int zcip_main(int argc UNUSED_PARAM, char **argv) { int state; char *r_opt; const char *l_opt = "169.254.0.0"; unsigned opts; // ugly trick, but I want these zeroed in one go struct { const struct in_addr null_ip; const struct ether_addr null_addr; struct in_addr ip; struct ifreq ifr; int timeout_ms; /* must be signed */ unsigned conflicts; unsigned nprobes; unsigned nclaims; int ready; int verbose; } L; #define null_ip (L.null_ip ) #define null_addr (L.null_addr ) #define ip (L.ip ) #define ifr (L.ifr ) #define timeout_ms (L.timeout_ms) #define conflicts (L.conflicts ) #define nprobes (L.nprobes ) #define nclaims (L.nclaims ) #define ready (L.ready ) #define verbose (L.verbose ) memset(&L, 0, sizeof(L)); INIT_G(); #define FOREGROUND (opts & 1) #define QUIT (opts & 2) // parse commandline: prog [options] ifname script // exactly 2 args; -v accumulates and implies -f opt_complementary = "=2:vv:vf"; opts = getopt32(argv, "fqr:l:v", &r_opt, &l_opt, &verbose); #if !BB_MMU // on NOMMU reexec early (or else we will rerun things twice) if (!FOREGROUND) bb_daemonize_or_rexec(0 /*was: DAEMON_CHDIR_ROOT*/, argv); #endif // open an ARP socket // (need to do it before openlog to prevent openlog from taking // fd 3 (sock_fd==3)) xmove_fd(xsocket(AF_PACKET, SOCK_PACKET, htons(ETH_P_ARP)), sock_fd); if (!FOREGROUND) { // do it before all bb_xx_msg calls openlog(applet_name, 0, LOG_DAEMON); logmode |= LOGMODE_SYSLOG; } bb_logenv_override(); { // -l n.n.n.n struct in_addr net; if (inet_aton(l_opt, &net) == 0 || (net.s_addr & htonl(IN_CLASSB_NET)) != net.s_addr ) { bb_error_msg_and_die("invalid network address"); } G.localnet_ip = ntohl(net.s_addr); } if (opts & 4) { // -r n.n.n.n if (inet_aton(r_opt, &ip) == 0 || (ntohl(ip.s_addr) & IN_CLASSB_NET) != G.localnet_ip ) { bb_error_msg_and_die("invalid link address"); } } argv += optind - 1; /* Now: argv[0]:junk argv[1]:intf argv[2]:script argv[3]:NULL */ /* We need to make space for script argument: */ argv[0] = argv[1]; argv[1] = argv[2]; /* Now: argv[0]:intf argv[1]:script argv[2]:junk argv[3]:NULL */ #define argv_intf (argv[0]) xsetenv("interface", argv_intf); // initialize the interface (modprobe, ifup, etc) if (run(argv, "init", NULL)) return EXIT_FAILURE; // initialize saddr // saddr is: { u16 sa_family; u8 sa_data[14]; } //memset(&saddr, 0, sizeof(saddr)); //TODO: are we leaving sa_family == 0 (AF_UNSPEC)?! safe_strncpy(saddr.sa_data, argv_intf, sizeof(saddr.sa_data)); // bind to the interface's ARP socket xbind(sock_fd, &saddr, sizeof(saddr)); // get the interface's ethernet address //memset(&ifr, 0, sizeof(ifr)); strncpy_IFNAMSIZ(ifr.ifr_name, argv_intf); xioctl(sock_fd, SIOCGIFHWADDR, &ifr); memcpy(ð_addr, &ifr.ifr_hwaddr.sa_data, ETH_ALEN); // start with some stable ip address, either a function of // the hardware address or else the last address we used. // we are taking low-order four bytes, as top-order ones // aren't random enough. // NOTE: the sequence of addresses we try changes only // depending on when we detect conflicts. { uint32_t t; move_from_unaligned32(t, ((char *)ð_addr + 2)); t += getpid(); srand(t); } if (ip.s_addr == 0) ip.s_addr = pick_nip(); // FIXME cases to handle: // - zcip already running! // - link already has local