Example #1
0
/* Get local bases for boundary vertex i,
 *  return num of constrained bases, 
 *  and noramlized direction of rotated bases.
 *  */
SURF_BAS *
get_surface_bases(GRID *g, DOF_TYPE *u_type)
{
    SIMPLEX *e;
    DOF *surf_dof = NULL, *norm_lat = NULL, *norm_bot = NULL;
    BOOLEAN *rotated = NULL;
    INT nrot = 0;
    surf_dof = phgDofNew(g, u_type, DDim, "Surf bases", DofNoAction);
    
    //norm_lat = phgDofNew(g, u_type, Dim, "Norm lateral", DofNoAction);
    //norm_bot = phgDofNew(g, u_type, Dim, "Norm Bottom", DofNoAction);
    //DOF *coord = phgDofNew(g, u_type, Dim, "coord", func_xyz_);
	DOF *avg_n = phgDofNew(g, DOF_P2, 3, "avg n", DofNoAction);
        get_avg_n(g, avg_n);
    
    rotated = phgCalloc(DofGetDataCount(surf_dof) / (DDim), sizeof(*rotated));
    SURF_BAS *surf_bas;

    surf_bas = phgCalloc(1, sizeof(*surf_bas));
    surf_bas->type = u_type;
    //surf_bas->dof = phgDofNew(g, u_type, DDim, "Surf bases", DofNoAction);//surf_dof;
    //surf_bas->dof = surf_dof;
    surf_bas->rotated = rotated;
    phgDofSetDataByValue(surf_dof, 0.);
    //phgDofSetDataByValue(surf_bas->dof, 0.);
    
    //phgDofSetDataByValue(norm_lat, -99.);
    //phgDofSetDataByValue(norm_bot, -99.);
    
        ForAllElements(g, e) {
	int s, ii, i, m, dof_i;
	int N = surf_dof->type->nbas;
	//int N = surf_bas->dof->type->nbas;
	FLOAT *avg_n_v;
	FLOAT normal[Dim];
	int  v[3];
	FLOAT norm;
	FLOAT norm_value_lat[N][Dim];
	FLOAT norm_value_bot[N][Dim];
	FLOAT bas_value[N][DDim],  H[Dim][Dim], c[Dim], 
	    bxyz[Dim][Dim] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};

	phgDofGetElementData(surf_dof, e, &bas_value[0][0]);
	//phgDofGetElementData(surf_bas->dof, e, &bas_value[0][0]);
	
	for (s = 0; s < NFace; s++) { 
	    int nbas_face = NbasFace(surf_dof);
	    //int nbas_face = NbasFace(surf_bas->dof);
	    INT id; 
	    SHORT ibas_face[nbas_face];

        //FLOAT *normal = phgGeomGetFaceOutNormal(g, e, s);

        //if (!((e->bound_type[s] & BC_BOTTOM) && !(e->bound_type[s] & BC_ISHELF)))
        if (!(e->bound_type[s] & BC_BOTTOM))
            continue;

	    phgDofGetBasesOnFace(surf_dof, e, s, ibas_face);
	    //phgDofGetBasesOnFace(surf_bas->dof, e, s, ibas_face);
	    for (ii = 0; ii < nbas_face; ii++) {
		i = ibas_face[ii];
		dof_i = phgDofMapE2D(avg_n, e, i*Dim);
		avg_n_v = DofData(avg_n);
		normal[0] = avg_n_v[dof_i + 0];
		normal[1] = avg_n_v[dof_i + 1];
		normal[2] = avg_n_v[dof_i + 2];
        /* i means the base function number in the element */
		/* Use Gram–Schmidt process to get orthogonal bases, 
		 * one constrains */

		id = phgDofMapE2D(surf_dof, e, i * (DDim)) / (DDim);
		//id = phgDofMapE2D(surf_bas->dof, e, i * (DDim)) / (DDim);
		rotated[id] = TRUE;
		nrot++;
		
		BTYPE elem_btype = phgDofGetElementBoundaryType(surf_dof, e, i*DDim);
		//BTYPE elem_btype = phgDofGetElementBoundaryType(surf_bas->dof, e, i*DDim);


		/* fisrt basis */
		memcpy(H[0], normal, Dim * sizeof(FLOAT));

		/* second basis */
		for (m = 0; m < Dim; m++)
		    if (fabs(c[0] = INNER_PRODUCT(H[0], bxyz[m])) < 0.9)
			break;
		assert(m < Dim);
	
		H[1][0] = bxyz[m][0] - c[0] * H[0][0]; 
		H[1][1] = bxyz[m][1] - c[0] * H[0][1]; 
		H[1][2] = bxyz[m][2] - c[0] * H[0][2]; 
		norm = sqrt(INNER_PRODUCT(H[1], H[1]));
		assert(norm > 1e-10);
		H[1][0] /= norm;
		H[1][1] /= norm;
		H[1][2] /= norm;
		H[1][0] = 0;
		H[1][1] = 1;
		H[1][2] = 0;

