Pix* edgeBinarize(Pix* pix){ FUNCNAME("edgeBinarize"); #if HAS_ADAPTIVE_BINARIZER PixAdaptiveBinarizer binarizer(false); return binarizer.bradleyAdaptiveThresholding(pix, 0.15, 8); #endif Pix* result; pixOtsuAdaptiveThreshold(pix, pixGetWidth(pix), pixGetHeight(pix), 0, 0, 0.1, NULL, &result); pixCopyResolution(result, pix); return result; }
/*! * pixOtsuThreshOnBackgroundNorm() * * Input: pixs (8 bpp grayscale; not colormapped) * pixim (<optional> 1 bpp 'image' mask; can be null) * sx, sy (tile size in pixels) * thresh (threshold for determining foreground) * mincount (min threshold on counts in a tile) * bgval (target bg val; typ. > 128) * smoothx (half-width of block convolution kernel width) * smoothy (half-width of block convolution kernel height) * scorefract (fraction of the max Otsu score; typ. 0.1) * &thresh (<optional return> threshold value that was * used on the normalized image) * Return: pixd (1 bpp thresholded image), or null on error * * Notes: * (1) This does background normalization followed by Otsu * thresholding. Otsu binarization attempts to split the * image into two roughly equal sets of pixels, and it does * a very poor job when there are large amounts of dark * background. By doing a background normalization first, * to get the background near 255, we remove this problem. * Then we use a modified Otsu to estimate the best global * threshold on the normalized image. * (2) See pixBackgroundNorm() for meaning and typical values * of input parameters. For a start, you can try: * sx, sy = 10, 15 * thresh = 100 * mincount = 50 * bgval = 255 * smoothx, smoothy = 2 */ PIX * pixOtsuThreshOnBackgroundNorm(PIX *pixs, PIX *pixim, l_int32 sx, l_int32 sy, l_int32 thresh, l_int32 mincount, l_int32 bgval, l_int32 smoothx, l_int32 smoothy, l_float32 scorefract, l_int32 *pthresh) { l_int32 w, h; l_uint32 val; PIX *pixn, *pixt, *pixd; PROCNAME("pixOtsuThreshOnBackgroundNorm"); if (pthresh) *pthresh = 0; if (!pixs || pixGetDepth(pixs) != 8) return (PIX *)ERROR_PTR("pixs undefined or not 8 bpp", procName, NULL); if (pixGetColormap(pixs)) return (PIX *)ERROR_PTR("pixs is colormapped", procName, NULL); if (sx < 4 || sy < 4) return (PIX *)ERROR_PTR("sx and sy must be >= 4", procName, NULL); if (mincount > sx * sy) { L_WARNING("mincount too large for tile size\n", procName); mincount = (sx * sy) / 3; } pixn = pixBackgroundNorm(pixs, pixim, NULL, sx, sy, thresh, mincount, bgval, smoothx, smoothy); if (!pixn) return (PIX *)ERROR_PTR("pixn not made", procName, NULL); /* Just use 1 tile for a global threshold, which is stored * as a single pixel in pixt. */ pixGetDimensions(pixn, &w, &h, NULL); pixOtsuAdaptiveThreshold(pixn, w, h, 0, 0, scorefract, &pixt, &pixd); pixDestroy(&pixn); if (pixt && pthresh) { pixGetPixel(pixt, 0, 0, &val); *pthresh = val; } pixDestroy(&pixt); if (!pixd) return (PIX *)ERROR_PTR("pixd not made", procName, NULL); else return pixd; }
jint Java_com_googlecode_leptonica_android_Binarize_nativeOtsuAdaptiveThreshold(JNIEnv *env, jclass clazz, jint nativePix, jint sizeX, jint sizeY, jint smoothX, jint smoothY, jfloat scoreFract) { PIX *pixs = (PIX *) nativePix; PIX *pixd; if (pixOtsuAdaptiveThreshold(pixs, (l_int32) sizeX, (l_int32) sizeY, (l_int32) smoothX, (l_int32) smoothY, (l_float32) scoreFract, NULL, &pixd)) { return (jint) 0; } return (jint) pixd; }
