Example #1
0
//OTHER INITIAL CONDITIONS
void initChip(){
    init_clock();
    init_uart();
    init_timer();
    init_ui();
    init_pin();
    init_oc();

    pin_analogIn(CUR);
    pin_analogIn(EMF);
    pin_analogIn(FB);

    pin_digitalIn(SF);
    pin_digitalIn(ENC);

    pin_digitalOut(D1);
    pin_digitalOut(D2);
    pin_digitalOut(IN1);
    pin_digitalOut(IN2);
    pin_digitalOut(ENA);
    pin_digitalOut(SLEW);
    pin_digitalOut(INV);

    oc_pwm(&oc1, D2, PWM_TIMER, 250, 0); 
}
Example #2
0
void quad_init(_QUAD *self, _PIN *in_A, _PIN *in_B) {
    /*
    Initializes a quadrature encoder object connected to two digital input pins,
    in_A and in_B.
    */
    self -> A = in_A;
    self -> B = in_B;
    self -> a_prev = 0;
    self -> b_prev = 0;
    self -> overflow = 0;
    self -> counter = 4000;

    pin_digitalIn(in_A);
    pin_digitalIn(in_B);
}
Example #3
0
void spi_close(_SPI *self) {
    *(self->SPIxSTAT) = 0;
    *(self->SPIxCON1) = 0;
    *(self->SPIxCON2) = 0;
    if (self->MISO) {
        __builtin_write_OSCCONL(OSCCON&0xBF);
        *(self->MISOrpinr) |= 0x3F<<(self->MISOrpshift);
        __builtin_write_OSCCONL(OSCCON|0x40);
        self->MISO->owner = NULL;
        pin_digitalIn(self->MISO);
        self->MISO = NULL;
    }
    if (self->MOSI) {
        __builtin_write_OSCCONL(OSCCON&0xBF);
        *(self->MOSI->rpor) &= ~(0x3F<<(self->MOSI->rpshift));
        __builtin_write_OSCCONL(OSCCON|0x40);
        self->MOSI->owner = NULL;
        pin_digitalOut(self->MOSI);
        pin_set(self->MOSI);
        self->MOSI = NULL;
    }
    if (self->SCK) {
        __builtin_write_OSCCONL(OSCCON&0xBF);
        *(self->SCK->rpor) &= ~(0x3F<<(self->SCK->rpshift));
        __builtin_write_OSCCONL(OSCCON|0x40);
        self->SCK->owner = NULL;
        pin_digitalOut(self->SCK);
        pin_clear(self->SCK);
        self->SCK = NULL;
    }
}
Example #4
0
int16_t main(void) {
	//initialize all system clocks
    init_clock();
	//initialize serial communications
    init_uart();
	//initialize pin driving library (to be able to use the &D[x] defs)
	init_pin();
	//initialize the UI library
    init_ui();
	//initialize the timer module
    init_timer();
	//initialize the OC module (used by the servo driving code)
	init_oc();
	
    imu_init()
	//Set servo control pins as output
	pin_digitalOut(PAN_PIN);
	pin_digitalOut(TILT_PIN);
	pin_digitalOut(SONIC_OUT_PIN);
	pin_digitalIn(SONIC_IN_PIN);
	
	//Set LED off
	led_off(LED);
	//Configure blinking rate for LED when connected
    timer_setPeriod(LED_TIM, 0.2);
    timer_start(LED_TIM);
	

    //Configure timer for reciever timeout
    timer_setPeriod(DIST_TIM, 0.05);


	//configure PWM on sonic output pin
	oc_pwm(PWM_OC, SONIC_OUT_PIN, NULL, SONIC_FREQ, 0x0000);
	
	//According to HobbyKing documentation: range .8 through 2.2 msec
	//Set servo control pins as OC outputs on their respective timers
	oc_servo(SERVO1_OC, PAN_PIN, 	SERVO1_TIM, SERVO_PERIOD, SERVO_MIN, SERVO_MAX, pan_set_val);
	oc_servo(SERVO2_OC, TILT_PIN, 	SERVO2_TIM, SERVO_PERIOD, SERVO_MIN, SERVO_MAX, tilt_set_val);