		/* third basis */
		for (m++; m < Dim; m++)
		    if (fabs(c[0] = INNER_PRODUCT(H[0], bxyz[m])) < 0.9)
			break;
		assert(m < Dim);
		//c[1] = INNER_PRODUCT(H[1], bxyz[m]);
		c[1] = H[1][0]*(bxyz[m][0] - c[0] * H[0][0])+H[1][1]*(bxyz[m][1] - c[0] * H[0][1]) + H[1][2]*(bxyz[m][2] - c[0] * H[0][2]);
		H[2][0] = bxyz[m][0] - c[0] * H[0][0] - c[1] * H[1][0]; 
		H[2][1] = bxyz[m][1] - c[0] * H[0][1] - c[1] * H[1][1];  
		H[2][2] = bxyz[m][2] - c[0] * H[0][2] - c[1] * H[1][2];  
		H[2][0] = H[0][1]*H[1][2] - H[0][2]*H[1][1];
		H[2][1] = H[0][2]*H[1][0] - H[0][0]*H[1][2];
		H[2][2] = H[0][0]*H[1][1] - H[0][1]*H[1][0];
		norm = sqrt(INNER_PRODUCT(H[2], H[2]));
		assert(norm > 1e-10);
		H[2][0] /= norm;
		H[2][1] /= norm;
		H[2][2] /= norm;
        	
        if ((elem_btype & BC_BOTTOM_GRD) && (elem_btype & BC_DIVIDE))
        {
			
            H[1][0] = 1;
            H[1][1] = 0;
            H[1][2] = 0;

            H[2][0] = (H[0][1]*H[1][2]-H[0][2]*H[1][1]);
            H[2][1] = -(H[0][0]*H[1][2]-H[0][2]*H[1][0]);
            H[2][2] = (H[0][0]*H[1][1]-H[0][1]*H[1][0]);
            
        }


#if 0
#  warning check use only: xyz coord ----------------------------
		memcpy(bas_value[i], bxyz[0], DDim*sizeof(FLOAT));
#else
		memcpy(bas_value[i], H[0], DDim*sizeof(FLOAT));
        /* bas_value is contains all bas values of all nodes in the element. 
         * For the nodes at the boundaries, bas value is real number, otherwise
         * bas value is just 0 */
#endif
	    } /* end bas */
	}     /* end face */
	phgDofSetElementData(surf_dof, e, &bas_value[0][0]);
	//phgDofSetElementData(surf_bas->dof, e, &bas_value[0][0]);
    }	      /* end elem */
/****************************************************************
 * Build RHS which is the residual of the nonlinear system.
 ***************************************************************/
static void
build_rhs(SOLVER *solver, SOLVER *pc, DOF **dofs, MAT **mats)
{
    DOF *u = dofs[0], *p = dofs[1];
    DOF *f, *pbc, *gn[3], *gradu, *divu, *lapu, *gradp, *f0;
    int M = u->type->nbas;	/* num of bases of Velocity */
    int i, k, s;
    GRID *g = u->g;
    ELEMENT *e;
    FLOAT bufu[M], resu[M][Dim], tmp[9];
    INT Iu[M][Dim];

    /* Unpack Dofs */
    unpackDof(dofs, 9, &u, &p, &gradu, &divu, &f, &pbc, &gn[0], &gn[1],
	      &gn[2]);
    lapu = phgDofDivergence(gradu, NULL, NULL, NULL);
    gradp = phgDofGradient(p, NULL, NULL, NULL);
    time -= dt;
    f0 = phgDofNew(g, DOF_HB6, 3, "p_n", func_f);
    time += dt;

    ForAllElements(g, e) {
	/* Map: Element -> system */
	for (i = 0; i < M; i++)
	    for (k = 0; k < Dim; k++)
		Iu[i][k] = phgMapE2L(solver->rhs->map, 0, e, i * Dim + k);

	/* Global Matrix */
	bzero(resu, sizeof(resu));
	for (i = 0; i < M; i++) {
	    /* Dirichle Boundary for velocity. */
	    if (phgDofDirichletBC(u, e, i, func_u, bufu, &resu[i][0],
				  DOF_PROJ_NONE)) {
		/* set velocity at Dirichlet bdry */
	    }
	    else {		/* interior node or Neumann */
		/* (u(t_n), \phi) */
		phgQuadDofTimesBas(e, u, u, i, QUAD_DEFAULT, tmp);
		for (k = 0; k < Dim; k++)
		    resu[i][k] = tmp[k];

		/* (f, \phi_i) */
		phgQuadDofTimesBas(e, f0, u, i, QUAD_DEFAULT, tmp);
		for (k = 0; k < Dim; k++)
		    resu[i][k] += dt * (1 - Theta) * tmp[k];

		phgQuadDofTimesBas(e, f, u, i, QUAD_DEFAULT, tmp);
		for (k = 0; k < Dim; k++)
		    resu[i][k] += dt * Theta * tmp[k];

		/* -( ((u.\grad) u, \phi) */
		phgQuadDofDotGradDofBas(e, u, gradu, i, QUAD_DEFAULT, tmp);
		for (k = 0; k < Dim; k++)
		    resu[i][k] -= dt * (1 - Theta) * tmp[k];

		/* +\nu ( lap(u(t_n)), \phi) */
		phgQuadDofTimesBas(e, lapu, u, i, QUAD_DEFAULT, tmp);
		for (k = 0; k < Dim; k++)
		    resu[i][k] += (1 - Theta) * dt * nu * tmp[k];

		/* -(gradp(t_n), \phi) */
		phgQuadDofTimesBas(e, gradp, u, i, QUAD_DEFAULT, tmp);
		for (k = 0; k < Dim; k++)
		    resu[i][k] -= (1 - Theta) * dt * tmp[k];
	    }
	}			/* end of Block (1,1), (1,2) */

	/* Neumann Bdry */
	for (s = 0; s < NFace; s++) {
	    if (e->bound_type[s] & NEUMANN) {
		SHORT bases[NbasFace(u)];
		phgDofGetBasesOnFace(u, e, s, bases);

		for (i = 0; i < NbasFace(u); i++) {
		    if (phgDofGetElementBoundaryType(u, e, bases[i] * Dim)
								& DIRICHLET) {
			/* Dirichlet bas on Neumann face, do nothing */
		    }
		    else if (phgDofGetElementBoundaryType(u, e, bases[i] * Dim)
								& NEUMANN) {
			for (k = 0; k < Dim; k++)
			    resu[bases[i]][k] += dt * Theta *
				phgQuadFaceDofDotBas(e, s, gn[k],
						     DOF_PROJ_DOT, u,
						     bases[i], QUAD_DEFAULT);
		    }
		    else {
			fprintf(stderr, "Warning: unkown bdry!");
		    }
		}		/* end of base on face */
	    }			/* end of face neu */
	}			/* end of all neumann face in element */

