Example #1
0
/*
 * StrategyInitialize -- initialize the buffer cache replacement
 *		strategy.
 *
 * Assumes: All of the buffers are already built into a linked list.
 *		Only called by postmaster and only during initialization.
 */
void
StrategyInitialize(bool init)
{
	bool		found;

	/*
	 * Initialize the shared buffer lookup hashtable.
	 *
	 * Since we can't tolerate running out of lookup table entries, we must be
	 * sure to specify an adequate table size here.  The maximum steady-state
	 * usage is of course NBuffers entries, but BufferAlloc() tries to insert
	 * a new___ entry before deleting the old.  In principle this could be
	 * happening in each partition concurrently, so we could need as many as
	 * NBuffers + NUM_BUFFER_PARTITIONS entries.
	 */
	InitBufTable(NBuffers + NUM_BUFFER_PARTITIONS);

	/*
	 * Get or create the shared strategy control block
	 */
	StrategyControl = (BufferStrategyControl *)
		ShmemInitStruct("Buffer Strategy Status",
						sizeof(BufferStrategyControl),
						&found);

	if (!found)
	{
		/*
		 * Only done once, usually in postmaster
		 */
		Assert(init);

		SpinLockInit(&StrategyControl->buffer_strategy_lock);

		/*
		 * Grab the whole linked list of free buffers for our strategy. We
		 * assume it was previously set up by InitBufferPool().
		 */
		StrategyControl->firstFreeBuffer = 0;
		StrategyControl->lastFreeBuffer = NBuffers - 1;

		/* Initialize the clock sweep pointer */
		pg_atomic_init_u32(&StrategyControl->nextVictimBuffer, 0);

		/* Clear statistics */
		StrategyControl->completePasses = 0;
		pg_atomic_init_u32(&StrategyControl->numBufferAllocs, 0);

		/* No pending notification */
		StrategyControl->bgwprocno = -1;
	}
	else
		Assert(!init);
}
Example #2
0
/*
 * Initialize shared buffer pool
 *
 * This is called once during shared-memory initialization (either in the
 * postmaster, or in a standalone backend).
 */
void
InitBufferPool(void)
{
	bool		foundBufs,
				foundDescs,
				foundIOLocks,
				foundBufCkpt;

	/* Align descriptors to a cacheline boundary. */
	BufferDescriptors = (BufferDescPadded *)
		ShmemInitStruct("Buffer Descriptors",
						NBuffers * sizeof(BufferDescPadded),
						&foundDescs);

	BufferBlocks = (char *)
		ShmemInitStruct("Buffer Blocks",
						NBuffers * (Size) BLCKSZ, &foundBufs);

	/* Align lwlocks to cacheline boundary */
	BufferIOLWLockArray = (LWLockMinimallyPadded *)
		ShmemInitStruct("Buffer IO Locks",
						NBuffers * (Size) sizeof(LWLockMinimallyPadded),
						&foundIOLocks);

	LWLockRegisterTranche(LWTRANCHE_BUFFER_IO_IN_PROGRESS, "buffer_io");
	LWLockRegisterTranche(LWTRANCHE_BUFFER_CONTENT, "buffer_content");

	/*
	 * The array used to sort to-be-checkpointed buffer ids is located in
	 * shared memory, to avoid having to allocate significant amounts of
	 * memory at runtime. As that'd be in the middle of a checkpoint, or when
	 * the checkpointer is restarted, memory allocation failures would be
	 * painful.
	 */
	CkptBufferIds = (CkptSortItem *)
		ShmemInitStruct("Checkpoint BufferIds",
						NBuffers * sizeof(CkptSortItem), &foundBufCkpt);

	if (foundDescs || foundBufs || foundIOLocks || foundBufCkpt)
	{
		/* should find all of these, or none of them */
		Assert(foundDescs && foundBufs && foundIOLocks && foundBufCkpt);
		/* note: this path is only taken in EXEC_BACKEND case */
	}
	else
	{
		int			i;

		/*
		 * Initialize all the buffer headers.
		 */
		for (i = 0; i < NBuffers; i++)
		{
			BufferDesc *buf = GetBufferDescriptor(i);

			CLEAR_BUFFERTAG(buf->tag);

			pg_atomic_init_u32(&buf->state, 0);
			buf->wait_backend_pid = 0;

			buf->buf_id = i;

			/*
			 * Initially link all the buffers together as unused. Subsequent
			 * management of this list is done by freelist.c.
			 */
			buf->freeNext = i + 1;

