
                {
                    int l;
                    if (ioctl(u->fd, SIOCOUTQ, &l) >= 0 && l > 0)
                        n -= (l / u->encoding_ratio);
                }
#endif

                usec = pa_bytes_to_usec(n, &u->sink->sample_spec);

                if (usec > u->latency)
                    usec -= u->latency;
                else
                    usec = 0;

                pa_smoother_put(u->smoother, pa_rtclock_now(), usec);
            }

            /* Hmm, nothing to do. Let's sleep */
            pollfd->events = POLLOUT; /*PA_SINK_IS_OPENED(u->sink->thread_info.state)  ? POLLOUT : 0;*/
        }

        if ((ret = pa_rtpoll_run(u->rtpoll)) < 0)
            goto fail;

        if (ret == 0)
            goto finish;

        if (u->rtpoll_item) {
            struct pollfd* pollfd;

            pollfd = pa_rtpoll_item_get_pollfd(u->rtpoll_item, NULL);

            if (pollfd->revents & ~POLLOUT) {
                if (u->sink->thread_info.state != PA_SINK_SUSPENDED) {
                    pa_log("FIFO shutdown.");
                    goto fail;
                }

                /* We expect this to happen on occasion if we are not sending data.
                   It's perfectly natural and normal and natural */
                if (u->rtpoll_item)
                    pa_rtpoll_item_free(u->rtpoll_item);
                u->rtpoll_item = NULL;
            }
        }
    }

fail:
    /* If this was no regular exit from the loop we have to continue
     * processing messages until we received PA_MESSAGE_SHUTDOWN */
    pa_asyncmsgq_post(u->thread_mq.outq, PA_MSGOBJECT(u->core), PA_CORE_MESSAGE_UNLOAD_MODULE, u->module, 0, NULL, NULL);
    pa_asyncmsgq_wait_for(u->thread_mq.inq, PA_MESSAGE_SHUTDOWN);

finish:
    if (silence.memblock)
        pa_memblock_unref(silence.memblock);
    pa_log_debug("Thread shutting down");
}
Example #18
0
static void do_write(struct userdata *u) {
    uint32_t free_frags;
    pa_memchunk memchunk;
    WAVEHDR *hdr;
    MMRESULT res;
    void *p;

    if (!u->sink)
        return;

    if (!PA_SINK_IS_LINKED(u->sink->state))
        return;

    EnterCriticalSection(&u->crit);
    free_frags = u->free_ofrags;
    LeaveCriticalSection(&u->crit);

    if (!u->sink_underflow && (free_frags == u->fragments))
        pa_log_debug("WaveOut underflow!");

    while (free_frags) {
        hdr = &u->ohdrs[u->cur_ohdr];
        if (hdr->dwFlags & WHDR_PREPARED)
            waveOutUnprepareHeader(u->hwo, hdr, sizeof(WAVEHDR));

        hdr->dwBufferLength = 0;
        while (hdr->dwBufferLength < u->fragment_size) {
            size_t len;

            len = u->fragment_size - hdr->dwBufferLength;

            pa_sink_render(u->sink, len, &memchunk);

            pa_assert(memchunk.memblock);
            pa_assert(memchunk.length);

            if (memchunk.length < len)
                len = memchunk.length;

            p = pa_memblock_acquire(memchunk.memblock);
            memcpy(hdr->lpData + hdr->dwBufferLength, (char*) p + memchunk.index, len);
            pa_memblock_release(memchunk.memblock);

            hdr->dwBufferLength += len;

            pa_memblock_unref(memchunk.memblock);
            memchunk.memblock = NULL;
        }

        /* Underflow detection */
        if (hdr->dwBufferLength == 0) {
            u->sink_underflow = 1;
            break;
        }
        u->sink_underflow = 0;

        res = waveOutPrepareHeader(u->hwo, hdr, sizeof(WAVEHDR));
        if (res != MMSYSERR_NOERROR)
            pa_log_error("Unable to prepare waveOut block: %d", res);

        res = waveOutWrite(u->hwo, hdr, sizeof(WAVEHDR));
        if (res != MMSYSERR_NOERROR)
            pa_log_error("Unable to write waveOut block: %d", res);

        u->written_bytes += hdr->dwBufferLength;

        EnterCriticalSection(&u->crit);
        u->free_ofrags--;
        LeaveCriticalSection(&u->crit);

        free_frags--;
        u->cur_ohdr++;
        u->cur_ohdr %= u->fragments;
    }
}