    InitUSB();                              // initialize the USB registers and serial interface engine
    while (USB_USWSTAT!=CONFIG_STATE) {     // while the peripheral is not configured...
        ServiceUSB();                       // ...service USB requests
		led_on(LED);
		//There's no point in driving the servos when there's no one connected yet.
    }
	
    while (1) {
        ServiceUSB();                       // service any pending USB requests
		
		//blink the LED
		if (timer_flag(LED_TIM)) {
            timer_lower(LED_TIM);
            led_toggle(LED);
        }
		
		//Update the servo control values.
        x_gout = gyro_read(OUT_X_L);
    }
}
Example #5
0
void init_motor(void){

    //outputs
    pin_digitalOut(IN1); //D2-bar
    pin_write(IN1,1);

    pin_digitalOut(IN2); //D2-bar
    pin_write(IN2,0);

    pin_digitalOut(D1); //D1
    pin_write(D1,0); //no tri-stating!

    pin_digitalOut(ENA); //ENA
    pin_write(ENA,1); //Enable the system

    pin_digitalOut(&D[7]); //SLEW
    pin_write(&D[7],0); //low slew rate

    pin_digitalOut(INV); //INV
    pin_write(INV,0); //don't invert the inputs!    

    //inputs
    pin_analogIn(CURRENT_PIN); //direction sensor
    pin_analogIn(VEMF_PIN); //Vemf sensor
    pin_analogIn(FB_PIN); //0.24% of active high side current
    pin_digitalIn(REV_PIN); //tach input
}
Example #6
0
void init_game(_TIMER *level_timer, _TIMER *decay_timer, _PIN *coin_op, Display *score_display, Display *high_display) {
    game.hit_flag = 0;
    game.coin_flag = 0;
    game.score = 0;
    game.high = 0;

    pin_digitalIn(coin_op);
    game.coin_op = coin_op;

    game.level_timer = level_timer;
    game.level_ticks = 0;
    game.level_limit = MAX_LEVEL;
    game.level = 0;

    game.lose_flag = 0;
    game.lose_ticks = 0;

    timer_setPeriod(game.level_timer, 0.2);
    timer_start(game.level_timer);

    game.decay_timer = decay_timer;
    game.decay_ticks = 0;
    game.decay_limit = MAX_DECAY;
    game.life = MAX_LIFE;
    timer_setPeriod(game.decay_timer, 0.002);
    timer_start(game.decay_timer);

    game.score_display = score_display;
    game.high_display = high_display;
    write_display(game.high_display, game.high, 0);
    write_display(game.score_display, game.score, 0);

    game.state = over_game;
    game.last_state = (STATE_HANDLER_T)NULL;
}
Example #7
0
void init_launcher(_PIN *load_sensor, _PIN *launch_sensor, _PIN *launch_motor, _PIN *elevator_motor) {
    pin_digitalIn(load_sensor);
    pin_digitalIn(launch_sensor);
    pin_digitalOut(launch_motor);
    pin_digitalOut(elevator_motor);

    launcher.load_sensor = load_sensor;
    launcher.launch_sensor = launch_sensor;
    launcher.launch_motor = launch_motor;
    launcher.elevator_motor = elevator_motor;
    launcher.over = 1;
    launcher.launch = 0;
    launcher.loaded = 0;

    launcher.state = over_launcher;
    launcher.last_state = (STATE_HANDLER_T)NULL;
}
Example #8
0
void spi_open(_SPI *self, _PIN *MISO, _PIN *MOSI, _PIN *SCK, float freq) {
    uint16_t primary, secondary;

