void QgsNetworkAnalysisAlgorithmBase::loadCommonParams( const QVariantMap &parameters, QgsProcessingContext &context, QgsProcessingFeedback *feedback )
{
  Q_UNUSED( feedback );

  mNetwork.reset( parameterAsSource( parameters, QStringLiteral( "INPUT" ), context ) );
  if ( !mNetwork )
    throw QgsProcessingException( invalidSourceError( parameters, QStringLiteral( "INPUT" ) ) );

  int strategy = parameterAsInt( parameters, QStringLiteral( "STRATEGY" ), context );
  QString directionFieldName = parameterAsString( parameters, QStringLiteral( "DIRECTION_FIELD" ), context );
  QString forwardValue = parameterAsString( parameters, QStringLiteral( "VALUE_FORWARD" ), context );
  QString backwardValue = parameterAsString( parameters, QStringLiteral( "VALUE_BACKWARD" ), context );
  QString bothValue = parameterAsString( parameters, QStringLiteral( "VALUE_BOTH" ), context );
  QgsVectorLayerDirector::Direction defaultDirection = static_cast< QgsVectorLayerDirector::Direction>( parameterAsInt( parameters, QStringLiteral( "DEFAULT_DIRECTION" ), context ) );
  QString speedFieldName = parameterAsString( parameters, QStringLiteral( "SPEED_FIELD" ), context );
  double defaultSpeed = parameterAsDouble( parameters, QStringLiteral( "DEFAULT_SPEED" ), context );
  double tolerance = parameterAsDouble( parameters, QStringLiteral( "TOLERANCE" ), context );

  int directionField = -1;
  if ( !directionFieldName.isEmpty() )
  {
    directionField = mNetwork->fields().lookupField( directionFieldName );
  }

  int speedField = -1;
  if ( !speedFieldName.isEmpty() )
  {
    speedField = mNetwork->fields().lookupField( speedFieldName );
  }

  mDirector = new QgsVectorLayerDirector( mNetwork.get(), directionField, forwardValue, backwardValue, bothValue, defaultDirection );

  QgsUnitTypes::DistanceUnit distanceUnits = context.project()->crs().mapUnits();
  mMultiplier = QgsUnitTypes::fromUnitToUnitFactor( distanceUnits, QgsUnitTypes::DistanceMeters );

  if ( strategy )
  {
    mDirector->addStrategy( new QgsNetworkSpeedStrategy( speedField, defaultSpeed, mMultiplier * 1000.0 / 3600.0 ) );
    mMultiplier = 3600;
  }
  else
  {
    mDirector->addStrategy( new QgsNetworkDistanceStrategy() );
  }

  mBuilder = qgis::make_unique< QgsGraphBuilder >( mNetwork->sourceCrs(), true, tolerance );
}
bool QgsReclassifyAlgorithmBase::prepareAlgorithm( const QVariantMap &parameters, QgsProcessingContext &context, QgsProcessingFeedback *feedback )
{
  mDataType = QgsRasterAnalysisUtils::rasterTypeChoiceToDataType( parameterAsEnum( parameters, QStringLiteral( "DATA_TYPE" ), context ) );
  QgsRasterLayer *layer = parameterAsRasterLayer( parameters, QStringLiteral( "INPUT_RASTER" ), context );

  if ( !layer )
    throw QgsProcessingException( invalidRasterError( parameters, QStringLiteral( "INPUT_RASTER" ) ) );

  mBand = parameterAsInt( parameters, QStringLiteral( "RASTER_BAND" ), context );
  if ( mBand < 1 || mBand > layer->bandCount() )
    throw QgsProcessingException( QObject::tr( "Invalid band number for RASTER_BAND (%1): Valid values for input raster are 1 to %2" ).arg( mBand )
                                  .arg( layer->bandCount() ) );