address... just defend/update // daemonize now; don't delay system startup if (!FOREGROUND) { #if BB_MMU bb_daemonize(0 /*was: DAEMON_CHDIR_ROOT*/); #endif bb_info_msg("start, interface %s", argv_intf); } // run the dynamic address negotiation protocol, // restarting after address conflicts: // - start with some address we want to try // - short random delay // - arp probes to see if another host uses it // - arp announcements that we're claiming it // - use it // - defend it, within limits // exit if: // - address is successfully obtained and -q was given: // run "<script> config", then exit with exitcode 0 // - poll error (when does this happen?) // - read error (when does this happen?) // - sendto error (in arp()) (when does this happen?) // - revents & POLLERR (link down). run "<script> deconfig" first state = PROBE; while (1) { struct pollfd fds[1]; unsigned deadline_us; struct arp_packet p; int source_ip_conflict; int target_ip_conflict; fds[0].fd = sock_fd; fds[0].events = POLLIN; fds[0].revents = 0; // poll, being ready to adjust current timeout if (!timeout_ms) { timeout_ms = random_delay_ms(PROBE_WAIT); // FIXME setsockopt(sock_fd, SO_ATTACH_FILTER, ...) to // make the kernel filter out all packets except // ones we'd care about. } // set deadline_us to the point in time when we timeout deadline_us = MONOTONIC_US() + timeout_ms * 1000; VDBG("...wait %d %s nprobes=%u, nclaims=%u\n", timeout_ms, argv_intf, nprobes, nclaims); switch (safe_poll(fds, 1, timeout_ms)) { default: //bb_perror_msg("poll"); - done in safe_poll return EXIT_FAILURE; // timeout case 0: VDBG("state = %d\n", state); switch (state) { case PROBE: // timeouts in the PROBE state mean no conflicting ARP packets // have been received, so we can progress through the states if (nprobes < PROBE_NUM) { nprobes++; VDBG("probe/%u %s@%s\n", nprobes, argv_intf, inet_ntoa(ip)); timeout_ms = PROBE_MIN * 1000; timeout_ms += random_delay_ms(PROBE_MAX - PROBE_MIN); arp(/* ARPOP_REQUEST, */ /* ð_addr, */ null_ip, &null_addr, ip); } else { // Switch to announce state. state = ANNOUNCE; nclaims = 0; VDBG("announce/%u %s@%s\n", nclaims, argv_intf, inet_ntoa(ip)); timeout_ms = ANNOUNCE_INTERVAL * 1000; arp(/* ARPOP_REQUEST, */ /* ð_addr, */ ip, ð_addr, ip); } break; case RATE_LIMIT_PROBE: // timeouts in the RATE_LIMIT_PROBE state mean no conflicting ARP packets // have been received, so we can move immediately to the announce state state = ANNOUNCE; nclaims = 0; VDBG("announce/%u %s@%s\n", nclaims, argv_intf, inet_ntoa(ip)); timeout_ms = ANNOUNCE_INTERVAL * 1000; arp(/* ARPOP_REQUEST, */ /* ð_addr, */ ip, ð_addr, ip); break; case ANNOUNCE: // timeouts in the ANNOUNCE state mean no conflicting ARP packets // have been received, so we can progress through the states if (nclaims < ANNOUNCE_NUM) { nclaims++; VDBG("announce/%u %s@%s\n", nclaims, argv_intf, inet_ntoa(ip)); timeout_ms = ANNOUNCE_INTERVAL * 1000; arp(/* ARPOP_REQUEST, */ /* ð_addr, */ ip, ð_addr, ip); } else { // Switch to monitor state. state = MONITOR; // link is ok to use earlier // FIXME update filters run(argv, "config", &ip); ready = 1; conflicts = 0; timeout_ms = -1; // Never timeout in the monitor state. // NOTE: all other exit paths // should deconfig ... if (QUIT) return EXIT_SUCCESS; } break; case DEFEND: // We won! No ARP replies, so just go back to monitor. state = MONITOR; timeout_ms = -1; conflicts = 0; break; default: // Invalid, should never happen. Restart the whole protocol. state = PROBE; ip.s_addr = pick_nip(); timeout_ms = 0; nprobes = 0; nclaims = 0; break; } // switch (state) break; // case 0 (timeout) // packets arriving, or link went down case 1: // We need to adjust the timeout in case we didn't receive // a conflicting packet. if (timeout_ms > 0) { unsigned diff = deadline_us - MONOTONIC_US(); if ((int)(diff) < 0) { // Current time is greater than the expected timeout time. // Should never happen. VDBG("missed an expected timeout\n"); timeout_ms = 0; } else { VDBG("adjusting timeout\n"); timeout_ms = (diff / 1000) | 1; /* never 0 */ } } if ((fds[0].revents & POLLIN) == 0) { if (fds[0].revents & POLLERR) { // FIXME: links routinely go down; // this shouldn't necessarily exit. bb_error_msg("iface %s is down", argv_intf); if (ready) { run(argv, "deconfig", &ip); } return EXIT_FAILURE; } continue; } // read ARP packet if (safe_read(sock_fd, &p, sizeof(p)) < 0) { bb_perror_msg_and_die(bb_msg_read_error); } if (p.eth.ether_type != htons(ETHERTYPE_ARP)) continue; #ifdef DEBUG { struct ether_addr *sha = (struct ether_addr *) p.arp.arp_sha; struct ether_addr *tha = (struct ether_addr *) p.arp.arp_tha; struct in_addr *spa = (struct in_addr *) p.arp.arp_spa; struct in_addr *tpa = (struct in_addr *) p.arp.arp_tpa; VDBG("%s recv arp type=%d, op=%d,\n", argv_intf, ntohs(p.eth.ether_type), ntohs(p.arp.arp_op)); VDBG("\tsource=%s %s\n", ether_ntoa(sha), inet_ntoa(*spa)); VDBG("\ttarget=%s %s\n", ether_ntoa(tha), inet_ntoa(*tpa)); } #endif if (p.arp.arp_op != htons(ARPOP_REQUEST) && p.arp.arp_op != htons(ARPOP_REPLY) ) { continue; } source_ip_conflict = 0; target_ip_conflict = 0; if (memcmp(&p.arp.arp_sha, ð_addr, ETH_ALEN) != 0) { if (memcmp(p.arp.arp_spa, &ip.s_addr, sizeof(struct in_addr)) == 0) { /* A probe or reply with source_ip == chosen ip */ source_ip_conflict = 1; } if (p.arp.arp_op == htons(ARPOP_REQUEST) && memcmp(p.arp.arp_spa, &null_ip, sizeof(struct in_addr)) == 0 && memcmp(p.arp.arp_tpa, &ip.s_addr, sizeof(struct in_addr)) == 0 ) { /* A probe with source_ip == 0.0.0.0, target_ip == chosen ip: * another host trying to claim this ip! */ target_ip_conflict = 1; } } VDBG("state = %d, source ip conflict = %d, target ip conflict = %d\n", state, source_ip_conflict, target_ip_conflict); switch (state) { case PROBE: case ANNOUNCE: // When probing or announcing, check for source IP conflicts // and other hosts doing ARP probes (target IP conflicts). if (source_ip_conflict || target_ip_conflict) { conflicts++; if (conflicts >= MAX_CONFLICTS) { VDBG("%s ratelimit\n", argv_intf); timeout_ms = RATE_LIMIT_INTERVAL * 1000; state = RATE_LIMIT_PROBE; } // restart the whole protocol ip.s_addr = pick_nip(); timeout_ms = 0; nprobes = 0; nclaims = 0; } break; case MONITOR: // If a conflict, we try to defend with a single ARP probe. if (source_ip_conflict) { VDBG("monitor conflict -- defending\n"); state = DEFEND; timeout_ms = DEFEND_INTERVAL * 1000; arp(/* ARPOP_REQUEST, */ /* ð_addr, */ ip, ð_addr, ip); } break; case DEFEND: // Well, we tried. Start over (on conflict). if (source_ip_conflict) { state = PROBE; VDBG("defend conflict -- starting over\n"); ready = 0; run(argv, "deconfig", &ip); // restart the whole protocol ip.s_addr = pick_nip(); timeout_ms = 0; nprobes = 0; nclaims = 0; } break; default: // Invalid, should never happen. Restart the whole protocol. VDBG("invalid state -- starting over\n"); state = PROBE; ip.s_addr = pick_nip(); timeout_ms = 0; nprobes = 0; nclaims = 0; break; } // switch state break; // case 1 (packets arriving) } // switch poll } // while (1) #undef argv_intf }
int zcip_main(int argc UNUSED_PARAM, char **argv) { char *r_opt; const char *l_opt = "169.254.0.0"; int state; int nsent; unsigned opts; // Ugly trick, but I want these zeroed in one go struct { const struct ether_addr null_ethaddr; struct ifreq ifr; uint32_t chosen_nip; int conflicts; int timeout_ms; // must be signed int verbose; } L; #define null_ethaddr (L.null_ethaddr) #define ifr (L.ifr ) #define chosen_nip (L.chosen_nip ) #define conflicts (L.conflicts ) #define timeout_ms (L.timeout_ms ) #define verbose (L.verbose ) memset(&L, 0, sizeof(L)); INIT_G(); #define FOREGROUND (opts & 1) #define QUIT (opts & 2) // Parse commandline: prog [options] ifname script // exactly 2 args; -v accumulates and implies -f opt_complementary = "=2:vv:vf"; opts = getopt32(argv, "fqr:l:v", &r_opt, &l_opt, &verbose); #if !BB_MMU // on NOMMU reexec early (or else we will rerun things twice) if (!FOREGROUND) bb_daemonize_or_rexec(0 /*was: DAEMON_CHDIR_ROOT*/, argv); #endif // Open an ARP socket // (need to do it before openlog to prevent openlog from taking // fd 3 (sock_fd==3)) xmove_fd(xsocket(AF_PACKET, SOCK_PACKET, htons(ETH_P_ARP)), sock_fd); if (!FOREGROUND) { // do it before all bb_xx_msg calls openlog(applet_name, 0, LOG_DAEMON); logmode |= LOGMODE_SYSLOG; } bb_logenv_override(); { // -l n.n.n.n struct in_addr net; if (inet_aton(l_opt, &net) == 0 || (net.s_addr & htonl(IN_CLASSB_NET)) != net.s_addr ) { bb_error_msg_and_die("invalid network address"); } G.localnet_ip = ntohl(net.s_addr); } if (opts & 4) { // -r n.n.n.n struct in_addr ip; if (inet_aton(r_opt, &ip) == 0 || (ntohl(ip.s_addr) & IN_CLASSB_NET) != G.localnet_ip ) { bb_error_msg_and_die("invalid link address"); } chosen_nip = ip.s_addr; } argv += optind - 1; /* Now: argv[0]:junk argv[1]:intf argv[2]:script argv[3]:NULL */ /* We need to make space for script argument: */ argv[0] = argv[1]; argv[1] = argv[2]; /* Now: argv[0]:intf argv[1]:script argv[2]:junk argv[3]:NULL */ #define argv_intf (argv[0]) xsetenv("interface", argv_intf); // Initialize the interface (modprobe, ifup, etc) if (run(argv, "init", 0)) return EXIT_FAILURE; // Initialize G.iface_sockaddr // G.iface_sockaddr is: { u16 sa_family; u8 sa_data[14]; } //memset(&G.iface_sockaddr, 0, sizeof(G.iface_sockaddr)); //TODO: are we leaving sa_family == 0 (AF_UNSPEC)?! safe_strncpy(G.iface_sockaddr.sa_data, argv_intf, sizeof(G.iface_sockaddr.sa_data)); // Bind to the interface's ARP socket xbind(sock_fd, &G.iface_sockaddr, sizeof(G.iface_sockaddr)); // Get the interface's ethernet address //memset(&ifr, 0, sizeof(ifr)); strncpy_IFNAMSIZ(ifr.ifr_name, argv_intf); xioctl(sock_fd, SIOCGIFHWADDR, &ifr); memcpy(&G.our_ethaddr, &ifr.ifr_hwaddr.sa_data, ETH_ALEN); // Start