	/* Global res */
	phgSolverAddRHSEntries(solver, M * Dim, Iu[0], &resu[0][0]);
    }				/* end element */

    solver->rhs_updated = FALSE;
    phgDofFree(&lapu);
    phgDofFree(&gradp);
    phgDofFree(&f0);
    return;
}
Example #3
0
static void
/*build_linear_system*/
build_mat_vec(DOF *dp, DOF *d_so, DOF *d_sw, DOF *dot_muo, DOF *dot_muw, DOF *dot_mug, DOF *dso_kro, DOF *dsw_kro, DOF *dsw_krw, DOF *dso_krg, DOF *dsw_krg, DOF *u_o, DOF *p_h, DOF *p_h_newton, DOF *s_o, DOF *s_o_l, DOF *mu_o, DOF *b_o, DOF *b_o_l, DOF *kro, DOF *dot_bo, DOF *q_o, DOF *s_w, DOF *s_w_l, DOF *mu_w, DOF *b_w, DOF *b_w_l, DOF *krw, DOF *dot_bw, DOF *q_w, DOF *phi, DOF *phi_l, DOF *dot_phi, DOF *Rs, DOF *Rs_l, DOF *dot_Rs, DOF *mu_g, DOF *b_g, DOF *b_g_l, DOF *krg, DOF *dot_bg, DOF *q_g, MAP *map_u, MAP *map_p, MAT *A, MAT *B, MAT *TB, MAT *C, VEC *vec_f, VEC *vec_g)
{
	GRID *g = u_o->g;
	SIMPLEX *e;
	FLOAT *p_so, *p_sol, *p_bo, *p_bol, *p_kro, *p_phi, *p_phil, *p_dotbo, *p_Rs, *p_dotRs, *p_bg, *p_bgl, *p_krg, *p_dotbg, *p_muo, *p_mug, *p_dotphi, *p_Rsl, *p_sw, *p_swl, *p_bw, *p_bwl, *p_krw, *p_dotbw, *p_muw;
	FLOAT *p_dotmuo, *p_dotmuw, *p_dotmug, *p_dsokro, *p_dswkro, *p_dswkrw, *p_dsokrg, *p_dswkrg, *p_dp, *p_dso, *p_dsw;
	INT N = u_o->type->nbas * u_o->dim;
	INT M = dp->type->nbas * dp->dim;
	INT I[N], J[M];
	FLOAT mat_A[N][N], mat_TB[N][M], mat_B[M][N], mat_C[M][M], rhs_f[N], rhs_g[M];
	phgVecDisassemble(vec_f);
	phgVecDisassemble(vec_g);
	int i, j, k;
	ForAllElements(g, e){
		p_so = DofElementData(s_o, e->index);
		p_sol = DofElementData(s_o_l, e->index);
		p_bo = DofElementData(b_o, e->index);
		p_bol = DofElementData(b_o_l, e->index);
		p_kro = DofElementData(kro, e->index);
		p_phi = DofElementData(phi, e->index);
		p_phil = DofElementData(phi_l, e->index);
		p_dotphi = DofElementData(dot_phi, e->index);
		p_dotbo = DofElementData(dot_bo, e->index);
		p_Rs = DofElementData(Rs, e->index);
		p_Rsl = DofElementData(Rs_l, e->index);
		p_dotRs = DofElementData(dot_Rs, e->index);
		p_bg = DofElementData(b_g, e->index);
		p_bgl = DofElementData(b_g_l, e->index);
		p_krg= DofElementData(krg, e->index);
		p_dotbg = DofElementData(dot_bg, e->index);
		p_muo = DofElementData(mu_o, e->index);
		p_muw = DofElementData(mu_w, e->index);
		p_mug = DofElementData(mu_g, e->index);
		p_sw = DofElementData(s_w, e->index);
		p_swl = DofElementData(s_w_l, e->index);
		p_bw = DofElementData(b_w, e->index);
		p_bwl = DofElementData(b_w_l, e->index);
		p_krw = DofElementData(krw, e->index);
		p_dotbw = DofElementData(dot_bw, e->index);
		/* Add Dofs For SS */
		p_dp = DofElementData(dp, e->index);
		p_dso = DofElementData(d_so, e->index);
		p_dsw = DofElementData(d_sw, e->index);
		p_dotmuo = DofElementData(dot_muo, e->index);
		p_dotmuw = DofElementData(dot_muw, e->index);
		p_dotmug = DofElementData(dot_mug, e->index);
		p_dsokro = DofElementData(dso_kro, e->index);
		p_dswkro = DofElementData(dsw_kro, e->index);
		p_dswkrw = DofElementData(dsw_krw, e->index);
		p_dsokrg = DofElementData(dso_krg, e->index);
		p_dswkrg = DofElementData(dsw_krg, e->index);
		/*Create inverse matrix*/
		FLOAT oil_so = 0., wat_sw = 0., gas_so = 0., gas_sw = 0.;
		for (i = 0; i < M; i++){
			for (j = 0; j < M; j++){
				oil_so = p_phi[0] * p_bo[0] * phgQuadBasDotBas(e, d_so, i, d_so, j, QUAD_DEFAULT);
				wat_sw = p_phi[0] * p_bw[0] * phgQuadBasDotBas(e, d_sw, i, d_sw, j, QUAD_DEFAULT);
				gas_so = p_phi[0] * (p_bg[0] - p_Rs[0] * p_bo[0]) * phgQuadBasDotBas(e, d_so, i, d_so, j, QUAD_DEFAULT);
				gas_sw = p_phi[0] * p_bg[0] * phgQuadBasDotBas(e, d_sw, i, d_sw, j, QUAD_DEFAULT);
			}
		}
#if SS
		FLOAT alpha_o = 0., alpha_w = 0., alpha_g = 0.;
		alpha_o = K * p_kro[0] * p_bo[0] * p_muo[0] + K * p_kro[0] * (p_bo[0] * p_dotmuo[0] + p_dotbo[0] * p_muo[0]) * p_dp[0] \ 
				+ K * p_bo[0] * p_muo[0] * (p_dsokro[0] * p_dso[0] + p_dswkro[0] * p_dsw[0]);
		alpha_w = K * p_krw[0] * p_bw[0] * p_muw[0] + K * p_krw[0] * (p_bw[0] * p_dotmuw[0] + p_dotbw[0] * p_muw[0]) * p_dp[0] \ 
				+ K * p_bw[0] * p_muw[0] * p_dswkrw[0] * p_dsw[0];
		alpha_g = K * p_krg[0] * p_bg[0] * p_mug[0] + K * p_krg[0] * (p_bg[0] * p_dotmug[0] + p_dotbg[0] * p_mug[0]) * p_dp[0] \ 
				+ K * p_bg[0] * p_mug[0] * (p_dsokrg[0] * p_dso[0] + p_dswkrg[0] * p_dsw[0]);
		for (i = 0; i < N; i++){
			for (j = 0; j < N; j++){
				mat_A[i][j] = stime * phgQuadBasDotBas(e, u_o, i, u_o, j, QUAD_DEFAULT) / alpha_o;
			}
		}
		FLOAT beta = 0;
		beta = gas_so / oil_so + gas_sw * alpha_w / (wat_sw * alpha_o) + (p_Rs[0] + alpha_g / alpha_o);
#endif
#if IMPES
		FLOAT T_o = 0, T_w = 0, T_g = 0;
		T_o = K * p_kro[0] * p_bo[0] * p_muo[0];
		T_w = K * p_krw[0] * p_bw[0] * p_muw[0];
		T_g = K * p_krg[0] * p_bg[0] * p_mug[0];
		for (i = 0; i < N; i++){
			for (j = 0; j < N; j++){
				mat_A[i][j] = stime * phgQuadBasDotBas(e, u_o, i, u_o, j, QUAD_DEFAULT) / T_o;
			}
		}
		FLOAT beta = 0;
		beta = gas_so / oil_so + gas_sw * T_w / (wat_sw * T_o) + (p_Rs[0] + T_g / T_o);
#endif
		for (i = 0; i < N; i++){
			for (j = 0; j < M; j++){
				mat_TB[i][j] = -stime * phgQuadDivBasDotBas(e, u_o, i, dp, j, QUAD_DEFAULT);
			}
		}
		FLOAT quad = 0., oil_cp = 0., wat_cp = 0., gas_cp = 0.;
		oil_cp = p_so[0] * (p_bo[0] * p_dotphi[0] + p_phi[0] * p_dotbo[0]);
		wat_cp = p_sw[0] * (p_bw[0] * p_dotphi[0] + p_phi[0] * p_dotbw[0]);
		gas_cp = p_so[0] * p_phi[0] * p_bo[0] * p_dotRs[0] + p_Rs[0] * oil_cp + (1. - p_so[0] - p_sw[0]) * (p_phi[0] * p_dotbg[0] + p_bg[0] * p_dotphi[0]);
		for (i = 0; i < M; i++){
			for (j = 0; j < M; j++){
				quad = phgQuadBasDotBas(e, dp, i, dp, j, QUAD_DEFAULT);
				mat_C[i][j] = (gas_so * oil_cp / oil_so + gas_sw * wat_cp / wat_sw + gas_cp) * quad / beta;
			}
		}
		/*Create rhs*/
		FLOAT quad_qo = 0;
		FLOAT quad_qw = 0.;
		FLOAT quad_qg = 0.;
		FLOAT quad_phi = 0, quad_phil = 0;
		FLOAT rhs_oil = 0, rhs_wat = 0., rhs_gas = 0;
		for (i = 0; i < M; i++){
			phgQuadDofTimesBas(e, q_o, dp, i, QUAD_DEFAULT, &quad_qo);
			phgQuadDofTimesBas(e, q_w, dp, i, QUAD_DEFAULT, &quad_qw);