  mInterface.reset( layer->dataProvider()->clone() );
  mExtent = layer->extent();
  mCrs = layer->crs();
  mRasterUnitsPerPixelX = std::abs( layer->rasterUnitsPerPixelX() );
  mRasterUnitsPerPixelY = std::abs( layer->rasterUnitsPerPixelY() );
  mNbCellsXProvider = mInterface->xSize();
  mNbCellsYProvider = mInterface->ySize();

  mNoDataValue = parameterAsDouble( parameters, QStringLiteral( "NO_DATA" ), context );
  mUseNoDataForMissingValues = parameterAsBool( parameters, QStringLiteral( "NODATA_FOR_MISSING" ), context );

  int boundsType = parameterAsEnum( parameters, QStringLiteral( "RANGE_BOUNDARIES" ), context );
  switch ( boundsType )
  {
    case 0:
      mBoundsType = QgsReclassifyUtils::RasterClass::IncludeMax;
      break;

    case 1:
      mBoundsType = QgsReclassifyUtils::RasterClass::IncludeMin;
      break;

    case 2:
      mBoundsType = QgsReclassifyUtils::RasterClass::IncludeMinAndMax;
      break;

    case 3:
      mBoundsType = QgsReclassifyUtils::RasterClass::Exclusive;
      break;
  }

  return _prepareAlgorithm( parameters, context, feedback );
}
bool QgsZonalHistogramAlgorithm::prepareAlgorithm( const QVariantMap &parameters, QgsProcessingContext &context, QgsProcessingFeedback * )
{
  QgsRasterLayer *layer = parameterAsRasterLayer( parameters, QStringLiteral( "INPUT_RASTER" ), context );
  if ( !layer )
    throw QgsProcessingException( invalidRasterError( parameters, QStringLiteral( "INPUT_RASTER" ) ) );

  mRasterBand = parameterAsInt( parameters, QStringLiteral( "RASTER_BAND" ), context );
  mHasNoDataValue = layer->dataProvider()->sourceHasNoDataValue( mRasterBand );
  mNodataValue = layer->dataProvider()->sourceNoDataValue( mRasterBand );
  mRasterInterface.reset( layer->dataProvider()->clone() );
  mRasterExtent = layer->extent();
  mCrs = layer->crs();
  mCellSizeX = std::abs( layer->rasterUnitsPerPixelX() );
  mCellSizeY = std::abs( layer->rasterUnitsPerPixelX() );
  mNbCellsXProvider = mRasterInterface->xSize();
  mNbCellsYProvider = mRasterInterface->ySize();

  return true;
}
Example #4
0
QVariantMap QgsBufferAlgorithm::processAlgorithm( const QVariantMap &parameters, QgsProcessingContext &context, QgsProcessingFeedback *feedback ) const
{
  std::unique_ptr< QgsFeatureSource > source( parameterAsSource( parameters, QStringLiteral( "INPUT" ), context ) );
  if ( !source )
    return QVariantMap();

  QString dest;
  std::unique_ptr< QgsFeatureSink > sink( parameterAsSink( parameters, QStringLiteral( "OUTPUT_LAYER" ), context, source->fields(), QgsWkbTypes::Polygon, source->sourceCrs(), dest ) );
  if ( !sink )
    return QVariantMap();

  // fixed parameters
  bool dissolve = parameterAsBool( parameters, QStringLiteral( "DISSOLVE" ), context );
  int segments = parameterAsInt( parameters, QStringLiteral( "SEGMENTS" ), context );
  QgsGeometry::EndCapStyle endCapStyle = static_cast< QgsGeometry::EndCapStyle >( 1 + parameterAsInt( parameters, QStringLiteral( "END_CAP_STYLE" ), context ) );
  QgsGeometry::JoinStyle joinStyle = static_cast< QgsGeometry::JoinStyle>( 1 + parameterAsInt( parameters, QStringLiteral( "JOIN_STYLE" ), context ) );
  double miterLimit = parameterAsDouble( parameters, QStringLiteral( "MITRE_LIMIT" ), context );
  double bufferDistance = parameterAsDouble( parameters, QStringLiteral( "DISTANCE" ), context );
  bool dynamicBuffer = QgsProcessingParameters::isDynamic( parameters, QStringLiteral( "DISTANCE" ) );
  const QgsProcessingParameterDefinition *distanceParamDef = parameterDefinition( QStringLiteral( "DISTANCE" ) );

  long count = source->featureCount();
  if ( count <= 0 )
    return QVariantMap();