    if ((MISO->rpnum==-1) || (MOSI->rpnum==-1) || (SCK->rpnum==-1))
        return; // At least one of the specified pins is not an RP pin
    if ((MISO->owner==NULL) && (MOSI->owner==NULL) && (SCK->owner==NULL)) {
        // All of the specified pins are available and RP pins, so configure 
        // as specified
        pin_digitalIn(MISO);
        pin_digitalOut(MOSI);
        pin_set(MOSI);
        pin_digitalOut(SCK);
        pin_clear(SCK);
        self->MISO = MISO;
        MISO->owner = (void *)self;
        MISO->write = NULL;
        MISO->read = NULL;
        self->MOSI = MOSI;
        MOSI->owner = (void *)self;
        MOSI->write = NULL;
        MOSI->read = NULL;
        self->SCK = SCK;
        SCK->owner = (void *)self;
        SCK->write = NULL;
        SCK->read = NULL;
        __builtin_write_OSCCONL(OSCCON&0xBF);
        *(self->MISOrpinr) &= ~(0x3F<<(self->MISOrpshift));
        *(self->MISOrpinr) |= (MISO->rpnum)<<(self->MISOrpshift);
        *(MOSI->rpor) &= ~(0x3F<<(MOSI->rpshift));
        *(MOSI->rpor) |= (self->MOSIrpnum)<<(MOSI->rpshift);
        *(SCK->rpor) &= ~(0x3F<<(SCK->rpshift));
        *(SCK->rpor) |= (self->SCKrpnum)<<(SCK->rpshift);
        __builtin_write_OSCCONL(OSCCON|0x40);
    } else if ((self->MISO!=MISO) || (self->MOSI!=MOSI) || (self->SCK!=SCK)) {
        return; // At least one of the specified pins does not match the 
                // previous assignment
    }
    // Clip freq to be in allowable range of values
    if (freq>(FCY/2.))
        freq = FCY/2.;
    if (freq<(FCY/(64.*8.)))
        freq = FCY/(64.*8.);
    // Select primary prescale bits
    if (freq<=(FCY/(2.*64.))) {
        freq *= 64.;
        primary = 0;    // Set primary prescale bits for 64:1
    } else if (freq<=(FCY/(2.*16.))) {
        freq *= 16.;
        primary = 1;    // Set primary prescale bits for 16:1
    } else if (freq<=(FCY/(2.*4.))) {
        freq *= 4.;
        primary = 2;    // Set primary prescale bits for 4:1
    } else {
        primary = 3;    // Set primary prescale bits for 1:1
    }
    // Compute secondary prescale value to get closest SPI clock freq to that 
    // specified
    secondary = (uint16_t)(0.5+FCY/freq);
    secondary = (8-secondary)<<2;   // Map secondary prescale bits for SPIxCON1
    // Configure the SPI module
    //   set SPI module to 8-bit master mode
    //   set SMP = 0, CKE = 1, and CKP = 0
    //   set SPRE and PPRE bits to get the closest SPI clock freq to that 
    //   specified
    *(self->SPIxCON1) = 0x0120|primary|secondary;
    *(self->SPIxCON2) = 0;
    // Enable the SPI module and clear status flags
    *(self->SPIxSTAT) = 0x8000;
}
Example #9
0
int16_t main(void) {
    init_pin();
    init_clock();
    init_uart();
    init_ui();
    init_timer();
    init_oc();

    //setup the signal input pin
    pin_digitalIn(&D[4]);

    val1 = 0;
    val2 = 0;
    pos = 0; //16 bit int with binary point in front of the MSB

    led_on(&led2);
    timer_setPeriod(&timer2, PULSE_FREQUENCY); //how often we send a pulse
    timer_start(&timer2);
    timer_setPeriod(&timer3, 0.5); //heartbeat
    timer_start(&timer3);

    oc_servo(&oc1,&D[0],&timer4, INTERVAL,MIN_WIDTH, MAX_WIDTH, pos);
    oc_servo(&oc2,&D[2],&timer5, INTERVAL,MIN_WIDTH, MAX_WIDTH, pos);
    oc_pwm(&oc3,&D[3],NULL,FREQ,ZERO_DUTY);

    printf("Good morning\n");

