Example #1
0
static PIX *
PtaDisplayRotate(PIX       *pixs,
                 l_float32  xc,
                 l_float32  yc)
{
l_int32  i, w, h;
PIX     *pix1, *pix2;
PTA     *pta1, *pta2, *pta3, *pta4;
PTAA    *ptaa;

        /* Save rotated sets of pixels */
    pta1 = ptaGetPixelsFromPix(pixs, NULL);
    ptaa = ptaaCreate(0);
    for (i = 0; i < 9; i++) {
        pta2 = ptaRotate(pta1, xc, yc, -0.8 + 0.2 * i);
        ptaaAddPta(ptaa, pta2, L_INSERT);
    }
    ptaDestroy(&pta1);

        /* Render them */
    pixGetDimensions(pixs, &w, &h, NULL);
    pix1 = pixCreate(w, h, 32);
    pixSetAll(pix1);
    pta3 = generatePtaFilledCircle(4);
    pta4 = ptaTranslate(pta3, xc, yc);
    pixRenderPtaArb(pix1, pta4, 255, 0, 0);  /* circle at rotation center */
    pix2 = pixDisplayPtaa(pix1, ptaa);  /* rotated sets */

    pixDestroy(&pix1);
    ptaDestroy(&pta3);
    ptaDestroy(&pta4);
    ptaaDestroy(&ptaa);
    return pix2;
}
Example #2
0
main(int    argc,
     char **argv)
{
l_int32      i, j, w, h, same, width, height, cx, cy;
l_uint32     val;
PIX         *pixs, *pixse, *pixd1, *pixd2;
SEL         *sel;
static char  mainName[] = "rasterop_reg";

    if (argc != 1)
	return ERROR_INT(" Syntax:  rasterop_reg", mainName, 1);
    pixs = pixRead("feyn.tif");

    for (width = 1; width <= 25; width += 3) {
	for (height = 1; height <= 25; height += 4) {

	    cx = width / 2;
	    cy = height / 2;

		/* Dilate using an actual sel */
	    sel = selCreateBrick(height, width, cy, cx, SEL_HIT);
	    pixd1 = pixDilate(NULL, pixs, sel);

		/* Dilate using a pix as a sel */
	    pixse = pixCreate(width, height, 1);
	    pixSetAll(pixse);
	    pixd2 = pixCopy(NULL, pixs);
	    w = pixGetWidth(pixs);
	    h = pixGetHeight(pixs);
	    for (i = 0; i < h; i++) {
		for (j = 0; j < w; j++) {
		    pixGetPixel(pixs, j, i, &val);
		    if (val)
			pixRasterop(pixd2, j - cx, i - cy, width, height,
				    PIX_SRC | PIX_DST, pixse, 0, 0);
		}
	    }

	    pixEqual(pixd1, pixd2, &same);
	    if (same == 1)
		fprintf(stderr, "Correct for (%d,%d)\n", width, height);
	    else {
		fprintf(stderr, "Error: results are different!\n");
		fprintf(stderr, "SE: width = %d, height = %d\n", width, height);
		pixWrite("/tmp/junkout1", pixd1, IFF_PNG);
		pixWrite("/tmp/junkout2", pixd2, IFF_PNG);
                return 1;
	    }

	    pixDestroy(&pixse);
	    pixDestroy(&pixd1);
	    pixDestroy(&pixd2);
	    selDestroy(&sel);
	}
    }
    pixDestroy(&pixs);
    return 0;
}
Example #3
0
/*!
 *  pixaDisplay()
 *
 *      Input:  pixa
 *              w, h (if set to 0, determines the size from the
 *                    b.b. of the components in pixa)
 *      Return: pix, or null on error
 *
 *  Notes:
 *      (1) This uses the boxes to place each pix in the rendered composite.
 *      (2) Set w = h = 0 to use the b.b. of the components to determine
 *          the size of the returned pix.
 *      (3) Uses the first pix in pixa to determine the depth.
 *      (4) The background is written "white".  On 1 bpp, each successive
 *          pix is "painted" (adding foreground), whereas for grayscale
 *          or color each successive pix is blitted with just the src.
 *      (5) If the pixa is empty, returns an empty 1 bpp pix.
 */
PIX *
pixaDisplay(PIXA    *pixa,
            l_int32  w,
            l_int32  h)
{
l_int32  i, n, d, xb, yb, wb, hb;
BOXA    *boxa;
PIX     *pixt, *pixd;

    PROCNAME("pixaDisplay");

    if (!pixa)
        return (PIX *)ERROR_PTR("pixa not defined", procName, NULL);
    
    n = pixaGetCount(pixa);
    if (n == 0 && w == 0 && h == 0)
        return (PIX *)ERROR_PTR("no components; no size", procName, NULL);
    if (n == 0) {
        L_WARNING("no components; returning empty 1 bpp pix", procName);
        return pixCreate(w, h, 1);
    }

