static EekKeyboard * eek_xml_layout_real_create_keyboard (EekLayout *self, gdouble initial_width, gdouble initial_height) { EekXmlLayout *layout = EEK_XML_LAYOUT (self); EekKeyboard *keyboard; gchar *filename, *path; GList *loaded; GError *error; gboolean retval; /* Create an empty keyboard to which geometry and symbols information are applied. */ keyboard = g_object_new (EEK_TYPE_KEYBOARD, "layout", layout, NULL); /* Read geometry information. */ filename = g_strdup_printf ("%s.xml", layout->priv->desc->geometry); path = g_build_filename (layout->priv->keyboards_dir, "geometry", filename, NULL); g_free (filename); error = NULL; retval = parse_geometry (path, keyboard, &error); g_free (path); if (!retval) { g_object_unref (keyboard); g_warning ("can't parse geometry file %s: %s", layout->priv->desc->geometry, error->message); g_error_free (error); return NULL; } /* Read symbols information. */ loaded = NULL; retval = parse_symbols_with_prerequisites (layout->priv->keyboards_dir, layout->priv->desc->symbols, keyboard, &loaded, &error); g_list_free_full (loaded, g_free); if (!retval) { g_object_unref (keyboard); g_warning ("can't parse symbols file %s: %s", layout->priv->desc->symbols, error->message); g_error_free (error); return NULL; } /* Fit keyboard in the given width and hight. */ scale_keyboard (keyboard, initial_width, initial_height); /* Use pre-defined modifier mask here. */ eek_keyboard_set_num_lock_mask (keyboard, EEK_MOD2_MASK); eek_keyboard_set_alt_gr_mask (keyboard, EEK_MOD5_MASK); return keyboard; }
void handler_set_geometry( char *argv, void *trg, long param ) { register ASGeometry *geom = trg ; if( argv ) { memset( geom, 0x00, sizeof(ASGeometry)); parse_geometry (argv, &(geom->x), &(geom->y), &(geom->width), &(geom->height), &(geom->flags) ); } }
void parse_geometry_or_feature(Iterator& itr, Iterator const& end, feature_impl& feature, transcoder const& tr ) { Iterator start = itr; try { parse_feature(start, end, feature, tr); } catch (...) { start = itr; parse_geometry(start, end, feature); } }
void parse_geometry(int t, json_object *j, unsigned *bbox, long long *fpos, FILE *out, int op, const char *fname, json_pull *source) { if (j == NULL || j->type != JSON_ARRAY) { fprintf(stderr, "%s:%d: expected array for type %d\n", fname, source->line, t); return; } int within = geometry_within[t]; long long began = *fpos; if (within >= 0) { int i; for (i = 0; i < j->length; i++) { if (within == GEOM_POINT) { if (i == 0 || mb_geometry[t] == GEOM_MULTIPOINT) { op = VT_MOVETO; } else { op = VT_LINETO; } } parse_geometry(within, j->array[i], bbox, fpos, out, op, fname, source); } } else { if (j->length >= 2 && j->array[0]->type == JSON_NUMBER && j->array[1]->type == JSON_NUMBER) { unsigned x, y; double lon = j->array[0]->number; double lat = j->array[1]->number; latlon2tile(lat, lon, 32, &x, &y); if (j->length > 2) { static int warned = 0; if (!warned) { fprintf(stderr, "%s:%d: ignoring dimensions beyond two\n", fname, source->line); warned = 1; } } if (bbox != NULL) { if (x < bbox[0]) { bbox[0] = x; } if (y < bbox[1]) { bbox[1] = y; } if (x > bbox[2]) { bbox[2] = x; } if (y > bbox[3]) { bbox[3] = y; } } serialize_byte(out, op, fpos, fname); serialize_uint(out, x, fpos, fname); serialize_uint(out, y, fpos, fname); } else { fprintf(stderr, "%s:%d: malformed point\n", fname, source->line); } } if (t == GEOM_POLYGON) { if (*fpos != began) { serialize_byte(out, VT_CLOSEPATH, fpos, fname); } } }
