Example #1
0
/***non recursive permutation module***/
int permutation_non_recursive(const char* s){
    /*wrapper*/
    int len=strlen(s);
    char* tmp=(char *)malloc((len+1)*sizeof(char));
    if(!tmp)
        return -1;
    int* address=(int *)malloc(len*sizeof(int));
    if(!address)
        return -1;
    strcpy(tmp,s);
    permutation_init(s,address,len);
    /*permutate all possibilities*/
    while (permutation_next(s,address,tmp,len)!=-1) {
        continue;
    }
    free(tmp);
    free(address);
    printf("\n");
    
}
int train_network_pool(float error_limit)
{
    int i, init = 0; //init is 0 for the first generation of the algorithm
    char index[10],file_name[100], selected_network_file[100];
    dnc* dnc_vars;
    Marchand* marchand_vars;
    float learning_rate, momentum, local_error, threshold  = 0.001;
    int selected_index, selected_source;   // selected_source = 0 -> dnc, 1 -> marchand selected index x-> xth network of selected_source
    int present_gen = 0;
    int count_mc = 0; // count misclassification
    float init_error = 1.0;

    srand(time(NULL));
    dnc_vars     =  new dnc[INIT_NET];
    marchand_vars =  new Marchand[INIT_NET];
    nn test_network;
    float present_error, previous_error;
    int increase_count = 0;

    present_error = previous_error = 1.0;
    char file_name_to_save[100];

    FILE  *fp_output = fopen("graph_input.csv","w");

    if(fp_output == NULL) printf("Error Opening File ... %s\n", "graph_input.csv");

    fprintf(fp_output, "%d,%f\n", present_gen, 1.0*NUM_GEN);

    while(present_gen < NUM_GEN)
    {
        if(present_gen)
            //if(true)
        {
            float local_error = 0.0;
            learning_rate = (double)(rand() % 10 + 2) / (double)(100);
            momentum      = (double)(rand() % 9 + 1) / (double)(10);

            cout << "GEN learing rate : " << learning_rate << " momentum : " << momentum << endl;

            int layer[3] = {ATTR_NUM, 1, NUM_CLASS};

            test_network.create_nn(3, layer, 0,  learning_rate, momentum, MAX_NODES);
            printf("running ..");
            test_network.load(selected_network_file);

            //for( int i = 0; i < TRAIN_SIZE; i++)
            for( int i = 0; i < VALIDATION_SIZE; i++)
            {
                test_network.calculate(validation_input[i]);
                local_error += test_network.get_error(validation_output[i]);
            }

            printf("Total error: %f Average error: %f\n", local_error, (float)(local_error/ TRAIN_SIZE));
            fprintf(fp_output, "%d,%f\n", present_gen, NUM_GEN * (float)(local_error/ TRAIN_SIZE));

            if( (float)(local_error/ TRAIN_SIZE) < error_limit)
            {
                test_network.save((char *) "genetic_ouptut.txt", 2);
                printf("The network is converged ...\n");
                fclose(fp_output);
                return 0;
            }
            else
            {
                test_network.save((char *) "genetic_ouptut.txt", 2);
                printf("The network is SAVED ...\n");

            }

            present_error =  (float)(local_error/ TRAIN_SIZE);
            if(fabs(present_error - previous_error) < (error_limit/10))
            {
                printf("Network Converged ... final case\n");
                test_network.save((char *) "genetic_ouptut.txt", 2);
                fclose(fp_output);
                return 0;
            }

            if(present_error > previous_error)
            {
                increase_count++;
                sprintf(file_name_to_save, "genetic/genetic_output%d", increase_count);
                test_network.save((char*) file_name_to_save);
                sprintf(file_name_to_save, "");
            }
            else if(present_error < previous_error) increase_count = 0;

            if(increase_count == MAIN_ERROR_INCREASE)
            {
                test_network.save((char *) "genetic_ouptut.txt", 2);
                printf("Returning from the main function ... %d\n", increase_count);
                fclose(fp_output);
                return 0;
            }
            else if( (present_error > previous_error) && (present_error - previous_error) < MAIN_ERROR_CHANGE)
            {

                sprintf(file_name_to_save, "genetic/genetic_outputLastCase");
                test_network.save((char*) file_name_to_save);
                sprintf(file_name_to_save, "");

                printf("Last case, Increase Count : %d\n", increase_count);
                fclose(fp_output);
                return 0;
            }
            printf("The increase count is : %d\n", increase_count);
            previous_error = present_error;