        /* If w and h not input, determine the minimum size required
         * to contain the origin and all c.c. */
    if (w == 0 || h == 0) {
        boxa = pixaGetBoxa(pixa, L_CLONE);
        boxaGetExtent(boxa, &w, &h, NULL);
        boxaDestroy(&boxa);
    }

        /* Use the first pix in pixa to determine the depth.  */
    pixt = pixaGetPix(pixa, 0, L_CLONE);
    d = pixGetDepth(pixt);
    pixDestroy(&pixt);

    if ((pixd = pixCreate(w, h, d)) == NULL)
        return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
    if (d > 1)
        pixSetAll(pixd);
    for (i = 0; i < n; i++) {
        if (pixaGetBoxGeometry(pixa, i, &xb, &yb, &wb, &hb)) {
            L_WARNING("no box found!", procName);
            continue;
        }
        pixt = pixaGetPix(pixa, i, L_CLONE);
        if (d == 1)
            pixRasterop(pixd, xb, yb, wb, hb, PIX_PAINT, pixt, 0, 0);
        else
            pixRasterop(pixd, xb, yb, wb, hb, PIX_SRC, pixt, 0, 0);
        pixDestroy(&pixt);
    }

    return pixd;
}
Example #4
0
// Helper writes a grey image to a file for use by scrollviewer.
// Normally for speed we don't display the image in the layout debug windows.
// If textord_debug_images is true, we draw the image as a background to some
// of the debug windows. printable determines whether these
// images are optimized for printing instead of screen display.
static void WriteDebugBackgroundImage(bool printable, Pix* pix_binary) {
  Pix* grey_pix = pixCreate(pixGetWidth(pix_binary),
                            pixGetHeight(pix_binary), 8);
  // Printable images are light grey on white, but for screen display
  // they are black on dark grey so the other colors show up well.
  if (printable) {
    pixSetAll(grey_pix);
    pixSetMasked(grey_pix, pix_binary, 192);
  } else {
    pixSetAllArbitrary(grey_pix, 64);
    pixSetMasked(grey_pix, pix_binary, 0);
  }
  AlignedBlob::IncrementDebugPix();
  pixWrite(AlignedBlob::textord_debug_pix().string(), grey_pix, IFF_PNG);
  pixDestroy(&grey_pix);
}
/*!
 *  pixaSplitPix()
 *
 *      Input:  pixs  (with individual components on a lattice)
 *              nx   (number of mosaic cells horizontally)
 *              ny   (number of mosaic cells vertically)
 *              borderwidth  (of added border on all sides)
 *              bordercolor  (in our RGBA format: 0xrrggbbaa)
 *      Return: pixa, or null on error
 *
 *  Notes:
 *      (1) This is a variant on pixaCreateFromPix(), where we
 *          simply divide the image up into (approximately) equal
 *          subunits.  If you want the subimages to have essentially
 *          the same aspect ratio as the input pix, use nx = ny.
 *      (2) If borderwidth is 0, we ignore the input bordercolor and
 *          redefine it to white.
 *      (3) The bordercolor is always used to initialize each tiled pix,
 *          so that if the src is clipped, the unblitted part will
 *          be this color.  This avoids 1 pixel wide black stripes at the
 *          left and lower edges.
 */
PIXA *
pixaSplitPix(PIX      *pixs,
             l_int32   nx,
             l_int32   ny,
             l_int32   borderwidth,
             l_uint32  bordercolor)
{
l_int32  w, h, d, cellw, cellh, i, j;
PIX     *pixt;
PIXA    *pixa;

    PROCNAME("pixaSplitPix");

    if (!pixs)
        return (PIXA *)ERROR_PTR("pixs not defined", procName, NULL);
    if (nx <= 0 || ny <= 0)
        return (PIXA *)ERROR_PTR("nx and ny must be > 0", procName, NULL);
    borderwidth = L_MAX(0, borderwidth);

    if ((pixa = pixaCreate(nx * ny)) == NULL)
        return (PIXA *)ERROR_PTR("pixa not made", procName, NULL);
    pixGetDimensions(pixs, &w, &h, &d);
    cellw = (w + nx - 1) / nx;  /* round up */
    cellh = (h + ny - 1) / ny;