  QgsFeature f;
  QgsFeatureIterator it = source->getFeatures();

  double step = 100.0 / count;
  int current = 0;

  QList< QgsGeometry > bufferedGeometriesForDissolve;
  QgsAttributes dissolveAttrs;

  while ( it.nextFeature( f ) )
  {
    if ( feedback->isCanceled() )
    {
      break;
    }
    if ( dissolveAttrs.isEmpty() )
      dissolveAttrs = f.attributes();

    QgsFeature out = f;
    if ( out.hasGeometry() )
    {
      if ( dynamicBuffer )
      {
        context.expressionContext().setFeature( f );
        bufferDistance = QgsProcessingParameters::parameterAsDouble( distanceParamDef, parameters, context );
      }

      QgsGeometry outputGeometry = f.geometry().buffer( bufferDistance, segments, endCapStyle, joinStyle, miterLimit );
      if ( !outputGeometry )
      {
        QgsMessageLog::logMessage( QObject::tr( "Error calculating buffer for feature %1" ).arg( f.id() ), QObject::tr( "Processing" ), QgsMessageLog::WARNING );
      }
      if ( dissolve )
        bufferedGeometriesForDissolve << outputGeometry;
      else
        out.setGeometry( outputGeometry );
    }

    if ( !dissolve )
      sink->addFeature( out );

    feedback->setProgress( current * step );
    current++;
  }

  if ( dissolve )
  {
    QgsGeometry finalGeometry = QgsGeometry::unaryUnion( bufferedGeometriesForDissolve );
    QgsFeature f;
    f.setGeometry( finalGeometry );
    f.setAttributes( dissolveAttrs );
    sink->addFeature( f );
  }

  QVariantMap outputs;
  outputs.insert( QStringLiteral( "OUTPUT_LAYER" ), dest );
  return outputs;
}
Example #5
0
QVariantMap QgsTransectAlgorithm::processAlgorithm( const QVariantMap &parameters, QgsProcessingContext &context, QgsProcessingFeedback *feedback )
{
  Side orientation = static_cast< QgsTransectAlgorithm::Side >( parameterAsInt( parameters, QStringLiteral( "SIDE" ), context ) );
  double angle = fabs( parameterAsDouble( parameters, QStringLiteral( "ANGLE" ), context ) );
  bool dynamicAngle = QgsProcessingParameters::isDynamic( parameters, QStringLiteral( "ANGLE" ) );
  QgsProperty angleProperty;
  if ( dynamicAngle )
    angleProperty = parameters.value( QStringLiteral( "ANGLE" ) ).value< QgsProperty >();

  double length = parameterAsDouble( parameters, QStringLiteral( "LENGTH" ), context );
  bool dynamicLength = QgsProcessingParameters::isDynamic( parameters, QStringLiteral( "LENGTH" ) );
  QgsProperty lengthProperty;
  if ( dynamicLength )
    lengthProperty = parameters.value( QStringLiteral( "LENGTH" ) ).value< QgsProperty >();

  if ( orientation == QgsTransectAlgorithm::Both )
    length /= 2.0;

  std::unique_ptr< QgsFeatureSource > source( parameterAsSource( parameters, QStringLiteral( "INPUT" ), context ) );
  if ( !source )
    throw QgsProcessingException( invalidSourceError( parameters, QStringLiteral( "INPUT" ) ) );

  QgsExpressionContext expressionContext = createExpressionContext( parameters, context, dynamic_cast< QgsProcessingFeatureSource * >( source.get() ) );