			phgQuadDofTimesBas(e, q_g, dp, i, QUAD_DEFAULT, &quad_qg);
			phgQuadDofTimesBas(e, phi, dp, i, QUAD_DEFAULT, &quad_phi);
			phgQuadDofTimesBas(e, phi_l, dp, i, QUAD_DEFAULT, &quad_phil);
			rhs_oil = -stime * quad_qo  + p_so[0] * p_bo[0] * quad_phi - p_sol[0] * p_bol[0] * quad_phil;
			rhs_wat = -stime * quad_qw  + p_sw[0] * p_bw[0] * quad_phi - p_swl[0] * p_bwl[0] * quad_phil;
			rhs_gas = -stime * quad_qg  + (p_bg[0] * (1. - p_so[0] - p_sw[0]) + p_Rs[0] * p_so[0] * p_bo[0]) * quad_phi \
					  - (p_Rsl[0] * p_bol[0] * p_sol[0] + p_bgl[0] * (1. - p_sol[0] - p_swl[0])) * quad_phil;
			rhs_g[i] = (gas_so * rhs_oil / oil_so + gas_sw * rhs_wat / wat_sw + rhs_gas) / beta;
		}
		for (i = 0; i < N; i++){
			rhs_f[i] = stime * phgQuadDofTimesDivBas(e, p_h, u_o, i, QUAD_DEFAULT);
		}
		/* Handle Bdry Conditions */
		for (i = 0; i < N; i++){
			if (phgDofGetElementBoundaryType(u_o, e, i) & (NEUMANN | DIRICHLET)){
				bzero(mat_A[i], N *sizeof(mat_A[i][0]));
				bzero(mat_TB[i], M *sizeof(mat_TB[i][0]));
				for (j = 0; j < N; j++){
					mat_A[j][i] = 0.0;
				}
				mat_A[i][i] = 1.0;
				rhs_f[i] = 0.;
			}
		}
		for (i = 0; i < N; i++){
			for (j = 0; j < M; j++){
				mat_B[j][i] = mat_TB[i][j];
			}
		}
		for (i = 0; i < N; i++){
			I[i] = phgMapE2L(map_u, 0, e, i);
		}
		for (i = 0; i < M; i++){
			J[i] = phgMapE2L(map_p, 0, e, i);
		}
		phgMatAddEntries(A, N, I, N, I, mat_A[0]);
		phgMatAddEntries(TB, N, I, M, J, mat_TB[0]);
		phgMatAddEntries(B, M, J, N, I, mat_B[0]);
		phgMatAddEntries(C, M, J, M, J, mat_C[0]);
		phgVecAddEntries(vec_f, 0, N, I, rhs_f);
		phgVecAddEntries(vec_g, 0, M, J, rhs_g);
	}
Example #4
0
/* build linear system */
static void
build_mat_vec(DOF *u_w, DOF *dp, DOF *p_nk, DOF *ds, DOF *s_w, DOF *s_w_l, DOF *b_o, DOF *b_o_l, DOF *kro, DOF *dot_kro, DOF *q_o, DOF *b_w, DOF *b_w_l, DOF *krw, DOF *dot_krw, DOF *q_w, DOF *phi, DOF *phi_l, MAP *map_u, MAP *map_p, MAT *A, MAT *B, MAT *TB, MAT *C, VEC *vec_f, VEC *vec_g)
{
    GRID *g = u_w->g;
    SIMPLEX *e;
    FLOAT *p_bo, *p_bw, *p_bol, *p_bwl, *p_kro, *p_dotkro, *p_krw, *p_dotkrw, *p_swl, *p_dp, *p_ds, *p_sw, *p_phi;
    INT N = u_w->type->nbas * u_w->dim;
    INT M = dp->type->nbas * dp->dim;
    INT I[N], J[M];
    FLOAT mat_A[N][N], mat_TB[N][M], mat_B[M][N], mat_C[M][M], rhs_f[N], rhs_g[M];
    phgVecDisassemble(vec_f);
    phgVecDisassemble(vec_g);
    int i, j, k;
    ForAllElements(g, e) {
        p_phi = DofElementData(phi, e->index);
        p_bo = DofElementData(b_o, e->index);
        p_bol = DofElementData(b_o_l, e->index);
        p_bw = DofElementData(b_w, e->index);
        p_bwl = DofElementData(b_w_l, e->index);
        p_sw = DofElementData(s_w, e->index);
        p_swl = DofElementData(s_w_l, e->index);
        p_kro  = DofElementData(kro, e->index);
        p_dotkro  = DofElementData(dot_kro, e->index);
        p_krw  = DofElementData(krw, e->index);
        p_dotkrw  = DofElementData(dot_krw, e->index);
        p_dp = DofElementData(dp, e->index);
        p_ds = DofElementData(ds, e->index);
        FLOAT T_o = 0, T_w = 0;
        T_w = K * p_krw[0] * p_bw[0] / MU_W + K * p_krw[0] * C_W / (MU_W * B0_W)  * p_dp[0] + K * p_bw[0] * p_dotkrw[0] / MU_W * p_ds[0];
        T_o = K * p_kro[0] * p_bo[0] / MU_O + K * p_kro[0] * C_O / (MU_O * B0_O)  * p_dp[0] + K * p_bo[0] * p_dotkro[0] / MU_O * p_ds[0];
        for (i = 0; i < N; i++) {
            for (j = 0; j < N; j++) {
                mat_A[i][j] = stime * phgQuadBasDotBas(e, u_w, i, u_w, j, QUAD_DEFAULT) / T_w;
            }
        }
        for (i = 0; i < N; i++) {
            for (j = 0; j < M; j++) {
                mat_TB[i][j] = -stime * phgQuadDivBasDotBas(e, u_w, i, dp, j, QUAD_DEFAULT);
            }
        }
        FLOAT wat_sw = 0, oil_sw = 0, wat_cp = 0, oil_cp = 0, beta = 0;
        for (i = 0; i < M; i++) {
            for (j = 0; j < M; j++) {
                wat_sw = p_phi[0] * p_bw[0] * phgQuadBasDotBas(e, ds, i, ds, j, QUAD_DEFAULT);
                oil_sw = p_phi[0] * p_bo[0] * phgQuadBasDotBas(e, ds, i, ds, j, QUAD_DEFAULT);
            }
        }
        wat_cp = p_sw[0] * (p_bw[0] * PHI0 * C_R + p_phi[0] * C_W / B0_W);
        oil_cp = (1. - p_sw[0]) * (p_bo[0] * PHI0 * C_R + p_phi[0] * C_O / B0_O);
        beta = 1. / wat_sw + T_o / (T_w * oil_sw);
        FLOAT quad = 0.;
        for (i = 0; i < M; i++) {
            for (j = 0; j < M; j++) {
                quad =  phgQuadBasDotBas(e, dp, i, dp, j, QUAD_DEFAULT);
                mat_C[i][j] = (wat_cp / wat_sw + oil_cp / oil_sw) * quad / beta;
            }
        }
        /*create oil rhs*/
        FLOAT quad_phi = 0., quad_phil = 0., quad_qo = 0, quad_qw = 0;
        FLOAT rhs_oil = 0., rhs_wat = 0.;
        for (i = 0; i < M; i++) {
            phgQuadDofTimesBas(e, q_o, dp, i, QUAD_DEFAULT, &quad_qo);
            phgQuadDofTimesBas(e, q_w, dp, i, QUAD_DEFAULT, &quad_qw);
            phgQuadDofTimesBas(e, phi, dp, i, QUAD_DEFAULT, &quad_phi);
            phgQuadDofTimesBas(e, phi_l, dp, i, QUAD_DEFAULT, &quad_phil);
            rhs_oil = -stime * quad_qo + p_bo[0] * (1. - p_sw[0]) * quad_phi - p_bol[0] * (1. - p_swl[0]) * quad_phil;
            rhs_wat = -stime * quad_qw + p_bw[0] * p_sw[0] * quad_phi - p_bwl[0] * p_swl[0] * quad_phil;
            rhs_g[i] = (rhs_wat / wat_sw + rhs_oil / oil_sw) / beta;
        }
        for (i = 0; i < N; i++) {
            rhs_f[i] = stime * phgQuadDofTimesDivBas(e, p_nk, u_w, i, QUAD_DEFAULT);
        }
        /* Handle Bdry Conditions*/
        for (i = 0; i < N; i++) {
            if (phgDofGetElementBoundaryType(u_w, e, i) & (NEUMANN | DIRICHLET)) {
                bzero(mat_A[i], N * sizeof(mat_A[i][0]));
                bzero(mat_TB[i], M * sizeof(mat_TB[i][0]));
                for (j = 0; j < N; j++) {
                    mat_A[j][i] = 0.;
                }
                mat_A[i][i] = 1.;
                rhs_f[i] = 0.;
            }
        }