    for (i = 0; i < ny; i++) {
        for (j = 0; j < nx; j++) {
            if ((pixt = pixCreate(cellw + 2 * borderwidth,
                                  cellh + 2 * borderwidth, d)) == NULL)
                return (PIXA *)ERROR_PTR("pixt not made", procName, NULL);
            pixCopyColormap(pixt, pixs);
            if (borderwidth == 0) {  /* initialize full image to white */
                if (d == 1)
                    pixClearAll(pixt);
                else
                    pixSetAll(pixt);
            }
            else
                pixSetAllArbitrary(pixt, bordercolor);
            pixRasterop(pixt, borderwidth, borderwidth, cellw, cellh,
                        PIX_SRC, pixs, j * cellw, i * cellh);
            pixaAddPix(pixa, pixt, L_INSERT);
        }
    }

    return pixa;
}
Example #6
0
static PIX *
DisplayBoxa(BOXA  *boxa)
{
l_int32  w, h;
BOX     *box;
PIX     *pix1, *pix2, *pix3;
PIXA    *pixa;

    pixa = pixaCreate(2);
    boxaGetExtent(boxa, &w, &h, &box);
    pix1 = pixCreate(w, h, 1);
    pixMaskBoxa(pix1, pix1, boxa, L_SET_PIXELS);
    pixaAddPix(pixa, pix1, L_INSERT);
    pix2 = pixCreate(w, h, 32);
    pixSetAll(pix2);
    pixRenderBoxaArb(pix2, boxa, 2, 0, 255, 0);
    pixRenderBoxArb(pix2, box, 3, 255, 0, 0);
    pixaAddPix(pixa, pix2, L_INSERT);
    pix3 = pixaDisplayTiledInRows(pixa, 32, 1000, 1.0, 0, 30, 2);
    boxDestroy(&box);
    pixaDestroy(&pixa);
    return pix3;
}
Example #7
0
/*!
 *  pixaDisplayTiledInRows()
 *
 *      Input:  pixa
 *              outdepth (output depth: 1, 8 or 32 bpp)
 *              maxwidth (of output image)
 *              scalefactor (applied to every pix; use 1.0 for no scaling)
 *              background (0 for white, 1 for black; this is the color
 *                 of the spacing between the images)
 *              spacing  (between images, and on outside)
 *              border (width of black border added to each image;
 *                      use 0 for no border)
 *      Return: pixd (of tiled images), or null on error
 *
 *  Notes:
 *      (1) This saves a pixa to a single image file of width not to
 *          exceed maxwidth, with background color either white or black,
 *          and with each row tiled such that the top of each pix is
 *          aligned and separated by 'spacing' from the next one.
 *          A black border can be added to each pix.
 *      (2) All pix are converted to outdepth; existing colormaps are removed.
 *      (3) This does a reasonably spacewise-efficient job of laying
 *          out the individual pix images into a tiled composite.
 */
PIX *
pixaDisplayTiledInRows(PIXA      *pixa,
                       l_int32    outdepth,
                       l_int32    maxwidth,
                       l_float32  scalefactor,
                       l_int32    background,
                       l_int32    spacing,
                       l_int32    border)
{
l_int32  h;  /* cumulative height over all the rows */
l_int32  w;  /* cumulative height in the current row */
l_int32  bordval, wtry, wt, ht;
l_int32  irow;  /* index of current pix in current row */
l_int32  wmaxrow;  /* width of the largest row */
l_int32  maxh;  /* max height in row */
l_int32  i, j, index, n, x, y, nrows, ninrow;
NUMA    *nainrow;  /* number of pix in the row */
NUMA    *namaxh;  /* height of max pix in the row */
PIX     *pix, *pixn, *pixt, *pixd;
PIXA    *pixan;

    PROCNAME("pixaDisplayTiledInRows");

    if (!pixa)
        return (PIX *)ERROR_PTR("pixa not defined", procName, NULL);
    if (outdepth != 1 && outdepth != 8 && outdepth != 32)
        return (PIX *)ERROR_PTR("outdepth not in {1, 8, 32}", procName, NULL);
    if (border < 0)
        border = 0;
    if (scalefactor <= 0.0) scalefactor = 1.0;
    
    if ((n = pixaGetCount(pixa)) == 0)
        return (PIX *)ERROR_PTR("no components", procName, NULL);

        /* Normalize depths, scale, remove colormaps; optionally add border */
    pixan = pixaCreate(n);
    bordval = (outdepth == 1) ? 1 : 0;
    for (i = 0; i < n; i++) {
        if ((pix = pixaGetPix(pixa, i, L_CLONE)) == NULL)
            continue;

        if (outdepth == 1)
            pixn = pixConvertTo1(pix, 128);
        else if (outdepth == 8)
            pixn = pixConvertTo8(pix, FALSE);
        else  /* outdepth == 32 */
            pixn = pixConvertTo32(pix);
        pixDestroy(&pix);

        if (scalefactor != 1.0)
            pixt = pixScale(pixn, scalefactor, scalefactor);
        else
            pixt = pixClone(pixn);
        if (border)
            pixd = pixAddBorder(pixt, border, bordval);
        else
            pixd = pixClone(pixt);
        pixDestroy(&pixn);
        pixDestroy(&pixt);

        pixaAddPix(pixan, pixd, L_INSERT);
    }
    if (pixaGetCount(pixan) != n) {
        n = pixaGetCount(pixan);
        L_WARNING_INT("only got %d components", procName, n);
        if (n == 0) {
            pixaDestroy(&pixan);
            return (PIX *)ERROR_PTR("no components", procName, NULL);
        }
    }