int read_json(int argc, char **argv, char *fname, const char *layername, int maxzoom, int minzoom, sqlite3 *outdb, struct pool *exclude, struct pool *include, int exclude_all, double droprate, int buffer, const char *tmpdir, double gamma, char *prevent) { int ret = EXIT_SUCCESS; char metaname[strlen(tmpdir) + strlen("/meta.XXXXXXXX") + 1]; char geomname[strlen(tmpdir) + strlen("/geom.XXXXXXXX") + 1]; char indexname[strlen(tmpdir) + strlen("/index.XXXXXXXX") + 1]; sprintf(metaname, "%s%s", tmpdir, "/meta.XXXXXXXX"); sprintf(geomname, "%s%s", tmpdir, "/geom.XXXXXXXX"); sprintf(indexname, "%s%s", tmpdir, "/index.XXXXXXXX"); int metafd = mkstemp(metaname); if (metafd < 0) { perror(metaname); exit(EXIT_FAILURE); } int geomfd = mkstemp(geomname); if (geomfd < 0) { perror(geomname); exit(EXIT_FAILURE); } int indexfd = mkstemp(indexname); if (indexfd < 0) { perror(indexname); exit(EXIT_FAILURE); } FILE *metafile = fopen(metaname, "wb"); if (metafile == NULL) { perror(metaname); exit(EXIT_FAILURE); } FILE *geomfile = fopen(geomname, "wb"); if (geomfile == NULL) { perror(geomname); exit(EXIT_FAILURE); } FILE *indexfile = fopen(indexname, "wb"); if (indexfile == NULL) { perror(indexname); exit(EXIT_FAILURE); } long long metapos = 0; long long geompos = 0; long long indexpos = 0; unlink(metaname); unlink(geomname); unlink(indexname); unsigned file_bbox[] = { UINT_MAX, UINT_MAX, 0, 0 }; unsigned midx = 0, midy = 0; long long seq = 0; int nlayers = argc; if (nlayers == 0) { nlayers = 1; } int n; for (n = 0; n < nlayers; n++) { json_pull *jp; const char *reading; FILE *fp; long long found_hashes = 0; long long found_features = 0; if (n >= argc) { reading = "standard input"; fp = stdin; } else { reading = argv[n]; fp = fopen(argv[n], "r"); if (fp == NULL) { perror(argv[n]); continue; } } jp = json_begin_file(fp); while (1) { json_object *j = json_read(jp); if (j == NULL) { if (jp->error != NULL) { fprintf(stderr, "%s:%d: %s\n", reading, jp->line, jp->error); } json_free(jp->root); break; } if (j->type == JSON_HASH) { found_hashes++; if (found_hashes == 50 && found_features == 0) { fprintf(stderr, "%s:%d: Not finding any GeoJSON features in input. Is your file just bare geometries?\n", reading, jp->line); break; } } json_object *type = json_hash_get(j, "type"); if (type == NULL || type->type != JSON_STRING || strcmp(type->string, "Feature") != 0) { continue; } found_features++; json_object *geometry = json_hash_get(j, "geometry"); if (geometry == NULL) { fprintf(stderr, "%s:%d: feature with no geometry\n", reading, jp->line); json_free(j); continue; } json_object *geometry_type = json_hash_get(geometry, "type"); if (geometry_type == NULL) { static int warned = 0; if (!warned) { fprintf(stderr, "%s:%d: null geometry (additional not reported)\n", reading, jp->line); warned = 1; } json_free(j); continue; } if (geometry_type->type != JSON_STRING) { fprintf(stderr, "%s:%d: geometry without type\n", reading, jp->line); json_free(j); continue; } json_object *properties = json_hash_get(j, "properties"); if (properties == NULL || (properties->type != JSON_HASH && properties->type != JSON_NULL)) { fprintf(stderr, "%s:%d: feature without properties hash\n", reading, jp->line); json_free(j); continue; } json_object *coordinates = json_hash_get(geometry, "coordinates"); if (coordinates == NULL || coordinates->type != JSON_ARRAY) { fprintf(stderr, "%s:%d: feature without coordinates array\n", reading, jp->line); json_free(j); continue; } int t; for (t = 0; t < GEOM_TYPES; t++) { if (strcmp(geometry_type->string, geometry_names[t]) == 0) { break; } } if (t >= GEOM_TYPES) { fprintf(stderr, "%s:%d: Can't handle geometry type %s\n", reading, jp->line, geometry_type->string); json_free(j); continue; } { unsigned bbox[] = { UINT_MAX, UINT_MAX, 0, 0 }; int nprop = 0; if (properties->type == JSON_HASH) { nprop = properties->length; } long long metastart = metapos; char *metakey[nprop]; char *metaval[nprop]; int metatype[nprop]; int m = 0; int i; for (i = 0; i < nprop; i++) { if (properties->keys[i]->type == JSON_STRING) { if (exclude_all) { if (!is_pooled(include, properties->keys[i]->string, VT_STRING)) { continue; } } else if (is_pooled(exclude, properties->keys[i]->string, VT_STRING)) { continue; } metakey[m] = properties->keys[i]->string; if (properties->values[i] != NULL && properties->values[i]->type == JSON_STRING) { metatype[m] = VT_STRING; metaval[m] = properties->values[i]->string; m++; } else if (properties->values[i] != NULL && properties->values[i]->type == JSON_NUMBER) { metatype[m] = VT_NUMBER; metaval[m] = properties->values[i]->string; m++; } else if (properties->values[i] != NULL && (properties->values[i]->type == JSON_TRUE || properties->values[i]->type == JSON_FALSE)) { metatype[m] = VT_BOOLEAN; metaval[m] = properties->values[i]->type == JSON_TRUE ? "true" : "false"; m++; } else if (properties->values[i] != NULL && (properties->values[i]->type == JSON_NULL)) { ; } else { fprintf(stderr, "%s:%d: Unsupported property type for %s\n", reading, jp->line, properties->keys[i]->string); json_free(j); continue; } } } serialize_int(metafile, m, &metapos, fname); for (i = 0; i < m; i++) { serialize_int(metafile, metatype[i], &metapos, fname); serialize_string(metafile, metakey[i], &metapos, fname); serialize_string(metafile, metaval[i], &metapos, fname); } long long geomstart = geompos; serialize_byte(geomfile, mb_geometry[t], &geompos, fname); serialize_byte(geomfile, n, &geompos, fname); serialize_long_long(geomfile, metastart, &geompos, fname); parse_geometry(t, coordinates, bbox, &geompos, geomfile, VT_MOVETO, fname, jp); serialize_byte(geomfile, VT_END, &geompos, fname); /* * Note that minzoom for lines is the dimension * of the geometry in world coordinates, but * for points is the lowest zoom level (in tiles, * not in pixels) at which it should be drawn. * * So a line that is too small for, say, z8 * will have minzoom of 18 (if tile detail is 10), * not 8. */ int minzoom = 0; if (mb_geometry[t] == VT_LINE) { for (minzoom = 0; minzoom < 31; minzoom++) { unsigned mask = 1 << (32 - (minzoom + 1)); if (((bbox[0] & mask) != (bbox[2] & mask)) || ((bbox[1] & mask) != (bbox[3] & mask))) { break; } } } else if (mb_geometry[t] == VT_POINT) { double r = ((double) rand()) / RAND_MAX; if (r == 0) { r = .00000001; } minzoom = maxzoom - floor(log(r) / - log(droprate)); } serialize_byte(geomfile, minzoom, &geompos, fname); struct index index; index.start = geomstart; index.end = geompos; index.index = encode(bbox[0] / 2 + bbox[2] / 2, bbox[1] / 2 + bbox[3] / 2); fwrite_check(&index, sizeof(struct index), 1, indexfile, fname); indexpos += sizeof(struct index); for (i = 0; i < 2; i++) { if (bbox[i] < file_bbox[i]) { file_bbox[i] = bbox[i]; } } for (i = 2; i < 4; i++) { if (bbox[i] > file_bbox[i]) { file_bbox[i] = bbox[i]; } } if (seq % 10000 == 0) { fprintf(stderr, "Read %.2f million features\r", seq / 1000000.0); } seq++; } json_free(j); /* XXX check for any non-features in the outer object */ } json_end(jp); fclose(fp); } fclose(metafile); fclose(geomfile); fclose(indexfile); struct stat geomst; struct stat metast; if (fstat(geomfd, &geomst) != 0) { perror("stat geom\n"); exit(EXIT_FAILURE); } if (fstat(metafd, &metast) != 0) { perror("stat meta\n"); exit(EXIT_FAILURE); } if (geomst.st_size == 0 || metast.st_size == 0) { fprintf(stderr, "did not read any valid geometries\n"); exit(EXIT_FAILURE); } char *meta = (char *) mmap(NULL, metast.st_size, PROT_READ, MAP_PRIVATE, metafd, 0); if (meta == MAP_FAILED) { perror("mmap meta"); exit(EXIT_FAILURE); } struct pool file_keys1[nlayers]; struct pool *file_keys[nlayers]; int i; for (i = 0; i < nlayers; i++) { pool_init(&file_keys1[i], 0); file_keys[i] = &file_keys1[i]; } char *layernames[nlayers]; for (i = 0; i < nlayers; i++) { if (argc <= 1 && layername != NULL) { layernames[i] = strdup(layername); } else { char *src = argv[i]; if (argc < 1) { src = fname; } char *trunc = layernames[i] = malloc(strlen(src) + 1); const char *ocp, *use = src; for (ocp = src; *ocp; ocp++) { if (*ocp == '/' && ocp[1] != '\0') { use = ocp + 1; } } strcpy(trunc, use); char *cp = strstr(trunc, ".json"); if (cp != NULL) { *cp = '\0'; } cp = strstr(trunc, ".mbtiles"); if (cp != NULL) { *cp = '\0'; } layername = trunc; char *out = trunc; for (cp = trunc; *cp; cp++) { if (isalpha(*cp) || isdigit(*cp) || *cp == '_') { *out++ = *cp; } } *out = '\0'; printf("using layer %d name %s\n", i, trunc); } } /* Sort the index by geometry */ { int bytes = sizeof(struct index); fprintf(stderr, "Sorting %lld features\n", (long long) indexpos / bytes); int page = sysconf(_SC_PAGESIZE); long long unit = (50 * 1024 * 1024 / bytes) * bytes; while (unit % page != 0) { unit += bytes; } int nmerges = (indexpos + unit - 1) / unit; struct merge merges[nmerges]; long long start; for (start = 0; start < indexpos; start += unit) { long long end = start + unit; if (end > indexpos) { end = indexpos; } if (nmerges != 1) { fprintf(stderr, "Sorting part %lld of %d\r", start / unit + 1, nmerges); } merges[start / unit].start = start; merges[start / unit].end = end; merges[start / unit].next = NULL; void *map = mmap(NULL, end - start, PROT_READ | PROT_WRITE, MAP_PRIVATE, indexfd, start); if (map == MAP_FAILED) { perror("mmap"); exit(EXIT_FAILURE); } qsort(map, (end - start) / bytes, bytes, indexcmp); // Sorting and then copying avoids the need to // write out intermediate stages of the sort. void *map2 = mmap(NULL, end - start, PROT_READ | PROT_WRITE, MAP_SHARED, indexfd, start); if (map2 == MAP_FAILED) { perror("mmap (write)"); exit(EXIT_FAILURE); } memcpy(map2, map, end - start); munmap(map, end - start); munmap(map2, end - start); } if (nmerges != 1) { fprintf(stderr, "\n"); } void *map = mmap(NULL, indexpos, PROT_READ, MAP_PRIVATE, indexfd, 0); if (map == MAP_FAILED) { perror("mmap"); exit(EXIT_FAILURE); } FILE *f = fopen(indexname, "w"); if (f == NULL) { perror(indexname); exit(EXIT_FAILURE); } merge(merges, nmerges, (unsigned char *) map, f, bytes, indexpos / bytes); munmap(map, indexpos); fclose(f); close(indexfd); } /* Copy geometries to a new file in index order */ indexfd = open(indexname, O_RDONLY); if (indexfd < 