			LWLockInitialize(BufferDescriptorGetContentLock(buf),
							 LWTRANCHE_BUFFER_CONTENT);

			LWLockInitialize(BufferDescriptorGetIOLock(buf),
							 LWTRANCHE_BUFFER_IO_IN_PROGRESS);
		}

		/* Correct last entry of linked list */
		GetBufferDescriptor(NBuffers - 1)->freeNext = FREENEXT_END_OF_LIST;
	}

	/* Init other shared buffer-management stuff */
	StrategyInitialize(!foundDescs);

	/* Initialize per-backend file flush context */
	WritebackContextInit(&BackendWritebackContext,
						 &backend_flush_after);
}
Example #3
0
static void
test_atomic_uint32(void)
{
	pg_atomic_uint32 var;
	uint32		expected;
	int			i;

	pg_atomic_init_u32(&var, 0);

	if (pg_atomic_read_u32(&var) != 0)
		elog(ERROR, "atomic_read_u32() #1 wrong");

	pg_atomic_write_u32(&var, 3);

	if (pg_atomic_read_u32(&var) != 3)
		elog(ERROR, "atomic_read_u32() #2 wrong");

	if (pg_atomic_fetch_add_u32(&var, 1) != 3)
		elog(ERROR, "atomic_fetch_add_u32() #1 wrong");

	if (pg_atomic_fetch_sub_u32(&var, 1) != 4)
		elog(ERROR, "atomic_fetch_sub_u32() #1 wrong");

	if (pg_atomic_sub_fetch_u32(&var, 3) != 0)
		elog(ERROR, "atomic_sub_fetch_u32() #1 wrong");

	if (pg_atomic_add_fetch_u32(&var, 10) != 10)
		elog(ERROR, "atomic_add_fetch_u32() #1 wrong");

	if (pg_atomic_exchange_u32(&var, 5) != 10)
		elog(ERROR, "pg_atomic_exchange_u32() #1 wrong");

	if (pg_atomic_exchange_u32(&var, 0) != 5)
		elog(ERROR, "pg_atomic_exchange_u32() #0 wrong");

	/* test around numerical limits */
	if (pg_atomic_fetch_add_u32(&var, INT_MAX) != 0)
		elog(ERROR, "pg_atomic_fetch_add_u32() #2 wrong");

	if (pg_atomic_fetch_add_u32(&var, INT_MAX) != INT_MAX)
		elog(ERROR, "pg_atomic_add_fetch_u32() #3 wrong");

	pg_atomic_fetch_add_u32(&var, 1);	/* top up to UINT_MAX */

	if (pg_atomic_read_u32(&var) != UINT_MAX)
		elog(ERROR, "atomic_read_u32() #2 wrong");

	if (pg_atomic_fetch_sub_u32(&var, INT_MAX) != UINT_MAX)
		elog(ERROR, "pg_atomic_fetch_sub_u32() #2 wrong");

	if (pg_atomic_read_u32(&var) != (uint32) INT_MAX + 1)
		elog(ERROR, "atomic_read_u32() #3 wrong: %u", pg_atomic_read_u32(&var));

	expected = pg_atomic_sub_fetch_u32(&var, INT_MAX);
	if (expected != 1)
		elog(ERROR, "pg_atomic_sub_fetch_u32() #3 wrong: %u", expected);

	pg_atomic_sub_fetch_u32(&var, 1);

	/* fail exchange because of old expected */
	expected = 10;
	if (pg_atomic_compare_exchange_u32(&var, &expected, 1))
		elog(ERROR, "atomic_compare_exchange_u32() changed value spuriously");

	/* CAS is allowed to fail due to interrupts, try a couple of times */
	for (i = 0; i < 1000; i++)
	{
		expected = 0;
		if (!pg_atomic_compare_exchange_u32(&var, &expected, 1))
			break;
	}
	if (i == 1000)
		elog(ERROR, "atomic_compare_exchange_u32() never succeeded");
	if (pg_atomic_read_u32(&var) != 1)
		elog(ERROR, "atomic_compare_exchange_u32() didn't set value properly");

	pg_atomic_write_u32(&var, 0);