  QgsFields fields = source->fields();

  fields.append( QgsField( QStringLiteral( "TR_FID" ), QVariant::Int, QString(), 20 ) );
  fields.append( QgsField( QStringLiteral( "TR_ID" ), QVariant::Int, QString(), 20 ) );
  fields.append( QgsField( QStringLiteral( "TR_SEGMENT" ), QVariant::Int, QString(), 20 ) );
  fields.append( QgsField( QStringLiteral( "TR_ANGLE" ), QVariant::Double, QString(), 5, 2 ) );
  fields.append( QgsField( QStringLiteral( "TR_LENGTH" ), QVariant::Double, QString(), 20, 6 ) );
  fields.append( QgsField( QStringLiteral( "TR_ORIENT" ), QVariant::Int, QString(), 1 ) );

  QgsWkbTypes::Type outputWkb = QgsWkbTypes::LineString;
  if ( QgsWkbTypes::hasZ( source->wkbType() ) )
    outputWkb = QgsWkbTypes::addZ( outputWkb );
  if ( QgsWkbTypes::hasM( source->wkbType() ) )
    outputWkb = QgsWkbTypes::addM( outputWkb );

  QString dest;
  std::unique_ptr< QgsFeatureSink > sink( parameterAsSink( parameters, QStringLiteral( "OUTPUT" ), context, dest, fields,
                                          outputWkb, source->sourceCrs(), QgsFeatureSink::RegeneratePrimaryKey ) );
  if ( !sink )
    throw QgsProcessingException( invalidSinkError( parameters, QStringLiteral( "OUTPUT" ) ) );

  QgsFeatureIterator features = source->getFeatures( );

  int current = -1;
  int number = 0;
  double step =  source->featureCount() > 0 ? 100.0 / source->featureCount() : 1;
  QgsFeature feat;


  while ( features.nextFeature( feat ) )
  {
    current++;
    if ( feedback->isCanceled() )
    {
      break;
    }

    feedback->setProgress( current * step );
    if ( !feat.hasGeometry() )
      continue;

    QgsGeometry inputGeometry = feat.geometry();

    if ( dynamicLength || dynamicAngle )
    {
      expressionContext.setFeature( feat );
    }

    double evaluatedLength = length;
    if ( dynamicLength )
      evaluatedLength = lengthProperty.valueAsDouble( context.expressionContext(), length );
    double evaluatedAngle = angle;
    if ( dynamicAngle )
      evaluatedAngle = angleProperty.valueAsDouble( context.expressionContext(), angle );

    inputGeometry.convertToMultiType();
    const QgsMultiLineString *multiLine = static_cast< const QgsMultiLineString *  >( inputGeometry.constGet() );
    for ( int id = 0; id < multiLine->numGeometries(); ++id )
    {
      const QgsLineString *line = static_cast< const QgsLineString * >( multiLine->geometryN( id ) );
      QgsAbstractGeometry::vertex_iterator it = line->vertices_begin();
      while ( it != line->vertices_end() )
      {
        QgsVertexId vertexId = it.vertexId();
        int i = vertexId.vertex;
        QgsFeature outFeat;
        QgsAttributes attrs = feat.attributes();
        attrs << current << number << i + 1 << evaluatedAngle <<
              ( ( orientation == QgsTransectAlgorithm::Both ) ? evaluatedLength * 2 : evaluatedLength ) <<
              orientation;
        outFeat.setAttributes( attrs );
        double angleAtVertex = line->vertexAngle( vertexId );
        outFeat.setGeometry( calcTransect( *it, angleAtVertex, evaluatedLength, orientation, evaluatedAngle ) );
        sink->addFeature( outFeat, QgsFeatureSink::FastInsert );
        number++;
        it++;
      }
    }
  }