        for (i = 0; i < N; i++) {
            for (j = 0; j < M; j++) {
                mat_B[j][i] = mat_TB[i][j];
            }
        }
        for (i = 0; i < N; i++) {
            I[i] = phgMapE2L(map_u, 0, e, i);
        }
        for (i = 0; i < M; i++) {
            J[i] = phgMapE2L(map_p, 0, e, i);
        }
        phgMatAddEntries(A, N, I, N, I, mat_A[0]);
        phgMatAddEntries(TB, N, I, M, J, mat_TB[0]);
        phgMatAddEntries(B, M, J, N, I, mat_B[0]);
        phgMatAddEntries(C, M, J, M, J, mat_C[0]);
        phgVecAddEntries(vec_f, 0, N, I, rhs_f);
        phgVecAddEntries(vec_g, 0, M, J, rhs_g);
    }
Example #5
0
void
phgNSBuildPc(NSSolver *ns)
{
    GRID *g = ns->g;
    SIMPLEX *e;
    FLOAT *dt = ns->dt;
    int i, j, q, s, k, l;
    FLOAT Theta = _nsp->Theta, nu = _nsp->nu, Thet1, nu0 = 0;
    DOF *tmp_u1 = phgDofNew(g, _nsp->utype, Dim, "tmp u1", func_u);
    int viscosity_type = ns->viscosity_type;
    LTYPE ltype = ns->ltype;