	/* try setting flagbits */
	if (pg_atomic_fetch_or_u32(&var, 1) & 1)
		elog(ERROR, "pg_atomic_fetch_or_u32() #1 wrong");

	if (!(pg_atomic_fetch_or_u32(&var, 2) & 1))
		elog(ERROR, "pg_atomic_fetch_or_u32() #2 wrong");

	if (pg_atomic_read_u32(&var) != 3)
		elog(ERROR, "invalid result after pg_atomic_fetch_or_u32()");

	/* try clearing flagbits */
	if ((pg_atomic_fetch_and_u32(&var, ~2) & 3) != 3)
		elog(ERROR, "pg_atomic_fetch_and_u32() #1 wrong");

	if (pg_atomic_fetch_and_u32(&var, ~1) != 1)
		elog(ERROR, "pg_atomic_fetch_and_u32() #2 wrong: is %u",
			 pg_atomic_read_u32(&var));
	/* no bits set anymore */
	if (pg_atomic_fetch_and_u32(&var, ~0) != 0)
		elog(ERROR, "pg_atomic_fetch_and_u32() #3 wrong");
}
Example #4
0
/*
 * InitProcess -- initialize a per-process data structure for this backend
 */
void
InitProcess(void)
{
	/* use volatile pointer to prevent code rearrangement */
	volatile PROC_HDR *procglobal = ProcGlobal;
	PGPROC * volatile * procgloballist;

	/*
	 * ProcGlobal should be set up already (if we are a backend, we inherit
	 * this by fork() or EXEC_BACKEND mechanism from the postmaster).
	 */
	if (procglobal == NULL)
		elog(PANIC, "proc header uninitialized");

	if (MyProc != NULL)
		elog(ERROR, "you already exist");

	/* Decide which list should supply our PGPROC. */
	if (IsAnyAutoVacuumProcess())
		procgloballist = &procglobal->autovacFreeProcs;
	else if (IsBackgroundWorker)
		procgloballist = &procglobal->bgworkerFreeProcs;
	else
		procgloballist = &procglobal->freeProcs;

	/*
	 * Try to get a proc struct from the appropriate free list.  If this
	 * fails, we must be out of PGPROC structures (not to mention semaphores).
	 *
	 * While we are holding the ProcStructLock, also copy the current shared
	 * estimate of spins_per_delay to local storage.
	 */
	SpinLockAcquire(ProcStructLock);

	set_spins_per_delay(procglobal->spins_per_delay);

	MyProc = *procgloballist;

	if (MyProc != NULL)
	{
		*procgloballist = (PGPROC *) MyProc->links.next;
		SpinLockRelease(ProcStructLock);
	}
	else
	{
		/*
		 * If we reach here, all the PGPROCs are in use.  This is one of the
		 * possible places to detect "too many backends", so give the standard
		 * error message.  XXX do we need to give a different failure message
		 * in the autovacuum case?
		 */
		SpinLockRelease(ProcStructLock);
		ereport(FATAL,
				(errcode(ERRCODE_TOO_MANY_CONNECTIONS),
				 errmsg("sorry, too many clients already")));
	}
	MyPgXact = &ProcGlobal->allPgXact[MyProc->pgprocno];

	/*
	 * Cross-check that the PGPROC is of the type we expect; if this were
	 * not the case, it would get returned to the wrong list.
	 */
	Assert(MyProc->procgloballist == procgloballist);

	/*
	 * Now that we have a PGPROC, mark ourselves as an active postmaster
	 * child; this is so that the postmaster can detect it if we exit without
	 * cleaning up.  (XXX autovac launcher currently doesn't participate in
	 * this; it probably should.)
	 */
	if (IsUnderPostmaster && !IsAutoVacuumLauncherProcess())
		MarkPostmasterChildActive();

	/*
	 * Initialize all fields of MyProc, except for those previously
	 * initialized by InitProcGlobal.
	 */
	SHMQueueElemInit(&(MyProc->links));
	MyProc->waitStatus = STATUS_OK;
	MyProc->lxid = InvalidLocalTransactionId;
	MyProc->fpVXIDLock = false;
	MyProc->fpLocalTransactionId = InvalidLocalTransactionId;
	MyPgXact->xid = InvalidTransactionId;
	MyPgXact->xmin = InvalidTransactionId;
	MyProc->pid = MyProcPid;
	/* backendId, databaseId and roleId will be filled in later */
	MyProc->backendId = InvalidBackendId;
	MyProc->databaseId = InvalidOid;
	MyProc->roleId = InvalidOid;
	MyPgXact->delayChkpt = false;
	MyPgXact->vacuumFlags = 0;
	/* NB -- autovac launcher intentionally does not set IS_AUTOVACUUM */
	if (IsAutoVacuumWorkerProcess())
		MyPgXact->vacuumFlags |= PROC_IS_AUTOVACUUM;
	MyProc->lwWaiting = false;
	MyProc->lwWaitMode = 0;
	MyProc->waitLock = NULL;
	MyProc->waitProcLock = NULL;
#ifdef USE_ASSERT_CHECKING
	{
		int			i;

