Example #1
0
/*
** Implementation of the sqlite3_pcache.xUnpin method.
**
** Mark a page as unpinned (eligible for asynchronous recycling).
*/
static void pcache1Unpin(sqlite3_pcache *p, void *pPg, int reuseUnlikely){
  PCache1 *pCache = (PCache1 *)p;
  PgHdr1 *pPage = PAGE_TO_PGHDR1(pPg);

  pcache1EnterMutex();

  /* It is an error to call this function if the page is already 
  ** part of the global LRU list.
  */
  assert( pPage->pLruPrev==0 && pPage->pLruNext==0 );
  assert( pcache1.pLruHead!=pPage && pcache1.pLruTail!=pPage );

  if( reuseUnlikely || pcache1.nCurrentPage>pcache1.nMaxPage ){
    pcache1RemoveFromHash(pPage);
    pcache1FreePage(pPage);
  }else{
    /* Add the page to the global LRU list. Normally, the page is added to
    ** the head of the list (last page to be recycled). However, if the 
    ** reuseUnlikely flag passed to this function is true, the page is added
    ** to the tail of the list (first page to be recycled).
    */
    if( pcache1.pLruHead ){
      pcache1.pLruHead->pLruPrev = pPage;
      pPage->pLruNext = pcache1.pLruHead;
      pcache1.pLruHead = pPage;
    }else{
      pcache1.pLruTail = pPage;
      pcache1.pLruHead = pPage;
    }
    pCache->nRecyclable++;
  }

  pcache1LeaveMutex();
}
Example #2
0
/*
** If there are currently more than pcache.nMaxPage pages allocated, try
** to recycle pages to reduce the number allocated to pcache.nMaxPage.
*/
static void pcache1EnforceMaxPage(void){
  assert( sqlite3_mutex_held(pcache1.mutex) );
  while( pcache1.nCurrentPage>pcache1.nMaxPage && pcache1.pLruTail ){
    PgHdr1 *p = pcache1.pLruTail;
    pcache1PinPage(p);
    pcache1RemoveFromHash(p);
    pcache1FreePage(p);
  }
}
Example #3
0
/*
** If there are currently more than nMaxPage pages allocated, try
** to recycle pages to reduce the number allocated to nMaxPage.
*/
static void pcache1EnforceMaxPage(PGroup *pGroup){
  assert( sqlite3_mutex_held(pGroup->mutex) );
  while( pGroup->nCurrentPage>pGroup->nMaxPage && pGroup->pLruTail ){
    PgHdr1 *p = pGroup->pLruTail;
    assert( p->pCache->pGroup==pGroup );
    pcache1PinPage(p);
    pcache1RemoveFromHash(p);
    pcache1FreePage(p);
  }
}
Example #4
0
/*
** Remove the page supplied as an argument from the hash table
** (PCache1.apHash structure) that it is currently stored in.
** Also free the page if freePage is true.
**
** The PGroup mutex must be held when this function is called.
*/
static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){
  unsigned int h;
  PCache1 *pCache = pPage->pCache;
  PgHdr1 **pp;

  assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
  h = pPage->iKey % pCache->nHash;
  for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
  *pp = (*pp)->pNext;