        /* Compute parameters for layout */
    nainrow = numaCreate(0);
    namaxh = numaCreate(0);
    wmaxrow = 0;
    w = h = spacing;
    maxh = 0;  /* max height in row */
    for (i = 0, irow = 0; i < n; i++, irow++) {
        pixaGetPixDimensions(pixan, i, &wt, &ht, NULL);
        wtry = w + wt + spacing;
        if (wtry > maxwidth) {  /* end the current row and start next one */
            numaAddNumber(nainrow, irow); 
            numaAddNumber(namaxh, maxh); 
            wmaxrow = L_MAX(wmaxrow, w);
            h += maxh + spacing;
            irow = 0;
            w = wt + 2 * spacing;
            maxh = ht;
        } else {
            w = wtry;
            maxh = L_MAX(maxh, ht);
        }
    }

        /* Enter the parameters for the last row */
    numaAddNumber(nainrow, irow); 
    numaAddNumber(namaxh, maxh); 
    wmaxrow = L_MAX(wmaxrow, w);
    h += maxh + spacing;
            
    if ((pixd = pixCreate(wmaxrow, h, outdepth)) == NULL) {
        numaDestroy(&nainrow);
        numaDestroy(&namaxh);
        pixaDestroy(&pixan);
	return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
    }

        /* Reset the background color if necessary */
    if ((background == 1 && outdepth == 1) ||
        (background == 0 && outdepth != 1))
        pixSetAll(pixd);

        /* Blit the images to the dest */
    nrows = numaGetCount(nainrow);
    y = spacing;
    for (i = 0, index = 0; i < nrows; i++) {  /* over rows */
        numaGetIValue(nainrow, i, &ninrow);
        numaGetIValue(namaxh, i, &maxh);
        x = spacing;
        for (j = 0; j < ninrow; j++, index++) {   /* over pix in row */
            pix = pixaGetPix(pixan, index, L_CLONE);
            pixGetDimensions(pix, &wt, &ht, NULL);
            pixRasterop(pixd, x, y, wt, ht, PIX_SRC, pix, 0, 0);
            pixDestroy(&pix);
            x += wt + spacing;
        }
        y += maxh + spacing;
    }

    numaDestroy(&nainrow);
    numaDestroy(&namaxh);
    pixaDestroy(&pixan);
    return pixd;
}
Example #8
0
/*!
 *  pixaDisplayTiledAndScaled()
 *
 *      Input:  pixa
 *              outdepth (output depth: 1, 8 or 32 bpp)
 *              tilewidth (each pix is scaled to this width)
 *              ncols (number of tiles in each row)
 *              background (0 for white, 1 for black; this is the color
 *                 of the spacing between the images)
 *              spacing  (between images, and on outside)
 *              border (width of additional black border on each image;
 *                      use 0 for no border)
 *      Return: pix of tiled images, or null on error
 *
 *  Notes:
 *      (1) This can be used to tile a number of renderings of
 *          an image that are at different scales and depths.
 *      (2) Each image, after scaling and optionally adding the
 *          black border, has width 'tilewidth'.  Thus, the border does
 *          not affect the spacing between the image tiles.  The
 *          maximum allowed border width is tilewidth / 5.
 */
PIX *
pixaDisplayTiledAndScaled(PIXA    *pixa,
                          l_int32  outdepth,
                          l_int32  tilewidth,
                          l_int32  ncols,
                          l_int32  background,
                          l_int32  spacing,
                          l_int32  border)
{
l_int32    x, y, w, h, wd, hd, d;
l_int32    i, n, nrows, maxht, ninrow, irow, bordval;
l_int32   *rowht;
l_float32  scalefact;
PIX       *pix, *pixn, *pixt, *pixb, *pixd;
PIXA      *pixan;

    PROCNAME("pixaDisplayTiledAndScaled");

    if (!pixa)
        return (PIX *)ERROR_PTR("pixa not defined", procName, NULL);
    if (outdepth != 1 && outdepth != 8 && outdepth != 32)
        return (PIX *)ERROR_PTR("outdepth not in {1, 8, 32}", procName, NULL);
    if (border < 0 || border > tilewidth / 5)
        border = 0;
    
    if ((n = pixaGetCount(pixa)) == 0)
        return (PIX *)ERROR_PTR("no components", procName, NULL);