int main(int argc, char **argv) { char *infile; l_int32 w, d, threshval, ival, newval; l_uint32 val; PIX *pixs, *pixg, *pixg2; PIX *pix1, *pix2; PIXA *pixa; static char mainName[] = "binarize_set"; if (argc != 2) return ERROR_INT(" Syntax: binarize_set infile", mainName, 1); infile = argv[1]; pixa = pixaCreate(5); pixs = pixRead(infile); pixGetDimensions(pixs, &w, NULL, &d); pixSaveTiled(pixs, pixa, 1.0, 1, 50, 32); pixDisplay(pixs, 100, 0); #if ALL /* 1. Standard background normalization with a global threshold. */ pixg = pixConvertTo8(pixs, 0); pix1 = pixBackgroundNorm(pixg, NULL, NULL, 10, 15, 100, 50, 255, 2, 2); pix2 = pixThresholdToBinary(pix1, 160); pixWrite("/tmp/binar1.png", pix2, IFF_PNG); pixDisplay(pix2, 100, 0); pixSaveTiled(pix2, pixa, 1.0, 1, 50, 32); pixDestroy(&pixg); pixDestroy(&pix1); pixDestroy(&pix2); #endif #if ALL /* 2. Background normalization followed by Otsu thresholding. Otsu * binarization attempts to split the image into two roughly equal * sets of pixels, and it does a very poor job when there are large * amounts of dark background. By doing a background normalization * first (to get the background near 255), we remove this problem. * Then we use a modified Otsu to estimate the best global * threshold on the normalized image. */ pixg = pixConvertTo8(pixs, 0); pix1 = pixOtsuThreshOnBackgroundNorm(pixg, NULL, 10, 15, 100, 50, 255, 2, 2, 0.10, &threshval); fprintf(stderr, "thresh val = %d\n", threshval); pixSaveTiled(pix1, pixa, 1.0, 1, 50, 32); pixWrite("/tmp/binar2.png", pix1, IFF_PNG); pixDisplay(pix1, 100, 200); pixDestroy(&pixg); pixDestroy(&pix1); #endif #if ALL /* 3. Background normalization with Otsu threshold estimation and * masking for threshold selection. */ pixg = pixConvertTo8(pixs, 0); pix1 = pixMaskedThreshOnBackgroundNorm(pixg, NULL, 10, 15, 100, 50, 2, 2, 0.10, &threshval); fprintf(stderr, "thresh val = %d\n", threshval); pixSaveTiled(pix1, pixa, 1.0, 1, 50, 32); pixWrite("/tmp/binar3.png", pix1, IFF_PNG); pixDisplay(pix1, 100, 400); pixDestroy(&pixg); pixDestroy(&pix1); #endif #if ALL /* 4. Background normalization followed by Sauvola binarization */ if (d == 32) pixg = pixConvertRGBToGray(pixs, 0.2, 0.7, 0.1); else pixg = pixConvertTo8(pixs, 0); pixg2 = pixContrastNorm(NULL, pixg, 20, 20, 130, 2, 2); pixSauvolaBinarizeTiled(pixg2, 25, 0.40, 1, 1, NULL, &pix1); pixSaveTiled(pix1, pixa, 1.0, 1, 50, 32); pixWrite("/tmp/binar4.png", pix1, IFF_PNG); pixDisplay(pix1, 100, 600); pixDestroy(&pixg); pixDestroy(&pixg2); pixDestroy(&pix1); #endif #if ALL /* 5. Contrast normalization followed by background normalization, and * thresholding. */ if (d == 32) pixg = pixConvertRGBToGray(pixs, 0.2, 0.7, 0.1); else pixg = pixConvertTo8(pixs, 0); pixOtsuAdaptiveThreshold(pixg, 5000, 5000, 0, 0, 0.1, &pix1, NULL); pixGetPixel(pix1, 0, 0, &val); ival = (l_int32) val; newval = ival + (l_int32)(0.6 * (110 - ival)); fprintf(stderr, "th1 = %d, th2 = %d\n", ival, newval); pixDestroy(&pix1); pixContrastNorm(pixg, pixg, 50, 50, 130, 2, 2); pixg2 = pixBackgroundNorm(pixg, NULL, NULL, 20, 20, 70, 40, 200, 2, 2); ival = L_MIN(ival, 110); pix1 = pixThresholdToBinary(pixg2, ival); pixSaveTiled(pix1, pixa, 1.0, 1, 50, 32); pixWrite("/tmp/binar5.png", pix1, IFF_PNG); pixDisplay(pix1, 100, 800); pixDestroy(&pixg); pixDestroy(&pixg2); pixDestroy(&pix1); #endif pix1 = pixaDisplayTiledInRows(pixa, 32, w + 100, 1.0, 0, 30, 2); pixWrite("/tmp/binar6.png", pix1, IFF_PNG); pixDisplay(pix1, 1000, 0); pixDestroy(&pix1); pixaDestroy(&pixa); pixDestroy(&pixs); return 0; }