0) { perror("reopen sorted index"); exit(EXIT_FAILURE); } struct index *index_map = mmap(NULL, indexpos, PROT_READ, MAP_PRIVATE, indexfd, 0); if (index_map == MAP_FAILED) { perror("mmap index"); exit(EXIT_FAILURE); } unlink(indexname); char *geom_map = mmap(NULL, geomst.st_size, PROT_READ, MAP_PRIVATE, geomfd, 0); if (geom_map == MAP_FAILED) { perror("mmap unsorted geometry"); exit(EXIT_FAILURE); } if (close(geomfd) != 0) { perror("close unsorted geometry"); } sprintf(geomname, "%s%s", tmpdir, "/geom.XXXXXXXX"); geomfd = mkstemp(geomname); if (geomfd < 0) { perror(geomname); exit(EXIT_FAILURE); } geomfile = fopen(geomname, "wb"); if (geomfile == NULL) { perror(geomname); exit(EXIT_FAILURE); } { geompos = 0; /* initial tile is 0/0/0 */ serialize_int(geomfile, 0, &geompos, fname); serialize_uint(geomfile, 0, &geompos, fname); serialize_uint(geomfile, 0, &geompos, fname); long long i; long long sum = 0; long long progress = 0; for (i = 0; i < indexpos / sizeof(struct index); i++) { fwrite_check(geom_map + index_map[i].start, sizeof(char), index_map[i].end - index_map[i].start, geomfile, fname); sum += index_map[i].end - index_map[i].start; long long p = 1000 * i / (indexpos / sizeof(struct index)); if (p != progress) { fprintf(stderr, "Reordering geometry: %3.1f%%\r", p / 10.0); progress = p; } } /* end of tile */ serialize_byte(geomfile, -2, &geompos, fname); fclose(geomfile); } if (munmap(index_map, indexpos) != 0) { perror("unmap sorted index"); } if (munmap(geom_map, geomst.st_size) != 0) { perror("unmap unsorted geometry"); } if (close(indexfd) != 0) { perror("close sorted index"); } /* Traverse and split the geometries for each zoom level */ geomfd = open(geomname, O_RDONLY); if (geomfd < 0) { perror("reopen sorted geometry"); exit(EXIT_FAILURE); } unlink(geomname); if (fstat(geomfd, &geomst) != 0) { perror("stat sorted geom\n"); exit(EXIT_FAILURE); } int fd[4]; off_t size[4]; fd[0] = geomfd; size[0] = geomst.st_size; int j; for (j = 1; j < 4; j++) { fd[j] = -1; size[j] = 0; } fprintf(stderr, "%lld features, %lld bytes of geometry, %lld bytes of metadata\n", seq, (long long) geomst.st_size, (long long) metast.st_size); int written = traverse_zooms(fd, size, meta, file_bbox, file_keys, &midx, &midy, layernames, maxzoom, minzoom, outdb, droprate, buffer, fname, tmpdir, gamma, nlayers, prevent); if (maxzoom != written) { fprintf(stderr, "\n\n\n*** NOTE TILES ONLY COMPLETE THROUGH ZOOM %d ***\n\n\n", written); maxzoom = written; ret = EXIT_FAILURE; } if (munmap(meta, metast.st_size) != 0) { perror("munmap meta"); } if (close(metafd) < 0) { perror("close meta"); } double minlat = 0, minlon = 0, maxlat = 0, maxlon = 0, midlat = 0, midlon = 0; tile2latlon(midx, midy, maxzoom, &maxlat, &minlon); tile2latlon(midx + 1, midy + 1, maxzoom, &minlat, &maxlon); midlat = (maxlat + minlat) / 2; midlon = (maxlon + minlon) / 2; tile2latlon(file_bbox[0], file_bbox[1], 32, &maxlat, &minlon); tile2latlon(file_bbox[2], file_bbox[3], 32, &minlat, &maxlon); if (midlat < minlat) { midlat = minlat; } if (midlat > maxlat) { midlat = maxlat; } if (midlon < minlon) { midlon = minlon; } if (midlon > maxlon) { midlon = maxlon; } mbtiles_write_metadata(outdb, fname, layernames, minzoom, maxzoom, minlat, minlon, maxlat, maxlon, midlat, midlon, file_keys, nlayers); // XXX layers for (i = 0; i < nlayers; i++) { pool_free_strings(&file_keys1[i]); free(layernames[i]); } return ret; }