		/* Last process should have released all locks. */
		for (i = 0; i < NUM_LOCK_PARTITIONS; i++)
			Assert(SHMQueueEmpty(&(MyProc->myProcLocks[i])));
	}
#endif
	MyProc->recoveryConflictPending = false;

	/* Initialize fields for sync rep */
	MyProc->waitLSN = 0;
	MyProc->syncRepState = SYNC_REP_NOT_WAITING;
	SHMQueueElemInit(&(MyProc->syncRepLinks));

	/* Initialize fields for group XID clearing. */
	MyProc->backendLatestXid = InvalidTransactionId;
	pg_atomic_init_u32(&MyProc->nextClearXidElem, INVALID_PGPROCNO);

	/*
	 * Acquire ownership of the PGPROC's latch, so that we can use WaitLatch
	 * on it.  That allows us to repoint the process latch, which so far
	 * points to process local one, to the shared one.
	 */
	OwnLatch(&MyProc->procLatch);
	SwitchToSharedLatch();

	/*
	 * We might be reusing a semaphore that belonged to a failed process. So
	 * be careful and reinitialize its value here.  (This is not strictly
	 * necessary anymore, but seems like a good idea for cleanliness.)
	 */
	PGSemaphoreReset(&MyProc->sem);

	/*
	 * Arrange to clean up at backend exit.
	 */
	on_shmem_exit(ProcKill, 0);

	/*
	 * Now that we have a PGPROC, we could try to acquire locks, so initialize
	 * local state needed for LWLocks, and the deadlock checker.
	 */
	InitLWLockAccess();
	InitDeadLockChecking();
}
Example #5
0
/*
 * InitProcGlobal -
 *	  Initialize the global process table during postmaster or standalone
 *	  backend startup.
 *
 *	  We also create all the per-process semaphores we will need to support
 *	  the requested number of backends.  We used to allocate semaphores
 *	  only when backends were actually started up, but that is bad because
 *	  it lets Postgres fail under load --- a lot of Unix systems are
 *	  (mis)configured with small limits on the number of semaphores, and
 *	  running out when trying to start another backend is a common failure.
 *	  So, now we grab enough semaphores to support the desired max number
 *	  of backends immediately at initialization --- if the sysadmin has set
 *	  MaxConnections, max_worker_processes, or autovacuum_max_workers higher
 *	  than his kernel will support, he'll find out sooner rather than later.
 *
 *	  Another reason for creating semaphores here is that the semaphore
 *	  implementation typically requires us to create semaphores in the
 *	  postmaster, not in backends.
 *
 * Note: this is NOT called by individual backends under a postmaster,
 * not even in the EXEC_BACKEND case.  The ProcGlobal and AuxiliaryProcs
 * pointers must be propagated specially for EXEC_BACKEND operation.
 */
void
InitProcGlobal(void)
{
	PGPROC	   *procs;
	PGXACT	   *pgxacts;
	int			i,
				j;
	bool		found;
	uint32		TotalProcs = MaxBackends + NUM_AUXILIARY_PROCS + max_prepared_xacts;

	/* Create the ProcGlobal shared structure */
	ProcGlobal = (PROC_HDR *)
		ShmemInitStruct("Proc Header", sizeof(PROC_HDR), &found);
	Assert(!found);

	/*
	 * Initialize the data structures.
	 */
	ProcGlobal->spins_per_delay = DEFAULT_SPINS_PER_DELAY;
	ProcGlobal->freeProcs = NULL;
	ProcGlobal->autovacFreeProcs = NULL;
	ProcGlobal->bgworkerFreeProcs = NULL;
	ProcGlobal->startupProc = NULL;
	ProcGlobal->startupProcPid = 0;
	ProcGlobal->startupBufferPinWaitBufId = -1;
	ProcGlobal->walwriterLatch = NULL;
	ProcGlobal->checkpointerLatch = NULL;
	pg_atomic_init_u32(&ProcGlobal->nextClearXidElem, INVALID_PGPROCNO);