    InitUSB();                              // initialize the USB registers and serial interface engine
    while (USB_USWSTAT!=CONFIG_STATE) {     // while the peripheral is not configured...
        ServiceUSB();                       // ...service USB requests
    }
    while (1) {
        ServiceUSB();
        pin_write(&D[0],val1);
        pin_write(&D[2],val2); 
        //adapted from Patrick and Charlie's approach
        if (!send_pulse && timer_read(&timer2) < PULSE_WIDTH){
            send_pulse = 1;
            pin_write(&D[3],HALF_DUTY);     
            get_distance = 1;
        } else if (send_pulse && timer_read(&timer2) >= PULSE_WIDTH) {
            send_pulse = 0;
            pin_write(&D[3],ZERO_DUTY); 
        }

        if (timer_read(&timer2) >= ECHO_TIME)
        {
            if (pin_read(&D[4]) && get_distance)
            {
                printf("%d\n", timer_read(&timer2));
                get_distance = 0;
            }
        }
       if (timer_flag(&timer3)) {
            //show a heartbeat and a status message
            timer_lower(&timer3);
            led_toggle(&led1);
        }

    }
}
Example #10
0
int16_t main(void) {
	init_clock();
	init_timer();
	init_pin();
	init_oc();
	init_ui();

	InitUSB();							  // initialize the USB registers and serial interface engine
	while (USB_USWSTAT!=CONFIG_STATE) {	 // while the peripheral is not configured...
		ServiceUSB();					   // ...service USB requests
	}

	// Configure Interrupts on the pic
	IEC1bits.CNIE = 1;
	CNEN1bits.CN2IE = 1;
	IFS1bits.CNIF = 0;

	IEC0bits.OC1IE = 1;
	IFS0bits.OC1IF = 0;
	timer_enableInterrupt(&timer1);
	timer_lower(&timer1);
	timer_enableInterrupt(&timer2);
	timer_lower(&timer2);
	timer_enableInterrupt(&timer4);
	timer_lower(&timer4);
	timer_enableInterrupt(&timer5);
	timer_lower(&timer5);



	// Configure Pins
	inPin0 = &A[0];	
	pin_analogIn(inPin0);
	inPin1 = &A[1];	
	pin_analogIn(inPin1);
	inPin2 = &A[2];	
	pin_analogIn(inPin2);
	inPin3 = &A[3];	
	pin_analogIn(inPin3);
	inPin4 = &A[4];	
	pin_analogIn(inPin4);

	irPin = &A[5];	
	pin_analogIn(irPin);

	outPin = &D[6];
	pin_digitalOut(outPin);
	oc_pwm(&oc1, outPin, NULL, 10, (uint16_t)(0));		// write to D2 with a 10Hz PWM signal
	pin_write(outPin, 10000);	//duty doesn't matter, really. 

	redPin = &D[7];
	pin_digitalOut(redPin);
	oc_pwm(&oc2, redPin, NULL, 100, (uint16_t)(0));	
	greenPin = &D[10];
	pin_digitalOut(greenPin);
	oc_pwm(&oc3, greenPin, NULL, 100, (uint16_t)(0));	
	bluePin = &D[8];
	pin_digitalOut(bluePin);
	oc_pwm(&oc4, bluePin, NULL, 100, (uint16_t)(0));	

	pingPin = &D[4];
	pin_digitalOut(pingPin);
	oc_pwm(&oc5, pingPin, &timer3, 40000, 0);
	receivePin = &D[12];
	pin_digitalIn(receivePin);

	// Motor controller pins
	dirPin = &D[0];
	pin_digitalOut(dirPin);
	nSleepPin = &D[3];
	pin_digitalOut(nSleepPin);
	pin_write(nSleepPin, 1);
	stepPin = &D[2];
	pin_digitalOut(stepPin);

	testPin = &D[13];
	pin_digitalOut(testPin);

	timer_setFreq(&timer1, 100);


	while (1) {
		ServiceUSB(); // service any pending USB requests


		
		irVoltage = pin_read(irPin);
		if (irVoltage < 40000){
			dist = 32768;
		}
		if (irVoltage >= 40000){
			dist = 32900;
		}