with some stable ip address, either a function of // the hardware address or else the last address we used. // we are taking low-order four bytes, as top-order ones // aren't random enough. // NOTE: the sequence of addresses we try changes only // depending on when we detect conflicts. { uint32_t t; move_from_unaligned32(t, ((char *)&G.our_ethaddr + 2)); t += getpid(); srand(t); } // FIXME cases to handle: // - zcip already running! // - link already has local address... just defend/update // Daemonize now; don't delay system startup if (!FOREGROUND) { #if BB_MMU bb_daemonize(0 /*was: DAEMON_CHDIR_ROOT*/); #endif bb_info_msg("start, interface %s", argv_intf); } // Run the dynamic address negotiation protocol, // restarting after address conflicts: // - start with some address we want to try // - short random delay // - arp probes to see if another host uses it // 00:04:e2:64:23:c2 > ff:ff:ff:ff:ff:ff arp who-has 169.254.194.171 tell 0.0.0.0 // - arp announcements that we're claiming it // 00:04:e2:64:23:c2 > ff:ff:ff:ff:ff:ff arp who-has 169.254.194.171 (00:04:e2:64:23:c2) tell 169.254.194.171 // - use it // - defend it, within limits // exit if: // - address is successfully obtained and -q was given: // run "<script> config", then exit with exitcode 0 // - poll error (when does this happen?) // - read error (when does this happen?) // - sendto error (in send_arp_request()) (when does this happen?) // - revents & POLLERR (link down). run "<script> deconfig" first if (chosen_nip == 0) { new_nip_and_PROBE: chosen_nip = pick_nip(); } nsent = 0; state = PROBE; while (1) { struct pollfd fds[1]; unsigned deadline_us; struct arp_packet p; int ip_conflict; int n; fds[0].fd = sock_fd; fds[0].events = POLLIN; fds[0].revents = 0; // Poll, being ready to adjust current timeout if (!timeout_ms) { timeout_ms = random_delay_ms(PROBE_WAIT); // FIXME setsockopt(sock_fd, SO_ATTACH_FILTER, ...) to // make the kernel filter out all packets except // ones we'd care about. } // Set deadline_us to the point in time when we timeout deadline_us = MONOTONIC_US() + timeout_ms * 1000; VDBG("...wait %d %s nsent=%u\n", timeout_ms, argv_intf, nsent); n = safe_poll(fds, 1, timeout_ms); if (n < 0) { //bb_perror_msg("poll"); - done in safe_poll return EXIT_FAILURE; } if (n == 0) { // timed out? VDBG("state:%d\n", state); switch (state) { case PROBE: // No conflicting ARP packets were seen: // we can progress through the states if (nsent < PROBE_NUM) { nsent++; VDBG("probe/%u %s@%s\n", nsent, argv_intf, nip_to_a(chosen_nip)); timeout_ms = PROBE_MIN * 1000; timeout_ms += random_delay_ms(PROBE_MAX - PROBE_MIN); send_arp_request(0, &null_ethaddr, chosen_nip); continue; } // Switch to announce state nsent = 0; state = ANNOUNCE; goto send_announce; case ANNOUNCE: // No conflicting ARP packets were seen: // we can progress through the states if (nsent < ANNOUNCE_NUM) { send_announce: nsent++; VDBG("announce/%u %s@%s\n", nsent, argv_intf, nip_to_a(chosen_nip)); timeout_ms = ANNOUNCE_INTERVAL * 1000; send_arp_request(chosen_nip, &G.our_ethaddr, chosen_nip); continue; } // Switch to monitor state // FIXME update filters run(argv, "config", chosen_nip); // NOTE: all other