#if STEADY_STATE
    assert(fabs(Theta - 1) < 1e-12);
    Thet1 = 0; Unused(Thet1);
    Unused(dt);
#else
    Thet1 = 1 - Theta;
#endif /* STEADY_STATE */


    ForAllElements(g, e) {
	int M = ns->u[1]->type->nbas;	/* num of bases of Velocity */
	int N = ns->p[1]->type->nbas;	/* num of bases of Pressure */
	int order = 2 * DofTypeOrder(ns->p[1], e) + 
	    DofTypeOrder(ns->u[1], e) - 1; 	/* highest order term (u \nabla p, psi)  */
	FLOAT Ap[N][N], Fp[N][N], Qp[N][N], bufp[N], rhs1 = 1;
	FLOAT F[M*Dim][M*Dim], B[N][M*Dim], Bt[M*Dim][N];
	INT Ip[N];
	QUAD *quad;
	FLOAT vol, det;
	const FLOAT *w, *p, *vw, *gu, *vTe;

	quad = phgQuadGetQuad3D(order);
	vw = phgQuadGetDofValues(e, ns->wind, quad);  /* value wind */
	gu = phgQuadGetDofValues(e, ns->gradu[1], quad);        /* grad u^{n+1} */
	if (ns_params->noniter_temp)
	    vTe = phgQuadGetDofValues(e, ns->T[1], quad);  /* value temp */
	else
	    vTe = phgQuadGetDofValues(e, ns->T[0], quad);  /* value temp */
	
	vol = 0;
	Bzero(Ap); Bzero(Fp); Bzero(Qp); 
	Bzero(F); Bzero(Bt); Bzero(B);
	Bzero(bufp); 

	p = quad->points;
	w = quad->weights;
	for (q = 0; q < quad->npoints; q++) {
	    phgGeomGetCurvedJacobianAtLambda(g, e, p, &det);
	    vol = fabs(det / 6.);

	    for (i = 0; i < N; i++) {
		const FLOAT *gi = phgQuadGetBasisValues(e, ns->p[1], i, quad) + q;       /* phi_i */
		const FLOAT *ggi = phgQuadGetBasisCurvedGradient(e, ns->p[1], i, quad, q);    /* grad phi_i */
		for (j = 0; j < N; j++) {
		    const FLOAT *gj = phgQuadGetBasisValues(e, ns->p[1], j, quad) + q;       /* phi_j */
		    const FLOAT *ggj = phgQuadGetBasisCurvedGradient(e, ns->p[1], j, quad, q);    /* grad phi_i */
		    