        /* Normalize scale and depth for each pix; optionally add border */
    pixan = pixaCreate(n);
    bordval = (outdepth == 1) ? 1 : 0;
    for (i = 0; i < n; i++) {
        if ((pix = pixaGetPix(pixa, i, L_CLONE)) == NULL)
            continue;

        pixGetDimensions(pix, &w, &h, &d);
        scalefact = (l_float32)(tilewidth - 2 * border) / (l_float32)w;
        if (d == 1 && outdepth > 1 && scalefact < 1.0)
            pixt = pixScaleToGray(pix, scalefact);
        else
            pixt = pixScale(pix, scalefact, scalefact);

        if (outdepth == 1)
            pixn = pixConvertTo1(pixt, 128);
        else if (outdepth == 8)
            pixn = pixConvertTo8(pixt, FALSE);
        else  /* outdepth == 32 */
            pixn = pixConvertTo32(pixt);
        pixDestroy(&pixt);

        if (border)
            pixb = pixAddBorder(pixn, border, bordval);
        else
            pixb = pixClone(pixn);

        pixaAddPix(pixan, pixb, L_INSERT);
        pixDestroy(&pix);
        pixDestroy(&pixn);
    }
    if ((n = pixaGetCount(pixan)) == 0) { /* should not have changed! */
        pixaDestroy(&pixan);
        return (PIX *)ERROR_PTR("no components", procName, NULL);
    }

        /* Determine the size of each row and of pixd */
    wd = tilewidth * ncols + spacing * (ncols + 1);
    nrows = (n + ncols - 1) / ncols;
    if ((rowht = (l_int32 *)CALLOC(nrows, sizeof(l_int32))) == NULL)
        return (PIX *)ERROR_PTR("rowht array not made", procName, NULL);
    maxht = 0;
    ninrow = 0;
    irow = 0;
    for (i = 0; i < n; i++) {
        pix = pixaGetPix(pixan, i, L_CLONE);
        ninrow++;
        pixGetDimensions(pix, &w, &h, NULL);
        maxht = L_MAX(h, maxht);
        if (ninrow == ncols) {
            rowht[irow] = maxht;
            maxht = ninrow = 0;  /* reset */
            irow++;
        }
        pixDestroy(&pix);
    }
    if (ninrow > 0) {   /* last fencepost */
        rowht[irow] = maxht;
        irow++;  /* total number of rows */
    }
    nrows = irow;
    hd = spacing * (nrows + 1);
    for (i = 0; i < nrows; i++)
        hd += rowht[i];

    pixd = pixCreate(wd, hd, outdepth);
    if ((background == 1 && outdepth == 1) ||
        (background == 0 && outdepth != 1))
        pixSetAll(pixd);

        /* Now blit images to pixd */
    x = y = spacing;
    irow = 0;
    for (i = 0; i < n; i++) {
        pix = pixaGetPix(pixan, i, L_CLONE);
        pixGetDimensions(pix, &w, &h, NULL);
        if (i && ((i % ncols) == 0)) {  /* start new row */
            x = spacing;
            y += spacing + rowht[irow];
            irow++;
        }
        pixRasterop(pixd, x, y, w, h, PIX_SRC, pix, 0, 0);
        x += tilewidth + spacing;
        pixDestroy(&pix);
    }

    pixaDestroy(&pixan);
    FREE(rowht);
    return pixd;
}
Example #9
0
/*!
 *  pixaDisplayOnColor()
 *
 *      Input:  pixa
 *              w, h (if set to 0, determines the size from the
 *                    b.b. of the components in pixa)
 *              color (background color to use)
 *      Return: pix, or null on error
 *
 *  Notes:
 *      (1) This uses the boxes to place each pix in the rendered composite.
 *      (2) Set w = h = 0 to use the b.b. of the components to determine
 *          the size of the returned pix.
 *      (3) If any pix in @pixa are colormapped, or if the pix have
 *          different depths, it returns a 32 bpp pix.  Otherwise,
 *          the depth of the returned pixa equals that of the pix in @pixa.
 *      (4) If the pixa is empty, return null.
 */
PIX *
pixaDisplayOnColor(PIXA     *pixa,
                   l_int32   w,
                   l_int32   h,
                   l_uint32  bgcolor)
{
l_int32  i, n, xb, yb, wb, hb, hascmap, maxdepth, same;
BOXA    *boxa;
PIX     *pixt1, *pixt2, *pixd;
PIXA    *pixat;