  pCache->nPage--;
  if( freeFlag ) pcache1FreePage(pPage);
}
Example #5
0
/*
** This function is called to free superfluous dynamically allocated memory
** held by the pager system. Memory in use by any SQLite pager allocated
** by the current thread may be sqlite3_free()ed.
**
** nReq is the number of bytes of memory required. Once this much has
** been released, the function returns. The return value is the total number 
** of bytes of memory released.
*/
int sqlite3PcacheReleaseMemory(int nReq){
  int nFree = 0;
  if( pcache1.pStart==0 ){
    PgHdr1 *p;
    pcache1EnterMutex();
    while( (nReq<0 || nFree<nReq) && (p=pcache1.pLruTail) ){
      nFree += sqlite3MallocSize(p);
      pcache1PinPage(p);
      pcache1RemoveFromHash(p);
      pcache1FreePage(p);
    }
    pcache1LeaveMutex();
  }
  return nFree;
}
Example #6
0
/*
** Discard all pages from cache pCache with a page number (key value) 
** greater than or equal to iLimit. Any pinned pages that meet this 
** criteria are unpinned before they are discarded.
**
** The global mutex must be held when this function is called.
*/
static void pcache1TruncateUnsafe(
  PCache1 *pCache, 
  unsigned int iLimit 
){
  unsigned int h;
  assert( sqlite3_mutex_held(pcache1.mutex) );
  for(h=0; h<pCache->nHash; h++){
    PgHdr1 **pp = &pCache->apHash[h]; 
    PgHdr1 *pPage;
    while( (pPage = *pp)!=0 ){
      if( pPage->iKey>=iLimit ){
        pcache1PinPage(pPage);
        *pp = pPage->pNext;
        pcache1FreePage(pPage);
      }else{
        pp = &pPage->pNext;
      }
    }
  }
}
Example #7
0
/*
** Implementation of the sqlite3_pcache.xFetch method. 
**
** Fetch a page by key value.
**
** Whether or not a new page may be allocated by this function depends on
** the value of the createFlag argument.
**
** There are three different approaches to obtaining space for a page,
** depending on the value of parameter createFlag (which may be 0, 1 or 2).
**
**   1. Regardless of the value of createFlag, the cache is searched for a 
**      copy of the requested page. If one is found, it is returned.
**
**   2. If createFlag==0 and the page is not already in the cache, NULL is
**      returned.
**
**   3. If createFlag is 1, the cache is marked as purgeable and the page is 
**      not already in the cache, and if either of the following are true, 
**      return NULL:
**
**       (a) the number of pages pinned by the cache is greater than
**           PCache1.nMax, or
**       (b) the number of pages pinned by the cache is greater than
**           the sum of nMax for all purgeable caches, less the sum of 
**           nMin for all other purgeable caches. 
**
**   4. If none of the first three conditions apply and the cache is marked
**      as purgeable, and if one of the following is true:
**
**       (a) The number of pages allocated for the cache is already 
**           PCache1.nMax, or
**
**       (b) The number of pages allocated for all purgeable caches is
**           already equal to or greater than the sum of nMax for all
**           purgeable caches,
**
**      then attempt to recycle a page from the LRU list. If it is the right
**      size, return the recycled buffer. Otherwise, free the buffer and
**      proceed to step 5. 
**
**   5. Otherwise, allocate and return a new page buffer.
*/
static void *pcache1Fetch(sqlite3_pcache *p, unsigned int iKey, int createFlag){
  unsigned int nPinned;
  PCache1 *pCache = (PCache1 *)p;
  PgHdr1 *pPage = 0;

  pcache1EnterMutex();
  if( createFlag==1 ) sqlite3BeginBenignMalloc();

  /* Search the hash table for an existing entry. */
  if( pCache->nHash>0 ){
    unsigned int h = iKey % pCache->nHash;
    for(pPage=pCache->apHash[h]; pPage&&pPage->iKey!=iKey; pPage=pPage->pNext);
  }

  if( pPage || createFlag==0 ){
    pcache1PinPage(pPage);
    goto fetch_out;
  }

  /* Step 3 of header comment. */
  nPinned = pCache->nPage - pCache->nRecyclable;
  if( createFlag==1 && pCache->bPurgeable && (
        nPinned>=(pcache1.nMaxPage+pCache->nMin-pcache1.nMinPage)
     || nPinned>=(pCache->nMax)
  )){
    goto fetch_out;
  }

  if( pCache->nPage>=pCache->nHash && pcache1ResizeHash(pCache) ){
    goto fetch_out;
  }

  /* Step 4. Try to recycle a page buffer if appropriate. */
  if( pCache->bPurgeable && pcache1.pLruTail && (
      pCache->nPage>=pCache->nMax-1 || pcache1.nCurrentPage>=pcache1.nMaxPage
  )){
    pPage = pcache1.pLruTail;
    pcache1RemoveFromHash(pPage);
    pcache1PinPage(pPage);
    if( pPage->pCache->szPage!=pCache->szPage ){
      pcache1FreePage(pPage);
      pPage = 0;
    }else{
      pcache1.nCurrentPage -= (pPage->pCache->bPurgeable - pCache->bPurgeable);
    }
  }

  /* Step 5. If a usable page buffer has still not been found, 
  ** attempt to allocate a new one. 
  */
  if( !pPage ){
    pPage = pcache1AllocPage(pCache);
  }

  if( pPage ){
    unsigned int h = iKey % pCache->nHash;
    *(void **)(PGHDR1_TO_PAGE(pPage)) = 0;
    pCache->nPage++;
    pPage->iKey = iKey;
    pPage->pNext = pCache->apHash[h];
    pPage->pCache = pCache;
    pPage->pLruPrev = 0;
    pPage->pLruNext = 0;
    pCache->apHash[h] = pPage;
  }

fetch_out:
  if( pPage && iKey>pCache->iMaxKey ){
    pCache->iMaxKey = iKey;
  }
  if( createFlag==1 ) sqlite3EndBenignMalloc();
  pcache1LeaveMutex();
  return (pPage ? PGHDR1_TO_PAGE(pPage) : 0);
}