Example #1
0
int main()
{
  std::vector<int> vec(32 << 20, 1);

  // compute a reference
  int reference  = parallel_sum(agency::par, vec.data(), vec.size());

  // now execute parallel_sum on our executor
  fork_executor fork_exec;

  int fork_sum = parallel_sum(agency::par.on(fork_exec), vec.data(), vec.size());

  // validate that the results match
  assert(reference == fork_sum);
  
  std::cout << "OK" << std::endl;
}
Example #2
0
int parallel_sum(RAIter beg, RAIter end) {
  auto len = end - beg;
  if (len<1000)
    return std::accumulate(beg, end, 0);

  RAIter mid = beg + len/2;
  auto handle = std::async(std::launch::async, parallel_sum<RAIter>, mid, end);
  int sum = parallel_sum(beg, mid);
  return sum + handle.get();
}
Example #3
0
/*! Parallel Sum.
 * \tparam RAI Random Access Iterator.
 * \see http://en.cppreference.com/w/cpp/thread/async
 */
template<class RAI> int parallel_sum(RAI beg, RAI end)
{
    typename RAI::difference_type len = end-beg;
    if (len < 1000) {            // for small sizes
        return std::accumulate(beg, end, 0); // revert to ordinary algorithm
    }
    auto mid = beg + len/2;     // middle value
    auto handle = std::async(std::launch::async, parallel_sum<RAI>, mid, end);
    int sum = parallel_sum(beg, mid);
    return sum + handle.get();
}
void Dmc_method::find_cutoffs() {
  doublevar eaverage=0;
  
  doublevar totweight=0;
  for(int i=0; i< nconfig; i++) {
      //eaverage+=(prop.trace(step,i).energy(w)+offset(w))
      //  *guidingwf->getOperatorWeight(prop.trace(step,i).wf_val,w);
    eaverage+=pts(i).prop.energy(0)*pts(i).weight;
    totweight+=pts(i).weight;
    //cout << "en " << pts(i).prop.energy(0) << endl;
  }
  //cout << mpi_info.node << "par sum " << nconfig << endl; 
  totweight=parallel_sum(totweight);
  //cout << mpi_info.node << "eaverage " << endl;
  eaverage=parallel_sum(eaverage)/totweight;

  eref=eaverage;
  single_write(cout, " setting eref= ", eref, "\n");
  int totconf=parallel_sum(nconfig);
  doublevar eaverage2=0;
  for(int i=0; i < nconfig; i++){
    doublevar effenergy=pts[i].prop.energy(0);
    eaverage2+=(effenergy-eaverage)
               *(effenergy-eaverage);
  }
  
  eaverage2=parallel_sum(eaverage2)/totconf;

  //The variance of the starting distribution.
  doublevar sigmac=sqrt(eaverage2);

  branchcut_start=branch_start_cutoff*sigmac; //start of cutoff region for branching
  branchcut_stop=branch_stop_cutoff*sigmac; //end of cutoff region  

  single_write(cout, " start branch cut at ", branchcut_start, "\n");
  single_write(cout, " stop branch cut at ", branchcut_stop, "\n");


}
Example #5
0
File: main.cpp Project: CCJY/coliru
int parallel_sum(int value, int size)
{
  int sum = 0;
  if ( size < 1440 )
    for ( int i = 0; i < size; ++i )
      sum += value;
  else {
    auto handle = boost::async(boost::launch::async, boost::bind(parallel_sum, value, size-size/2));
    sum += parallel_sum(value, size/2);
    sum += handle.get();
  }
  return sum;
}
Example #6
0
int get_global_part_differences(stk::ParallelMachine comm, int numLocalDiffs)
{
    return parallel_sum(comm, numLocalDiffs);
}
/*!