  QVariantMap outputs;
  outputs.insert( QStringLiteral( "OUTPUT" ), dest );
  return outputs;
}
bool QgsMinimumEnclosingCircleAlgorithm::prepareAlgorithm( const QVariantMap &parameters, QgsProcessingContext &context, QgsProcessingFeedback * )
{
  mSegments = parameterAsInt( parameters, QStringLiteral( "SEGMENTS" ), context );
  return true;
}
Example #7
0
QVariantMap QgsBufferAlgorithm::processAlgorithm( const QVariantMap &parameters, QgsProcessingContext &context, QgsProcessingFeedback *feedback )
{
  std::unique_ptr< QgsFeatureSource > source( parameterAsSource( parameters, QStringLiteral( "INPUT" ), context ) );
  if ( !source )
    throw QgsProcessingException( invalidSourceError( parameters, QStringLiteral( "INPUT" ) ) );

  QString dest;
  std::unique_ptr< QgsFeatureSink > sink( parameterAsSink( parameters, QStringLiteral( "OUTPUT" ), context, dest, source->fields(), QgsWkbTypes::Polygon, source->sourceCrs() ) );
  if ( !sink )
    throw QgsProcessingException( invalidSinkError( parameters, QStringLiteral( "OUTPUT" ) ) );

  // fixed parameters
  bool dissolve = parameterAsBool( parameters, QStringLiteral( "DISSOLVE" ), context );
  int segments = parameterAsInt( parameters, QStringLiteral( "SEGMENTS" ), context );
  QgsGeometry::EndCapStyle endCapStyle = static_cast< QgsGeometry::EndCapStyle >( 1 + parameterAsInt( parameters, QStringLiteral( "END_CAP_STYLE" ), context ) );
  QgsGeometry::JoinStyle joinStyle = static_cast< QgsGeometry::JoinStyle>( 1 + parameterAsInt( parameters, QStringLiteral( "JOIN_STYLE" ), context ) );
  double miterLimit = parameterAsDouble( parameters, QStringLiteral( "MITER_LIMIT" ), context );
  double bufferDistance = parameterAsDouble( parameters, QStringLiteral( "DISTANCE" ), context );
  bool dynamicBuffer = QgsProcessingParameters::isDynamic( parameters, QStringLiteral( "DISTANCE" ) );
  QgsExpressionContext expressionContext = createExpressionContext( parameters, context, dynamic_cast< QgsProcessingFeatureSource * >( source.get() ) );
  QgsProperty bufferProperty;
  if ( dynamicBuffer )
  {
    bufferProperty = parameters.value( QStringLiteral( "DISTANCE" ) ).value< QgsProperty >();
  }

  long count = source->featureCount();

  QgsFeature f;
  QgsFeatureIterator it = source->getFeatures();

  double step = count > 0 ? 100.0 / count : 1;
  int current = 0;

  QVector< QgsGeometry > bufferedGeometriesForDissolve;
  QgsAttributes dissolveAttrs;

  while ( it.nextFeature( f ) )
  {
    if ( feedback->isCanceled() )
    {
      break;
    }
    if ( dissolveAttrs.isEmpty() )
      dissolveAttrs = f.attributes();

    QgsFeature out = f;
    if ( out.hasGeometry() )
    {
      double distance =  bufferDistance;
      if ( dynamicBuffer )
      {
        expressionContext.setFeature( f );
        distance = bufferProperty.valueAsDouble( expressionContext, bufferDistance );
      }

      QgsGeometry outputGeometry = f.geometry().buffer( distance, segments, endCapStyle, joinStyle, miterLimit );
      if ( !outputGeometry )
      {
        QgsMessageLog::logMessage( QObject::tr( "Error calculating buffer for feature %1" ).arg( f.id() ), QObject::tr( "Processing" ), Qgis::Warning );
      }
      if ( dissolve )
        bufferedGeometriesForDissolve << outputGeometry;
      else
        out.setGeometry( outputGeometry );
    }

    if ( !dissolve )
      sink->addFeature( out, QgsFeatureSink::FastInsert );

    feedback->setProgress( current * step );
    current++;
  }

  if ( dissolve )
  {
    QgsGeometry finalGeometry = QgsGeometry::unaryUnion( bufferedGeometriesForDissolve );
    QgsFeature f;
    f.setGeometry( finalGeometry );
    f.setAttributes( dissolveAttrs );
    sink->addFeature( f, QgsFeatureSink::FastInsert );
  }