		    nu = get_effective_viscosity(gu, *vTe, 0, viscosity_type);
		    if (i == 0 && j == 0)
			nu0 += nu;
#if ICE_BENCH_TEST ||				\
    ESIMINT_TEST ||				\
    HEINO_TEST ||				\
    TEST_CASE == ICE_EXACT	||		\
    TEST_CASE == ICE_GREEN_LAND
		    Unused(dt);
		    /* Note: B Q^-1 Bt ~ Ap(nu=1),
		     *       Fp(nu varies) is very different to Ap */
		    Ap[i][j] += vol*(*w) * INNER_PRODUCT(ggj, ggi);
#  if USE_QP_ONLY

		    //Qp[i][j] += vol*(*w) * LEN_SCALING * PRES_SCALING /(nu) * (*gj) * (*gi);
		    Qp[i][j] += vol*(*w) * 1. /(EQU_SCALING * nu) * (*gj) * (*gi);
		    /* if (i < NVert && j < NVert) { */
		    /* 	Qp[i][j] += vol*(*w) * LEN_SCALING * PRES_SCALING / (nu) * (*gj) * (*gi); */
		    /* } else if (i == NVert && j == NVert) { */
		    /* 	Qp[i][j] += vol*(*w) * LEN_SCALING * PRES_SCALING / (nu) * (*gj) * (*gi); */
		    /* } */

#  else
		    Qp[i][j] += vol*(*w) * (*gj) * (*gi);
#  endif
		    Fp[i][j] += vol*(*w) * (EQU_SCALING * nu * INNER_PRODUCT(ggj, ggi)
					    );
#elif STEADY_STATE 
		    Ap[i][j] += vol*(*w) * INNER_PRODUCT(ggj, ggi);
		    Qp[i][j] += vol*(*w) * (*gj) * (*gi);
		    Fp[i][j] += vol*(*w) * (nu * INNER_PRODUCT(ggj, ggi) * EQU_SCALING
					    );
#elif TIME_DEP_NON
		    Ap[i][j] += vol*(*w) * INNER_PRODUCT(ggj, ggi);
		    Qp[i][j] += vol*(*w) * (*gj) * (*gi);
		    Fp[i][j] += vol*(*w) * ((*gj) * (*gi) / dt[0]
					    + Theta * (nu * INNER_PRODUCT(ggj, ggi)
						       )
					    );
#else
		    TIME_DEP_LINEAR_ENTRY; /* Unavailable */
#endif /* STEADY_STATE */
		}
	    }

	    vw += Dim; 
	    gu += DDim;
	    vTe++;
	    w++; p += Dim+1;
	}


	/* Map: Element -> system */
	for (i = 0; i < N; i++) 
	    Ip[i] = phgMapE2L(_pcd->matFp->cmap, 0, e, i);

	/*
	 * PCD boundary setup I:
	 * Automaticly decide inflow boundary condition using wind direction.
	 *
	 * NOT active.
	 * */
	if (FALSE && !_nsp->pin_node) {
	    for (i = 0; i < N; i++) {
		BOOLEAN flag_inflow = FALSE;
		for (s = 0; s < NFace; s++) {
		    SHORT bases[NbasFace(ns->p[1])];
		    FLOAT *coord, vw_[3]; 
		    const FLOAT *lam, *normal;

		    if (!(e->bound_type[s] & BDRY_MASK))
			//if (!(e->bound_type[s] & INFLOW))
			continue;	/* boundary face */

		    phgDofGetBasesOnFace(ns->p[1], e, s, bases);
		    for (j = 0; j < NbasFace(ns->p[1]); j++) 
			if (i == bases[j]) {
			    normal = phgGeomGetFaceOutNormal(g, e, s);
			    coord = phgDofGetElementCoordinates(ns->p[1], e, i);
			    lam = phgGeomXYZ2Lambda(g, e, coord[0], coord[1], coord[2]);
			    phgDofEval(tmp_u1, e, lam, vw_);
			    if (INNER_PRODUCT(vw_, normal) > 1e-8) 
				flag_inflow = TRUE;
			}
		}
		
		if (flag_inflow) {
		    Bzero(bufp); bufp[i] = 1.0;
		    phgMatAddEntries(_pcd->matAp, 1, Ip + i, N, Ip, bufp);
		    phgMatAddEntries(_pcd->matFp, 1, Ip + i, N, Ip, bufp);
		    //phgMatAddEntries(_pcd->matQp, 1, Ip + i, N, Ip, bufp);
		    phgVecAddEntries(_pcd->rhsScale, 0, 1, Ip + i, &rhs1);
		}
		else {
		    /* interior node Or Neumann */
		    phgMatAddEntries(_pcd->matAp, 1, Ip + i, N, Ip, Ap[i]);
		    phgMatAddEntries(_pcd->matFp, 1, Ip + i, N, Ip, Fp[i]);
		    //phgMatAddEntries(_pcd->matQp, 1, Ip + i, N, Ip, Qp[i]);
		}
		phgMatAddEntries(_pcd->matQp, 1, Ip + i, N, Ip, Qp[i]);
	    }
	} 
	/*
	 * PCD boundary setup II:
	 * Enclose flow: use pinnode boundary.
	 *
	 * Qp is pinned, this is different to open flow.
	 * 
	 * */
	else if (_nsp->pin_node) {