exit paths should deconfig... if (QUIT) return EXIT_SUCCESS; // fall through: switch to MONITOR default: // case DEFEND: // case MONITOR: (shouldn't happen, MONITOR timeout is infinite) // Defend period ended with no ARP replies - we won timeout_ms = -1; // never timeout in monitor state state = MONITOR; continue; } } // Packet arrived, or link went down. // We need to adjust the timeout in case we didn't receive // a conflicting packet. if (timeout_ms > 0) { unsigned diff = deadline_us - MONOTONIC_US(); if ((int)(diff) < 0) { // Current time is greater than the expected timeout time. diff = 0; } VDBG("adjusting timeout\n"); timeout_ms = (diff / 1000) | 1; // never 0 } if ((fds[0].revents & POLLIN) == 0) { if (fds[0].revents & POLLERR) { // FIXME: links routinely go down; // this shouldn't necessarily exit. bb_error_msg("iface %s is down", argv_intf); if (state >= MONITOR) { // Only if we are in MONITOR or DEFEND run(argv, "deconfig", chosen_nip); } return EXIT_FAILURE; } continue; } // Read ARP packet if (safe_read(sock_fd, &p, sizeof(p)) < 0) { bb_perror_msg_and_die(bb_msg_read_error); } if (p.eth.ether_type != htons(ETHERTYPE_ARP)) continue; if (p.arp.arp_op != htons(ARPOP_REQUEST) && p.arp.arp_op != htons(ARPOP_REPLY) ) { continue; } #ifdef DEBUG { struct ether_addr *sha = (struct ether_addr *) p.arp.arp_sha; struct ether_addr *tha = (struct ether_addr *) p.arp.arp_tha; struct in_addr *spa = (struct in_addr *) p.arp.arp_spa; struct in_addr *tpa = (struct in_addr *) p.arp.arp_tpa; VDBG("source=%s %s\n", ether_ntoa(sha), inet_ntoa(*spa)); VDBG("target=%s %s\n", ether_ntoa(tha), inet_ntoa(*tpa)); } #endif ip_conflict = 0; if (memcmp(&p.arp.arp_sha, &G.our_ethaddr, ETH_ALEN) != 0) { if (memcmp(p.arp.arp_spa, &chosen_nip, 4) == 0) { // A probe or reply with source_ip == chosen ip ip_conflict = 1; } if (p.arp.arp_op == htons(ARPOP_REQUEST) && memcmp(p.arp.arp_spa, &const_int_0, 4) == 0 && memcmp(p.arp.arp_tpa, &chosen_nip, 4) == 0 ) { // A probe with source_ip == 0.0.0.0, target_ip == chosen ip: // another host trying to claim this ip! ip_conflict |= 2; } } VDBG("state:%d ip_conflict:%d\n", state, ip_conflict); if (!ip_conflict) continue; // Either src or target IP conflict exists if (state <= ANNOUNCE) { // PROBE or ANNOUNCE conflicts++; timeout_ms = PROBE_MIN * 1000 + CONFLICT_MULTIPLIER * random_delay_ms(conflicts); goto new_nip_and_PROBE; } // MONITOR or DEFEND: only src IP conflict is a problem if (ip_conflict & 1) { if (state == MONITOR) { // Src IP conflict, defend with a single ARP probe VDBG("monitor conflict - defending\n"); timeout_ms = DEFEND_INTERVAL * 1000; state = DEFEND; send_arp_request(chosen_nip, &G.our_ethaddr, chosen_nip); continue; } // state == DEFEND // Another src IP conflict, start over VDBG("defend conflict - starting over\n"); run(argv, "deconfig", chosen_nip); conflicts = 0; timeout_ms = 0; goto new_nip_and_PROBE; } // Note: if we only have a target IP conflict here (ip_conflict & 2), // IOW: if we just saw this sort of ARP packet: // aa:bb:cc:dd:ee:ff > xx:xx:xx:xx:xx:xx arp who-has <chosen_nip> tell 0.0.0.0 // we expect _kernel_ to respond to that, because <chosen_nip> // is (expected to be) configured on this iface. } // while (1) #undef argv_intf }