        }

        int m;
        for(i = 0; i < INIT_NET; i++)
        {
            sprintf(file_name, "dnc%d",i);
            //puts(file_name);
            //supply each network a time to stop, a random learning rate and a random permutation
            learning_rate = (double)(rand() % 10 + 2) / (double)(100);
            momentum      = (double)(rand() % 7 + 1) / (double)(10);

            cout << "learing rate : " << learning_rate << " momentum : " << momentum << endl;
            dnc_vars[i].init_dnc(ATTR_NUM, NUM_CLASS, TRAIN_SIZE, EPOCH_DNC, 0.001, MAX_NODES, learning_rate, momentum, file_name, TRAIN_TIME);
            dnc_vars[i].set_monotone_increament(5);
            dnc_vars[i].take_validation_data((float *) validation_input, (float *)validation_output, VALIDATION_SIZE); // num of validation data as last argument

            if(present_gen) dnc_vars[i].load(selected_network_file);

            error[i] = dnc_vars[i].execute((float *)input, (float *)output);
            strcpy(file_name,"");
        }

        m = i; // hold the value INIT_NET
        for(i = 0; i < INIT_NET; i++)
        {
            strcpy(file_name,"");
            sprintf(file_name, "marchand%d", i);
            //puts(file_name);

            if(!present_gen)
            {
                permutation_next();
                marchand_vars[i].init_marchand(ATTR_NUM, NUM_CLASS, TRAIN_SIZE, 200, 0.05, MAX_NODES, file_name, TRAIN_TIME/3.0);
                marchand_vars[i].take_validation_data((float *) validation_input, (float *)validation_output, VALIDATION_SIZE);
                error[m+i] = marchand_vars[i].execute((float *)input_temp, (float *)output_temp);
            }
            else
            {
                permutation_next_another((float *)remaining_input, (float *)remaining_output, count_mc);
                marchand_vars[i].init_marchand(ATTR_NUM, NUM_CLASS, count_mc, 200, 0.05, MAX_NODES, file_name, TRAIN_TIME/3.0);
                marchand_vars[i].load(selected_network_file);
                marchand_vars[i].take_validation_data((float *) validation_input, (float *)validation_output, VALIDATION_SIZE);
                error[m+i] = marchand_vars[i].execute((float *)remaining_input, (float *)remaining_output);
            }
        }

        //best selection
        select_network(&selected_index, &selected_source);
        cout << "selected index: " << selected_index << " selected source: " << selected_source << endl;

        count_mc = 0;

        if(selected_source == 0)
        {
            for(int m = 0; m < TRAIN_SIZE; m++)
            {
                local_error = dnc_vars[selected_index].calculate_for_single(input[m],output[m]);

                if(local_error > threshold)
                {
                    for(int k = 0; k < ATTR_NUM; k++) remaining_input[count_mc][k] = input[m][k];
                    for(int k = 0; k < NUM_CLASS; k++) remaining_output[count_mc][k] = output[m][k];
                    count_mc++;
                }
            }
        }

        if(!selected_source) sprintf(selected_network_file, "dnc%d", selected_index);
        else sprintf(selected_network_file, "marchand%d", selected_index);

        cout << "Generation is  : " << present_gen << endl;
        present_gen++;
    }

    delete []dnc_vars;
    delete []marchand_vars;
    return 0;
}