 */
void Dmc_method::runWithVariables(Properties_manager & prop, 
                                  System * sys, 
                                  Wavefunction_data * wfdata,
                                  Pseudopotential * pseudo,
                                  ostream & output)
{

  allocateIntermediateVariables(sys, wfdata);
  if(!wfdata->supports(laplacian_update))
    error("DMC doesn't support all-electron moves..please"
          " change your wave function to use the new Jastrow");

  cout.precision(15);
  output.precision(10);

  
  prop.setSize(wf->nfunc(), nblock, nstep, nconfig, sys, 
	       wfdata);

  restorecheckpoint(readconfig, sys, wfdata, pseudo);
  prop.initializeLog(average_var);

  //MB: new properties manager for forward walking (one per each length)
  Array1 <Properties_manager> prop_fw;
  prop_fw.Resize(fw_length.GetSize());
  if(max_fw_length){
    for(int s=0;s<fw_length.GetSize();s++){
      string logfile, label_temp;
      prop.getLog(logfile, label_temp);
      char strbuff[40];
      sprintf(strbuff, "%d", fw_length(s));
      label_temp+="_fw";
      label_temp+=strbuff;
      prop_fw(s).setLog(logfile, label_temp);
      prop_fw(s).setSize(wf->nfunc(), nblock, nstep, nconfig, sys, 
		    wfdata);
      prop_fw(s).initializeLog(average_var);
    }
  }


  if(nhist==-1)
    nhist=1;
  
  doublevar teff=timestep;
  for(int block=0; block < nblock; block++) {

    int totkilled=0;  
    int totbranch=0;
    int totpoints=0;
    for(int step=0; step < nstep; ) {
      int npsteps=min(feedback_interval, nstep-step);

      Dynamics_info dinfo;
      doublevar acsum=0;
      doublevar deltar2=0;
      Array1 <doublevar> epos(3);
      
      doublevar avg_acceptance=0;
      
      for(int walker=0; walker < nconfig; walker++) {
        pts(walker).config_pos.restorePos(sample);
        wf->updateLap(wfdata, sample);
	//------Do several steps without branching
        for(int p=0; p < npsteps; p++) {
          pseudo->randomize();
          
          for(int e=0; e< nelectrons; e++) {
            int acc;
            acc=dyngen->sample(e, sample, wf, wfdata, guidingwf,
                               dinfo, timestep);
            
            if(dinfo.accepted) 
              deltar2+=dinfo.diffusion_rate/(nconfig*nelectrons*npsteps);
            if(dinfo.accepted) {               
              pts(walker).age(e)=0;
            }
            else { 
              pts(walker).age(e)++;
            }
            avg_acceptance+=dinfo.acceptance/(nconfig*nelectrons*npsteps);
            
            if(acc>0) acsum++;
          }
          totpoints++;
          Properties_point pt;
          if(tmoves or tmoves_sizeconsistent) {  //------------------T-moves
            doTmove(pt,pseudo,sys,wfdata,wf,sample,guidingwf);
          } ///---------------------------------done with the T-moves
          else {
            mygather.gatherData(pt, pseudo, sys, wfdata, wf, 
                                sample, guidingwf);
          }
          Dmc_history new_hist;
          new_hist.main_en=pts(walker).prop.energy(0);
          pts(walker).past_energies.push_front(new_hist);
          deque<Dmc_history> & past(pts(walker).past_energies);
          if(past.size() > nhist) 
            past.erase(past.begin()+nhist, past.end());
          
          pts(walker).prop=pt;
          if(!pure_dmc) { 
            pts(walker).weight*=getWeight(pts(walker),teff,etrial);
            //Introduce potentially a small bias to avoid instability.
            if(pts(walker).weight>max_poss_weight) pts(walker).weight=max_poss_weight;
          }
          else
            pts(walker).weight=getWeightPURE_DMC(pts(walker),teff,etrial);
          
          if(pts(walker).ignore_walker) {
            pts(walker).ignore_walker=0;
            pts(walker).weight=1;
            pts(walker).prop.count=0;
          }
          pts(walker).prop.weight=pts(walker).weight;
          //This is somewhat inaccurate..will need to change it later
          //For the moment, the autocorrelation will be slightly
          //underestimated
          pts(walker).prop.parent=walker;
          pts(walker).prop.nchildren=1;
          pts(walker).prop.children(0)=walker;
          pts(walker).prop.avgrets.Resize(1,average_var.GetDim(0));
          for(int i=0; i< average_var.GetDim(0); i++) { 
            average_var(i)->randomize(wfdata,wf,sys,sample);
            average_var(i)->evaluate(wfdata, wf, sys, pseudo, sample, pts(walker).prop.avgrets(0,i));
          }
          prop.insertPoint(step+p, walker, pts(walker).prop);
          for(int i=0; i< densplt.GetDim(0); i++)
            densplt(i)->accumulate(sample,pts(walker).prop.weight(0));
          for(int i=0; i< nldensplt.GetDim(0); i++)
            nldensplt(i)->accumulate(sample,pts(walker).prop.weight(0),
                                     wfdata,wf);
          