	    for (i = 0; i < N; i++) {
		if (phgDofDirichletBC(_pcd->pbc, e, i, NULL, bufp, NULL, DOF_PROJ_NONE)) {
#if PIN_AT_ROOT 
		    if (g->rank != 0)
		    	phgError(1, "Pinned node only on rank 0!\n");
		    if (e->verts[i] != ns->pinned_node_id)
			phgError(1, "pinned node [%d] & [%d] doesn't coincide when build pc!\n",
				 e->verts[i], ns->pinned_node_id);
#else
		    if (GlobalVertex(g, e->verts[i]) != ns->pinned_node_id)
			phgError(1, "pinned node [%d] & [%d] doesn't coincide when build pc!\n",
				 e->verts[i], ns->pinned_node_id);
#endif /* PIN_AT_ROOT */

		    phgMatAddEntries(_pcd->matAp, 1, Ip + i, N, Ip, bufp);
		    phgMatAddEntries(_pcd->matFp, 1, Ip + i, N, Ip, bufp);
		    phgMatAddEntries(_pcd->matQp, 1, Ip + i, N, Ip, bufp);
		    phgVecAddEntries(_pcd->rhsScale, 0, 1, Ip + i, &rhs1);
		} else {
		    /* interior node Or Neumann */
		    phgMatAddEntries(_pcd->matAp, 1, Ip + i, N, Ip, Ap[i]);
		    phgMatAddEntries(_pcd->matFp, 1, Ip + i, N, Ip, Fp[i]);
		    phgMatAddEntries(_pcd->matQp, 1, Ip + i, N, Ip, Qp[i]);
		}
	    }
	}
	/*
	 * PCD boundary setup III:
	 * Open flow: there could be varies kinds of combination on seting up
	 *   boundary conditon, but Inflow:Robin & Outflow:scaled Dirich is
	 *   prefered. See Ref[2].
	 * 
	 * */
	else {
	    for (i = 0; i < N; i++) {

		/*****************/
                /* Inflow	 */
                /*****************/
#warning PCD B.C.: Step 2.1. build mat, all neumann, add dirich entries
		if (FALSE && phgDofDirichletBC(_pcd->dof_inflow, e, i, NULL, bufp, NULL, DOF_PROJ_NONE)) {
		    phgMatAddEntries(_pcd->matAp, 1, Ip + i, N, Ip, bufp);
		    phgMatAddEntries(_pcd->matFp, 1, Ip + i, N, Ip, bufp);
		    phgMatAddEntries(_pcd->matQp, 1, Ip + i, N, Ip, bufp);
		    phgVecAddEntries(_pcd->rhsScale, 0, 1, Ip + i, &rhs1);
		} else if (FALSE && phgDofDirichletBC(_pcd->dof_outflow, e, i, NULL, bufp, NULL, DOF_PROJ_NONE)
			   && !(phgDofGetElementBoundaryType(ns->p[1], e, i) & INFLOW) ) {

		    ERROR_MSG("Fp, Qp");
		    nu = get_effective_viscosity(NULL, 0, 0, viscosity_type);
		    phgMatAddEntries(_pcd->matAp, 1, Ip + i, N, Ip, bufp);
		    bufp[i] *= EQU_SCALING * nu;
		    phgMatAddEntries(_pcd->matFp, 1, Ip + i, N, Ip, bufp);
		    phgVecAddEntries(_pcd->rhsScale, 0, 1, Ip + i, &rhs1);

		    //phgMatAddEntries(_pcd->matQp, 1, Ip + i, N, Ip, bufp);
		} else if (FALSE && phgDofDirichletBC(_pcd->pbc, e, i, NULL, bufp, NULL, DOF_PROJ_NONE)) {
		    phgMatAddEntries(_pcd->matAp, 1, Ip + i, N, Ip, bufp);
		    phgMatAddEntries(_pcd->matFp, 1, Ip + i, N, Ip, bufp);
		    phgMatAddEntries(_pcd->matQp, 1, Ip + i, N, Ip, bufp);
		    phgVecAddEntries(_pcd->rhsScale, 0, 1, Ip + i, &rhs1);
		}
		else if (FALSE) {
		    /* interior node Or Neumann */

		    ERROR_MSG("Fp, Qp");
		    phgMatAddEntries(_pcd->matAp, 1, Ip + i, N, Ip, Ap[i]);
		    phgMatAddEntries(_pcd->matFp, 1, Ip + i, N, Ip, Fp[i]);
		    //phgMatAddEntries(_pcd->matQp, 1, Ip + i, N, Ip, Qp[i]);
		}

		/******************/
                /* No bdry	  */
                /******************/
		//phgMatAddEntries(_pcd->matFp, 1, Ip + i, N, Ip, Fp[i]);
		phgMatAddEntries(_pcd->matQp, 1, Ip + i, N, Ip, Qp[i]);
	    }
	}


	if (0) {
	    /* Special term <[[p_i]], [[p_j]]> */
	    int face;
	    nu0 /= quad->npoints;
	    for (face = 0; face < NFace; face++) {
		FLOAT area =  phgGeomGetFaceArea(g, e, face);
		//FLOAT value = {area, -area};
		FLOAT values[2] = {vol * 1. /(EQU_SCALING * nu0),
				   -vol * 1. /(EQU_SCALING * nu0)};
		SIMPLEX *e_neigh;

		phgMatAddEntries(_pcd->matQp, 1, Ip+NVert, 1, Ip+NVert, values);
		if ((e_neigh = GetNeighbour(e, face)) != NULL) {
		    INT Ip_neigh = phgMapE2L(_pcd->matFp->cmap, 0, e_neigh, NVert);
		    phgMatAddEntries(_pcd->matQp, 1, Ip+NVert, 1, &Ip_neigh, values + 1);
		}
	    }
	}

    }	/* end element */