	/*
	 * Create and initialize all the PGPROC structures we'll need.  There are
	 * five separate consumers: (1) normal backends, (2) autovacuum workers
	 * and the autovacuum launcher, (3) background workers, (4) auxiliary
	 * processes, and (5) prepared transactions.  Each PGPROC structure is
	 * dedicated to exactly one of these purposes, and they do not move
	 * between groups.
	 */
	procs = (PGPROC *) ShmemAlloc(TotalProcs * sizeof(PGPROC));
	ProcGlobal->allProcs = procs;
	/* XXX allProcCount isn't really all of them; it excludes prepared xacts */
	ProcGlobal->allProcCount = MaxBackends + NUM_AUXILIARY_PROCS;
	if (!procs)
		ereport(FATAL,
				(errcode(ERRCODE_OUT_OF_MEMORY),
				 errmsg("out of shared memory")));
	MemSet(procs, 0, TotalProcs * sizeof(PGPROC));

	/*
	 * Also allocate a separate array of PGXACT structures.  This is separate
	 * from the main PGPROC array so that the most heavily accessed data is
	 * stored contiguously in memory in as few cache lines as possible. This
	 * provides significant performance benefits, especially on a
	 * multiprocessor system.  There is one PGXACT structure for every PGPROC
	 * structure.
	 */
	pgxacts = (PGXACT *) ShmemAlloc(TotalProcs * sizeof(PGXACT));
	MemSet(pgxacts, 0, TotalProcs * sizeof(PGXACT));
	ProcGlobal->allPgXact = pgxacts;

	for (i = 0; i < TotalProcs; i++)
	{
		/* Common initialization for all PGPROCs, regardless of type. */

		/*
		 * Set up per-PGPROC semaphore, latch, and backendLock. Prepared xact
		 * dummy PGPROCs don't need these though - they're never associated
		 * with a real process
		 */
		if (i < MaxBackends + NUM_AUXILIARY_PROCS)
		{
			PGSemaphoreCreate(&(procs[i].sem));
			InitSharedLatch(&(procs[i].procLatch));
			procs[i].backendLock = LWLockAssign();
		}
		procs[i].pgprocno = i;

		/*
		 * Newly created PGPROCs for normal backends, autovacuum and bgworkers
		 * must be queued up on the appropriate free list.  Because there can
		 * only ever be a small, fixed number of auxiliary processes, no free
		 * list is used in that case; InitAuxiliaryProcess() instead uses a
		 * linear search.   PGPROCs for prepared transactions are added to a
		 * free list by TwoPhaseShmemInit().
		 */
		if (i < MaxConnections)
		{
			/* PGPROC for normal backend, add to freeProcs list */
			procs[i].links.next = (SHM_QUEUE *) ProcGlobal->freeProcs;
			ProcGlobal->freeProcs = &procs[i];
			procs[i].procgloballist = &ProcGlobal->freeProcs;
		}
		else if (i < MaxConnections + autovacuum_max_workers + 1)
		{
			/* PGPROC for AV launcher/worker, add to autovacFreeProcs list */
			procs[i].links.next = (SHM_QUEUE *) ProcGlobal->autovacFreeProcs;
			ProcGlobal->autovacFreeProcs = &procs[i];
			procs[i].procgloballist = &ProcGlobal->autovacFreeProcs;
		}
		else if (i < MaxBackends)
		{
			/* PGPROC for bgworker, add to bgworkerFreeProcs list */
			procs[i].links.next = (SHM_QUEUE *) ProcGlobal->bgworkerFreeProcs;
			ProcGlobal->bgworkerFreeProcs = &procs[i];
			procs[i].procgloballist = &ProcGlobal->bgworkerFreeProcs;
		}

		/* Initialize myProcLocks[] shared memory queues. */
		for (j = 0; j < NUM_LOCK_PARTITIONS; j++)
			SHMQueueInit(&(procs[i].myProcLocks[j]));
	}

	/*
	 * Save pointers to the blocks of PGPROC structures reserved for auxiliary
	 * processes and prepared transactions.
	 */
	AuxiliaryProcs = &procs[MaxBackends];
	PreparedXactProcs = &procs[MaxBackends + NUM_AUXILIARY_PROCS];

	/* Create ProcStructLock spinlock, too */
	ProcStructLock = (slock_t *) ShmemAlloc(sizeof(slock_t));
	SpinLockInit(ProcStructLock);
}