		if (dist != stepCount) {
			changeFlag += 1;
		} else {
			changeFlag = 0;
		}

		if (changeFlag >= 3){
			changeFlag = 0;
			motorControl(dist);
		}


		if (touching0 == 10){
			greenTarget = 40000;
			redTarget = 60000;
			blueTarget = 0;
			if (currentPetal == 0){
				greenTarget = 0;
				redTarget = 0;
				blueTarget = 0;
			}
			currentPetal == 0;
		}
		if (touching1 == 11){
			greenTarget = 20000;
			redTarget = 20000;
			blueTarget = 20000;
			if (currentPetal == 1){
				greenTarget = 0;
				redTarget = 0;
				blueTarget = 0;
			}
			currentPetal == 1;
		}
		if (touching2 == 12){
			greenTarget = 0;
			redTarget = 60000;
			blueTarget = 40000;
			if (currentPetal == 2){
				greenTarget = 0;
				redTarget = 0;
				blueTarget = 0;
			}
			currentPetal == 2;
		}
		if (touching3 == 13){
			greenTarget = 0;
			redTarget = 60000;
			blueTarget = 0;
			if (currentPetal == 3){
				greenTarget = 0;
				redTarget = 0;
				blueTarget = 0;
			}
			currentPetal == 3;
			
		}
		if (touching4 == 14){
			greenTarget = 60000;
			redTarget = 0;
			blueTarget = 0;
			if (currentPetal == 4){
				greenTarget = 0;
				redTarget = 0;
				blueTarget = 0;
			}
			currentPetal == 4;

		}
		if (greenDuty < greenTarget) {
			greenChange = 1;
		} else if (greenDuty > greenTarget) {
			greenChange = -1;
		} else {
			greenChange = 0;
			onTarget += 1;
		}
		if (redDuty < redTarget) {
			redChange = 1;
		} else if (redDuty > redTarget) {
			redChange = -1;
		} else {
			redChange = 0;
			onTarget += 1;
		}
		if (blueDuty < blueTarget) {
			blueChange = 1;
		} else if (blueDuty > blueTarget) {
			blueChange = -1;
		} else {
			blueChange = 0;
			onTarget += 1;
		}
		greenDuty += greenChange;
		redDuty += redChange;
		blueDuty += blueChange;
		pin_write(greenPin, greenDuty);
		pin_write(redPin, redDuty);
		pin_write(bluePin, blueDuty);


		/*
		// fade on when touched
		if (touching0 == 10){
			if (greenOn == 0){
				greenChange = 1;
			}
			if (greenOn == 1){
				greenChange = -1;
			}
			redChange = -1;
			blueChange = -1;
		}
		if (touching1 == 11){
			if (redOn == 1){
				redChange = -1;
			}
			if (redOn == 0){
				redChange = 1;
			}
			blueChange = -1;
			greenChange = -1;
		}
		if (touching2 == 12){
			if (blueOn == 1){
				blueChange = -1;
			}
			if (blueOn == 0){
				blueChange = 1;
			}
			greenChange = -1;
			redChange = -1;
		}
		greenDuty = greenDuty + greenChange;
		if (greenDuty == MAX_INT){
			greenDuty = MAX_INT -1;
			greenOn = 1;
			greenChange = 0;
		}
		if (greenDuty == 0){
			greenDuty = 1;
			greenOn = 0;
			greenChange = 0;
		}
		redDuty = redDuty + redChange;
		if (redDuty == MAX_INT){
			redDuty = MAX_INT - 1;
			redOn = 1;
			redChange = 0;
		}
		if (redDuty == 0){
			redDuty = 1;
			redOn = 0;
			redChange = 0;
		}
		blueDuty = blueDuty + blueChange;
		if (blueDuty == MAX_INT){
			blueDuty = MAX_INT - 1;
			blueOn = 1;
			blueChange = 0;
		}
		if (blueDuty == 0){
			blueDuty = 1;
			blueOn = 0;
			blueChange = 0;
		}
		pin_write(greenPin, greenDuty);
		pin_write(redPin, redDuty);
		pin_write(bluePin, blueDuty);
		*/

		/*
		if (iteration > 10000) {
			ping();
			iteration = 0;
		}
		iteration += 1;
		*/
	}
}