    PROCNAME("pixaDisplayOnColor");

    if (!pixa)
        return (PIX *)ERROR_PTR("pixa not defined", procName, NULL);
    if ((n = pixaGetCount(pixa)) == 0)
        return (PIX *)ERROR_PTR("no components", procName, NULL);

        /* If w and h are not input, determine the minimum size
         * required to contain the origin and all c.c. */
    if (w == 0 || h == 0) {
        boxa = pixaGetBoxa(pixa, L_CLONE);
        boxaGetExtent(boxa, &w, &h, NULL);
        boxaDestroy(&boxa);
    }

        /* If any pix have colormaps, or if they have different depths,
         * generate rgb */
    pixaAnyColormaps(pixa, &hascmap);
    pixaGetDepthInfo(pixa, &maxdepth, &same);
    if (hascmap || !same) {
        maxdepth = 32;
        pixat = pixaCreate(n);
        for (i = 0; i < n; i++) {
            pixt1 = pixaGetPix(pixa, i, L_CLONE);
            pixt2 = pixConvertTo32(pixt1);
            pixaAddPix(pixat, pixt2, L_INSERT);
            pixDestroy(&pixt1);
        }
    }
    else 
        pixat = pixaCopy(pixa, L_CLONE);

        /* Make the output pix and set the background color */
    if ((pixd = pixCreate(w, h, maxdepth)) == NULL)
        return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
    if ((maxdepth == 1 && bgcolor > 0) ||
        (maxdepth == 2 && bgcolor >= 0x3) ||
        (maxdepth == 4 && bgcolor >= 0xf) ||
        (maxdepth == 8 && bgcolor >= 0xff) ||
        (maxdepth == 16 && bgcolor >= 0xffff) ||
        (maxdepth == 32 && bgcolor >= 0xffffff00)) {
        pixSetAll(pixd);
    }
    else if (bgcolor > 0)
        pixSetAllArbitrary(pixd, bgcolor);

        /* Blit each pix into its place */
    for (i = 0; i < n; i++) {
        if (pixaGetBoxGeometry(pixat, i, &xb, &yb, &wb, &hb)) {
            L_WARNING("no box found!", procName);
            continue;
        }
        pixt1 = pixaGetPix(pixat, i, L_CLONE);
        pixRasterop(pixd, xb, yb, wb, hb, PIX_SRC, pixt1, 0, 0);
        pixDestroy(&pixt1);
    }

    pixaDestroy(&pixat);
    return pixd;
}
Example #10
0
/*!
 *  pixaDisplayTiled()
 *
 *      Input:  pixa
 *              maxwidth (of output image)
 *              background (0 for white, 1 for black)
 *              spacing
 *      Return: pix of tiled images, or null on error
 *
 *  Notes:
 *      (1) This saves a pixa to a single image file of width not to
 *          exceed maxwidth, with background color either white or black,
 *          and with each subimage spaced on a regular lattice.
 *      (2) The lattice size is determined from the largest width and height,
 *          separately, of all pix in the pixa.
 *      (3) All pix in the pixa must be of equal depth.
 *      (4) If any pix has a colormap, all pix are rendered in rgb.
 *      (5) Careful: because no components are omitted, this is
 *          dangerous if there are thousands of small components and
 *          one or more very large one, because the size of the
 *          resulting pix can be huge!
 */
PIX *
pixaDisplayTiled(PIXA    *pixa,
                 l_int32  maxwidth,
                 l_int32  background,
                 l_int32  spacing)
{
l_int32  w, h, wmax, hmax, wd, hd, d, hascmap;
l_int32  i, j, n, ni, ncols, nrows;
l_int32  ystart, xstart, wt, ht;
PIX     *pix, *pixt, *pixd;
PIXA    *pixat;

    PROCNAME("pixaDisplayTiled");

    if (!pixa)
        return (PIX *)ERROR_PTR("pixa not defined", procName, NULL);

        /* If any pix have colormaps, generate rgb */
    if ((n = pixaGetCount(pixa)) == 0)
        return (PIX *)ERROR_PTR("no components", procName, NULL);
    pixaAnyColormaps(pixa, &hascmap);
    if (hascmap) {
        pixat = pixaCreate(n);
        for (i = 0; i < n; i++) {
            pixt = pixaGetPix(pixa, i, L_CLONE);
            pix = pixConvertTo32(pixt);
            pixaAddPix(pixat, pix, L_INSERT);
            pixDestroy(&pixt);
        }
    }
    else
        pixat = pixaCopy(pixa, L_CLONE);