          
          //MB: making the history of prop.avgrets for forward walking
          if(max_fw_length){
            forwardWalking(walker, step+p,prop_fw);
          }//if FW
          
        }

        pts(walker).config_pos.savePos(sample);
      }
      //---Finished moving all walkers

      doublevar accept_ratio=acsum/(nconfig*nelectrons*npsteps);
      teff=timestep*accept_ratio; //deltar2/rf_diffusion; 

      updateEtrial(feedback);

      step+=npsteps;

      int nkilled;
      if(!pure_dmc)
        nkilled=calcBranch();
      else
        nkilled=0;
      
      totkilled+=nkilled;
      totbranch+=nkilled;
    }

    ///----Finished block
    
    if(!low_io || block==nblock-1) {
      savecheckpoint(storeconfig,sample);
      for(int i=0; i< densplt.GetDim(0); i++)
        densplt(i)->write();
      for(int i=0; i< nldensplt.GetDim(0); i++)
        nldensplt(i)->write(log_label);
    }
    if(!pure_dmc){
      prop.endBlock();
    }
    else
      prop.endBlockSHDMC();
    
    if(max_fw_length){
      for(int s=0;s<fw_length.GetSize();s++){
        //prop_fw(s).endBlock();
        prop_fw(s).endBlock_per_step();
      }
    }

    totbranch=parallel_sum(totbranch);
    totkilled=parallel_sum(totkilled);
    totpoints=parallel_sum(totpoints);

    Properties_final_average finavg;
    prop.getFinal(finavg);
    eref=finavg.avg(Properties_types::total_energy,0);
    updateEtrial(feedback);
    
    doublevar maxage=0;
    doublevar avgage=0;
    for(int w=0;w < nconfig; w++) {
      for(int e=0; e< nelectrons; e++) { 
        if(maxage<pts(w).age(e)) maxage=pts(w).age(e);
        avgage+=pts(w).age(e);
      }
    }
    avgage/=(nconfig*nelectrons);

    if(output) {
      //cout << "Block " << block 
      //       << " nconfig " << totconfig
      //       << " etrial " << etrial << endl;
      if(global_options::rappture ) { 
	      ofstream rapout("rappture.log");
        rapout << "=RAPPTURE-PROGRESS=>" << int(100.0*doublevar(block+1)/doublevar(nblock))
               << "  Diffusion Monte Carlo" << endl;
        cout << "=RAPPTURE-PROGRESS=>" << int(100.0*doublevar(block+1)/doublevar(nblock))
             << "  Diffusion Monte Carlo" << endl;
        rapout.close();
      }
      output << "***" << endl;
      output << "Block " << block 
             << " etrial " << etrial << endl;
      output << "maximum age " << maxage 
	     << " average age " << avgage << endl;
      dyngen->showStats(output);

      prop.printBlockSummary(output);

      output << "Branched "
	     << totbranch << " times.  So a branch every " 
	     << doublevar(totpoints)/doublevar(totbranch)
	     << " steps " << endl;
    }
    dyngen->resetStats();
  }
  
  if(output) {
    output << "\n ----------Finished DMC------------\n\n";
    prop.printSummary(output,average_var);  
    
    //MB: final printout for FW
    if(max_fw_length){
      for(int s=0;s<fw_length.GetSize();s++)
        prop_fw(s).printSummary(output,average_var);
    }

  }
  wfdata->clearObserver();
  deallocateIntermediateVariables();
}
Example #8
0
File: main.cpp Project: CCJY/coliru
int main(int argc, char* argv[])
{
    std::cout << parallel_sum(1, 500) << std::endl;
	return 0;
}
/*!