/*! * pixMaskedThreshOnBackgroundNorm() * * Input: pixs (8 bpp grayscale; not colormapped) * pixim (<optional> 1 bpp 'image' mask; can be null) * sx, sy (tile size in pixels) * thresh (threshold for determining foreground) * mincount (min threshold on counts in a tile) * smoothx (half-width of block convolution kernel width) * smoothy (half-width of block convolution kernel height) * scorefract (fraction of the max Otsu score; typ. ~ 0.1) * &thresh (<optional return> threshold value that was * used on the normalized image) * Return: pixd (1 bpp thresholded image), or null on error * * Notes: * (1) This begins with a standard background normalization. * Additionally, there is a flexible background norm, that * will adapt to a rapidly varying background, and this * puts white pixels in the background near regions with * significant foreground. The white pixels are turned into * a 1 bpp selection mask by binarization followed by dilation. * Otsu thresholding is performed on the input image to get an * estimate of the threshold in the non-mask regions. * The background normalized image is thresholded with two * different values, and the result is combined using * the selection mask. * (2) Note that the numbers 255 (for bgval target) and 190 (for * thresholding on pixn) are tied together, and explicitly * defined in this function. * (3) See pixBackgroundNorm() for meaning and typical values * of input parameters. For a start, you can try: * sx, sy = 10, 15 * thresh = 100 * mincount = 50 * smoothx, smoothy = 2 */ PIX * pixMaskedThreshOnBackgroundNorm(PIX *pixs, PIX *pixim, l_int32 sx, l_int32 sy, l_int32 thresh, l_int32 mincount, l_int32 smoothx, l_int32 smoothy, l_float32 scorefract, l_int32 *pthresh) { l_int32 w, h; l_uint32 val; PIX *pixn, *pixm, *pixd, *pixt1, *pixt2, *pixt3, *pixt4; PROCNAME("pixMaskedThreshOnBackgroundNorm"); if (pthresh) *pthresh = 0; if (!pixs || pixGetDepth(pixs) != 8) return (PIX *)ERROR_PTR("pixs undefined or not 8 bpp", procName, NULL); if (pixGetColormap(pixs)) return (PIX *)ERROR_PTR("pixs is colormapped", procName, NULL); if (sx < 4 || sy < 4) return (PIX *)ERROR_PTR("sx and sy must be >= 4", procName, NULL); if (mincount > sx * sy) { L_WARNING("mincount too large for tile size\n", procName); mincount = (sx * sy) / 3; } /* Standard background normalization */ pixn = pixBackgroundNorm(pixs, pixim, NULL, sx, sy, thresh, mincount, 255, smoothx, smoothy); if (!pixn) return (PIX *)ERROR_PTR("pixn not made", procName, NULL); /* Special background normalization for adaptation to quickly * varying background. Threshold on the very light parts, * which tend to be near significant edges, and dilate to * form a mask over regions that are typically text. The * dilation size is chosen to cover the text completely, * except for very thick fonts. */ pixt1 = pixBackgroundNormFlex(pixs, 7, 7, 1, 1, 20); pixt2 = pixThresholdToBinary(pixt1, 240); pixInvert(pixt2, pixt2); pixm = pixMorphSequence(pixt2, "d21.21", 0); pixDestroy(&pixt1); pixDestroy(&pixt2); /* Use Otsu to get a global threshold estimate for the image, * which is stored as a single pixel in pixt3. */ pixGetDimensions(pixs, &w, &h, NULL); pixOtsuAdaptiveThreshold(pixs, w, h, 0, 0, scorefract, &pixt3, NULL); if (pixt3 && pthresh) { pixGetPixel(pixt3, 0, 0, &val); *pthresh = val; } pixDestroy(&pixt3); /* Threshold the background normalized images differentially, * using a high value correlated with the background normalization * for the part of the image under the mask (i.e., near the * darker, thicker foreground), and a value that depends on the Otsu * threshold for the rest of the image. This gives a solid * (high) thresholding for the foreground parts of the image, * while allowing the background and light foreground to be * reasonably well cleaned using a threshold adapted to the * input image. */ pixd = pixThresholdToBinary(pixn, val + 30); /* for bg and light fg */ pixt4 = pixThresholdToBinary(pixn, 190); /* for heavier fg */ pixCombineMasked(pixd, pixt4, pixm); pixDestroy(&pixt4); pixDestroy(&pixm); pixDestroy(&pixn); if (!pixd) return (PIX *)ERROR_PTR("pixd not made", procName, NULL); else return pixd; }
int main(int argc, char **argv) { char textstr[256]; l_int32 i, thresh, fgval, bgval; l_float32 scorefract; L_BMF *bmf; PIX *pixs, *pixb, *pixb2, *pixb3, *pixg, *pixp, *pixt1, *pixt2; PIXA *pixa; pixs = pixRead("1555-7.jpg"); pixg = pixConvertTo8(pixs, 0); bmf = bmfCreate("fonts", 8); for (i = 0; i < 3; i++) { pixa = pixaCreate(3); scorefract = 0.1 * i; pixOtsuAdaptiveThreshold(pixg, 2000, 2000, 0, 0, scorefract, NULL, &pixb); pixSaveTiledOutline(pixb, pixa, 0.5, 1, 20, 2, 32); pixSplitDistributionFgBg(pixg, scorefract, 1, &thresh, &fgval, &bgval, 1); fprintf(stderr, "thresh = %d, fgval = %d, bgval = %d\n", thresh, fgval, bgval); /* Give gnuplot time to write out the plot */ #ifndef _WIN32 sleep(1); #else Sleep(1000); #endif /* _WIN32 */ pixp = pixRead("/tmp/histplot.png"); pixSaveTiled(pixp, pixa, 1.0, 0, 20, 1); pixt1 = pixaDisplay(pixa, 0, 0); snprintf(textstr, sizeof(textstr), "Scorefract = %3.1f ........... Thresh = %d", scorefract, thresh); pixt2 = pixAddSingleTextblock(pixt1, bmf, textstr, 0x00ff0000, L_ADD_BELOW, NULL); pixDisplay(pixt2, 100, 100); snprintf(textstr, sizeof(textstr), "/tmp/otsu.%d.png", i); pixWrite(textstr, pixt2, IFF_PNG); pixDestroy(&pixb); pixDestroy(&pixp); pixDestroy(&pixt1); pixDestroy(&pixt2); pixaDestroy(&pixa); } pixa = pixaCreate(2); for (i = 0; i < 2; i++) { scorefract = 0.1 * i; pixOtsuAdaptiveThreshold(pixg, 300, 300, 0, 0, scorefract, NULL, &pixb); pixb2 = pixAddBlackOrWhiteBorder(pixb, 2, 2, 2, 2, L_GET_BLACK_VAL); snprintf(textstr, sizeof(textstr), "Scorefract = %3.1f", scorefract); pixb3 = pixAddSingleTextblock(pixb2, bmf, textstr, 1, L_ADD_BELOW, NULL); pixSaveTiled(pixb3, pixa, 2, (i + 1) % 1, 20, 32); pixDestroy(&pixb); pixDestroy(&pixb2); } pixb = pixaDisplay(pixa, 0, 0); pixWrite("/tmp/otsu-tiled.jpg", pixb, IFF_PNG); pixDestroy(&pixb); pixaDestroy(&pixa); bmfDestroy(&bmf); pixDestroy(&pixs); pixDestroy(&pixg); return 0; }