        /* Find the largest width and height of the subimages */
    wmax = hmax = 0;
    for (i = 0; i < n; i++) {
        pix = pixaGetPix(pixat, i, L_CLONE);
        pixGetDimensions(pix, &w, &h, NULL);
        if (i == 0)
            d = pixGetDepth(pix);
        else if (d != pixGetDepth(pix)) {
            pixDestroy(&pix);
            pixaDestroy(&pixat);
            return (PIX *)ERROR_PTR("depths not equal", procName, NULL);
        }
        if (w > wmax)
            wmax = w;
        if (h > hmax)
            hmax = h;
        pixDestroy(&pix);
    }

        /* Get the number of rows and columns and the output image size */
    spacing = L_MAX(spacing, 0);
    ncols = (l_int32)((l_float32)(maxwidth - spacing) /
                      (l_float32)(wmax + spacing));
    nrows = (n + ncols - 1) / ncols;
    wd = wmax * ncols + spacing * (ncols + 1);
    hd = hmax * nrows + spacing * (nrows + 1);
    if ((pixd = pixCreate(wd, hd, d)) == NULL) {
        pixaDestroy(&pixat);
	return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
    }

#if 0
    fprintf(stderr, " nrows = %d, ncols = %d, wmax = %d, hmax = %d\n",
            nrows, ncols, wmax, hmax);
    fprintf(stderr, " space = %d, wd = %d, hd = %d, n = %d\n",
            space, wd, hd, n);
#endif

        /* Reset the background color if necessary */
    if ((background == 1 && d == 1) || (background == 0 && d != 1))
        pixSetAll(pixd);

        /* Blit the images to the dest */
    for (i = 0, ni = 0; i < nrows; i++) {
        ystart = spacing + i * (hmax + spacing);
        for (j = 0; j < ncols && ni < n; j++, ni++) {
            xstart = spacing + j * (wmax + spacing);
            pix = pixaGetPix(pixat, ni, L_CLONE);
            wt = pixGetWidth(pix);
            ht = pixGetHeight(pix);
            pixRasterop(pixd, xstart, ystart, wt, ht, PIX_SRC, pix, 0, 0);
            pixDestroy(&pix);
        }
    }