*/
void Reptation_method::runWithVariables(Properties_manager & prop, 
                                  System * sys, 
                                  Wavefunction_data * wfdata,
                                  Pseudopotential * psp,
                                  ostream & output)
{


  
  allocateIntermediateVariables(sys, wfdata);
  

  
  prop.setSize(wf->nfunc(), nblock, nstep, 1, 
               sys, wfdata);
  prop.initializeLog(average_var);

  Properties_manager prop_center;
  string logfile, label_temp;
  prop.getLog(logfile, label_temp);
  label_temp+="_cen";
  prop_center.setLog(logfile, label_temp);
  
  prop_center.setSize(wf->nfunc(), nblock, nstep, 1, sys, 
                      wfdata);
  prop_center.initializeLog(average_var);


  cout.precision(10);
  output.precision(10);

  Sample_point * center_samp(NULL);
  sys->generateSample(center_samp);
  
    Reptile_point pt;
  
  Array1 <Reptile> reptiles;
  int nreptile=1;
  if(!readcheck(readconfig,reptiles)) { 
    Array1 <Config_save_point> configs;
    generate_sample(sample,wf,wfdata,guidewf,nreptile,configs);
    reptiles.Resize(nreptile);
    for(int r=0; r< nreptile; r++) { 
      reptiles[r].direction=1;
      configs(r).restorePos(sample);
      wf->notify(all_electrons_move,0);
      wf->updateLap(wfdata,sample);
      for(int i=0; i< reptile_length; i++) {
        doublevar main_diffusion;
        slither(1,reptiles[r].reptile, mygather,pt,main_diffusion);
        reptiles[r].reptile.push_back(pt);
      }
    }
  }
  nreptile=reptiles.GetDim(0);

  //assert(reptile.size()==reptile_length);
  //Branch limiting variables
  //we start off with no limiting, and establish the parameters after the
  //first block.  This seems to be reasonably stable, since it's mostly
  //to keep the reptile from getting stuck.
  eref=0;
  energy_cutoff=1e16;

  //--------begin averaging..
  
  Array3 <doublevar> derivatives_block(nblock, sys->nIons(), 3);
  for(int block=0; block< nblock; block++) {

    //clock_t block_start_time=clock();
    doublevar avg_age=0;
    doublevar max_age=0;

    doublevar main_diff=0;
    double ntry=0, naccept=0;
    double nbounce=0;


    for(int r=0; r< nreptile; r++) { 
      Reptile & curr_reptile=reptiles[r];
      //Control variable that will be set to one when 
      //we change direction, which signals to recalculate
      //the wave function
      int recalc=1;
      
    for(int step=0; step< nstep; step++) {
      psp->randomize();
      if(recalc) { 
        if(curr_reptile.direction==1) 
          curr_reptile.reptile[reptile_length-1].restorePos(sample);
        else
          curr_reptile.reptile[0].restorePos(sample);          
      }
      doublevar main_diffusion;
      doublevar accept=slither(curr_reptile.direction, curr_reptile.reptile,mygather, pt,
                               main_diffusion);
      ntry++;
      if(accept+rng.ulec() > 1.0) {
        recalc=0;
        naccept++;
        main_diff+=main_diffusion;
        if(curr_reptile.direction==1) {
          curr_reptile.reptile.pop_front();
          curr_reptile.reptile.push_back(pt);
        }
        else {
          curr_reptile.reptile.pop_back();
          curr_reptile.reptile[0].branching=pt.branching;
          curr_reptile.reptile.push_front(pt);
        }
      }
      else {
        recalc=1;
        curr_reptile.direction*=-1;
        nbounce++;
      }

      for(deque<Reptile_point>::iterator i=curr_reptile.reptile.begin();
          i!=curr_reptile.reptile.end(); i++) {
        i->age++;
        avg_age+=i->age/reptile_length;
        if(i->age > max_age) max_age=i->age;
      }
      
      Properties_point avgpt;
      get_avg(curr_reptile.reptile, avgpt);
      avgpt.parent=0; avgpt.nchildren=1; //just one walker
      avgpt.children(0)=0;
      prop.insertPoint(step, 0, avgpt);
      
      int cpt=reptile_length/2+1;      
      Properties_point centpt;
      get_center_avg(curr_reptile.reptile, centpt);
      centpt.parent=0; centpt.nchildren=1;
      centpt.children(0)=0;
      
      prop_center.insertPoint(step, 0, centpt);
      
      curr_reptile.reptile[cpt].restorePos(center_samp);

      for(int i=0; i< densplt.GetDim(0); i++) 
        densplt(i)->accumulate(center_samp,1.0);
      
      
      if(center_trace != "" 
         && (block*nstep+step)%trace_wait==0) {
        ofstream checkfile(center_trace.c_str(), ios::app);
        if(!checkfile)error("Couldn't open ", center_trace);
        checkfile << "SAMPLE_POINT { \n";
        write_config(checkfile, sample);
        checkfile << "}\n\n";
      }
      