  QVariantMap outputs;
  outputs.insert( QStringLiteral( "OUTPUT" ), dest );
  return outputs;
}
bool QgsSubdivideAlgorithm::prepareAlgorithm( const QVariantMap &parameters, QgsProcessingContext &context, QgsProcessingFeedback * )
{
  mMaxNodes = parameterAsInt( parameters, QStringLiteral( "MAX_NODES" ), context );
  return true;
}
QVariantMap QgsDbscanClusteringAlgorithm::processAlgorithm( const QVariantMap &parameters, QgsProcessingContext &context, QgsProcessingFeedback *feedback )
{
  std::unique_ptr< QgsProcessingFeatureSource > source( parameterAsSource( parameters, QStringLiteral( "INPUT" ), context ) );
  if ( !source )
    throw QgsProcessingException( invalidSourceError( parameters, QStringLiteral( "INPUT" ) ) );

  const std::size_t minSize = static_cast< std::size_t>( parameterAsInt( parameters, QStringLiteral( "MIN_SIZE" ), context ) );
  const double eps = parameterAsDouble( parameters, QStringLiteral( "EPS" ), context );
  const bool borderPointsAreNoise = parameterAsBoolean( parameters, QStringLiteral( "DBSCAN*" ), context );

  QgsFields outputFields = source->fields();
  const QString clusterFieldName = parameterAsString( parameters, QStringLiteral( "FIELD_NAME" ), context );
  QgsFields newFields;
  newFields.append( QgsField( clusterFieldName, QVariant::Int ) );
  outputFields = QgsProcessingUtils::combineFields( outputFields, newFields );

  QString dest;
  std::unique_ptr< QgsFeatureSink > sink( parameterAsSink( parameters, QStringLiteral( "OUTPUT" ), context, dest, outputFields, source->wkbType(), source->sourceCrs() ) );
  if ( !sink )
    throw QgsProcessingException( invalidSinkError( parameters, QStringLiteral( "OUTPUT" ) ) );

  // build spatial index
  feedback->pushInfo( QObject::tr( "Building spatial index" ) );
  QgsSpatialIndexKDBush index( *source, feedback );
  if ( feedback->isCanceled() )
    return QVariantMap();

  // dbscan!
  feedback->pushInfo( QObject::tr( "Analysing clusters" ) );
  std::unordered_map< QgsFeatureId, int> idToCluster;
  idToCluster.reserve( index.size() );
  QgsFeatureIterator features = source->getFeatures( QgsFeatureRequest().setNoAttributes() );
  const long featureCount = source->featureCount();

  int clusterCount = 0;
  dbscan( minSize, eps, borderPointsAreNoise, featureCount, features, index, idToCluster, clusterCount, feedback );

  // write clusters
  const double writeStep = featureCount > 0 ? 10.0 / featureCount : 1;
  features = source->getFeatures();
  int i = 0;
  QgsFeature feat;
  while ( features.nextFeature( feat ) )
  {
    i++;
    if ( feedback->isCanceled() )
    {
      break;
    }

    feedback->setProgress( 90 + i * writeStep );
    QgsAttributes attr = feat.attributes();
    auto cluster = idToCluster.find( feat.id() );
    if ( cluster != idToCluster.end() )
    {
      attr << cluster->second;
    }
    else
    {
      attr << QVariant();
    }
    feat.setAttributes( attr );
    sink->addFeature( feat, QgsFeatureSink::FastInsert );
  }

  QVariantMap outputs;
  outputs.insert( QStringLiteral( "OUTPUT" ), dest );
  outputs.insert( QStringLiteral( "NUM_CLUSTERS" ), clusterCount );
  return outputs;
}