      
    }   //step
    } //reptile

    prop.endBlock();
    prop_center.endBlock();
    double ntot=parallel_sum(nstep);

    Properties_block lastblock;
    prop.getLastBlock(lastblock);
    eref=lastblock.avg(Properties_types::total_energy,0);
    energy_cutoff=10*sqrt(lastblock.var(Properties_types::total_energy,0));
    
    
    nbounce=parallel_sum(nbounce);
    naccept=parallel_sum(naccept);
    ntry=parallel_sum(ntry);
    avg_age=parallel_sum(avg_age);

    for(int i=0; i< densplt.GetDim(0); i++) 
      densplt(i)->write();

    storecheck(reptiles, storeconfig);
    main_diff=parallel_sum(main_diff);
    if(output) {
      output << "****Block " << block 
             << " acceptance " << naccept/ntry 
             << "  average steps before bounce " << ntot/nbounce
             << endl;
      output << "average age " << avg_age/ntot 
             << "   max age " << max_age <<  endl;
      output << "eref " << eref << " cutoff " << energy_cutoff << endl;
      output << "Green's function sampler:" << endl;
      sampler->showStats(output);
      prop.printBlockSummary(output);
      output << "Center averaging: " << endl;
      prop_center.printBlockSummary(output);
    }
    sampler->resetStats();

    //clock_t block_end_time=clock();
    
    //cout << mpi_info.node << ":CPU block time " 
    //// << double(block_end_time-block_start_time)/double(CLOCKS_PER_SEC)
    // << endl;

  }   //block


  if(output) {
    output << "############## Reptation Done ################\n";
    output << "End averages " << endl;
    prop.printSummary(output,average_var);
    output << "Center averages " << endl;
    prop_center.printSummary(output,average_var);


    //Print out a PDB file with one of the reptiles, for visualization purposes
    if(print_pdb) { 
      ofstream pdbout("rmc.pdb");
      pdbout.precision(3);
      pdbout << "REMARK    4 Mode COMPLIES WITH FORMAT V. 2.0\n";
      int nelectrons=sample->electronSize();

      int counter=1;
      string name="H";
      for(int e=0; e<nelectrons; e++) {
        for(deque<Reptile_point>::iterator i=reptiles[0].reptile.begin();
            i!=reptiles[0].reptile.end(); i++) {
          pdbout<<"ATOM"<<setw(7)<< counter <<" " <<name<<"   UNK     1"
            <<setw(12)<< i->electronpos[e][0]
            <<setw(8)<< i->electronpos[e][1]
            <<setw(8)<< i->electronpos[e][2]
            << "  1.00  0.00\n";
          counter++;
        }
      }
      int nions=sys->nIons();
      Array1 <doublevar> ionpos(3);
      vector <string> atomnames;
      sys->getAtomicLabels(atomnames);
      for(int i=0; i< nions; i++) {
        sys->getIonPos(i,ionpos);
        pdbout<<"ATOM"<<setw(7)<< counter <<" " <<atomnames[i]<<"   UNK     1"
          <<setw(12)<< ionpos[0]
          <<setw(8)<< ionpos[1]
          <<setw(8)<< ionpos[2]
          << "  1.00  0.00\n";
      }



      counter=1;
      for(int e=0; e<nelectrons; e++) {
        for(deque<Reptile_point>::iterator i=reptiles[0].reptile.begin();
            i!=reptiles[0].reptile.end(); i++) {
          if(i != reptiles[0].reptile.begin()) { 
            pdbout << "CONECT" << setw(5) << counter << setw(5) << counter-1 << endl;
          }
          counter++;
        }
      }
    
    }
    //------------Done PDB file

  }


  delete center_samp;
  wfdata->clearObserver();
  deallocateIntermediateVariables();
}
Example #10
0
void psumLEN_1(){
    int a[LEN];
    int i;
    for(i = 0; i<LEN2; a[i++] = 1);
    assert_int_equal(LEN, parallel_sum(a, LEN));
}
Example #11
0
int main()
{
    std::vector<int> v(10000, 1);
    std::cout << "The sum is " << parallel_sum(v.begin(), v.end()) << '\n';
}