    pixaDestroy(&pixat);
    return pixd;
}
Example #11
0
/*!
 *  pixSearchGrayMaze()
 *
 *      Input:  pixs (1 bpp, maze)
 *              xi, yi  (beginning point; use same initial point
 *                       that was used to generate the maze)
 *              xf, yf  (end point, or close to it)
 *              &ppixd (<optional return> maze with path illustrated, or
 *                     if no path possible, the part of the maze
 *                     that was searched)
 *      Return: pta (shortest path), or null if either no path
 *              exists or on error
 *
 *  Commentary:
 *      Consider first a slight generalization of the binary maze
 *      search problem.  Suppose that you can go through walls,
 *      but the cost is higher (say, an increment of 3 to go into
 *      a wall pixel rather than 1)?  You're still trying to find
 *      the shortest path.  One way to do this is with an ordered
 *      queue, and a simple way to visualize an ordered queue is as 
 *      a set of stacks, each stack being marked with the distance
 *      of each pixel in the stack from the start.  We place the
 *      start pixel in stack 0, pop it, and process its 4 children.
 *      Each pixel is given a distance that is incremented from that
 *      of its parent (0 in this case), depending on if it is a wall
 *      pixel or not.  That value may be recorded on a distance map,
 *      according to the algorithm below.  For children of the first
 *      pixel, those not on a wall go in stack 1, and wall
 *      children go in stack 3.  Stack 0 being emptied, the process
 *      then continues with pixels being popped from stack 1.
 *      Here is the algorithm for each child pixel.  The pixel's
 *      distance value, were it to be placed on a stack, is compared
 *      with the value for it that is on the distance map.  There
 *      are three possible cases:
 *         (1) If the pixel has not yet been registered, it is pushed
 *             on its stack and the distance is written to the map.
 *         (2) If it has previously been registered with a higher distance,
 *             the distance on the map is relaxed to that of the
 *             current pixel, which is then placed on its stack.
 *         (3) If it has previously been registered with an equal
 *             or lower value, the pixel is discarded.
 *      The pixels are popped and processed successively from
 *      stack 1, and when stack 1 is empty, popping starts on stack 2.
 *      This continues until the destination pixel is popped off
 *      a stack.   The minimum path is then derived from the distance map,
 *      going back from the end point as before.  This is just Dijkstra's
 *      algorithm for a directed graph; here, the underlying graph
 *      (consisting of the pixels and four edges connecting each pixel
 *      to its 4-neighbor) is a special case of a directed graph, where
 *      each edge is bi-directional.  The implementation of this generalized
 *      maze search is left as an exercise to the reader.
 *
 *      Let's generalize a bit further.  Suppose the "maze" is just
 *      a grayscale image -- think of it as an elevation map.  The cost
 *      of moving on this surface depends on the height, or the gradient,
 *      or whatever you want.  All that is required is that the cost
 *      is specified and non-negative on each link between adjacent
 *      pixels.  Now the problem becomes: find the least cost path
 *      moving on this surface between two specified end points.
 *      For example, if the cost across an edge between two pixels
 *      depends on the "gradient", you can use:
 *           cost = 1 + L_ABS(deltaV)
 *      where deltaV is the difference in value between two adjacent
 *      pixels.  If the costs are all integers, we can still use an array
 *      of stacks to avoid ordering the queue (e.g., by using a heap sort.)
 *      This is a neat problem, because you don't even have to build a
 *      maze -- you can can use it on any grayscale image!
 *    
 *      Rather than using an array of stacks, a more practical
 *      approach is to implement with a priority queue, which is
 *      a queue that is sorted so that the elements with the largest
 *      (or smallest) key values always come off first.  The
 *      priority queue is efficiently implemented as a heap, and
 *      this is how we do it.  Suppose you run the algorithm
 *      using a priority queue, doing the bookkeeping with an
 *      auxiliary image data structure that saves the distance of
 *      each pixel put on the queue as before, according to the method
 *      described above.  We implement it as a 2-way choice by
 *      initializing the distance array to a large value and putting
 *      a pixel on the queue if its distance is less than the value
 *      found on the array.  When you finally pop the end pixel from
 *      the queue, you're done, and you can trace the path backward,
 *      either always going downhill or using an auxiliary image to
 *      give you the direction to go at each step.  This is implemented
 *      here in searchGrayMaze().
 *
 *      Do we really have to use a sorted queue?  Can we solve this
 *      generalized maze with an unsorted queue of pixels?  (Or even
 *      an unsorted stack, doing a depth-first search (DFS)?)
 *      Consider a different algorithm for this generalized maze, where
 *      we travel again breadth first, but this time use a single,
 *      unsorted queue.  An auxiliary image is used as before to
 *      store the distances and to determine if pixels get pushed
 *      on the stack or dropped.  As before, we must allow pixels
 *      to be revisited, with relaxation of the distance if a shorter
 *      path arrives later.  As a result, we will in general have
 *      multiple instances of the same pixel on the stack with different
 *      distances.  However, because the queue is not ordered, some of
 *      these pixels will be popped when another instance with a lower
 *      distance is still on the stack.  Here, we're just popping them
 *      in the order they go on, rather than setting up a priority
 *      based on minimum distance.  Thus, unlike the priority queue,
 *      when a pixel is popped we have to check the distance map to
 *      see if a pixel with a lower distance has been put on the queue,
 *      and, if so, we discard the pixel we just popped.  So the
 *      "while" loop looks like this:
 *        - pop a pixel from the queue
 *        - check its distance against the distance stored in the
 *          distance map; if larger, discard
 *        - otherwise, for each of its neighbors:
 *            - compute its distance from the start pixel
 *            - compare this distance with that on the distance map:
 *                - if the distance map value higher, relax the distance
 *                  and push the pixel on the queue
 *                - if the distance map value is lower, discard the pixel
 *
 *      How does this loop terminate?  Before, with an ordered queue,
 *      it terminates when you pop the end pixel.  But with an unordered
 *      queue (or stack), the first time you hit the end pixel, the
 *      distance is not guaranteed to be correct, because the pixels
 *      along the shortest path may not have yet been visited and relaxed.
 *      Because the shortest path can theoretically go anywhere,
 *      we must keep going.  How do we know when to stop?   Dijkstra
 *      uses an ordered queue to systematically remove nodes from
 *      further consideration.  (Each time a pixel is popped, we're
 *      done with it; it's "finalized" in the Dijkstra sense because
 *      we know the shortest path to it.)  However, with an unordered
 *      queue, the brute force answer is: stop when the queue
 *      (or stack) is empty, because then every pixel in the image
 *      has been assigned its minimum "distance" from the start pixel.
 *
 *      This is similar to the situation when you use a stack for the
 *      simpler uniform-step problem: with breadth-first search (BFS)
 *      the pixels on the queue are automatically ordered, so you are
 *      done when you locate the end pixel as a neighbor of a popped pixel;
 *      whereas depth-first search (DFS), using a stack, requires,
 *      in general, a search of every accessible pixel.  Further, if
 *      a pixel is revisited with a smaller distance, that distance is
 *      recorded and the pixel is put on the stack again.
 *
 *      But surely, you ask, can't we stop sooner?  What if the
 *      start and end pixels are very close to each other?
 *      OK, suppose they are, and you have very high walls and a
 *      long snaking level path that is actually the minimum cost.
 *      That long path can wind back and forth across the entire
 *      maze many times before ending up at the end point, which
 *      could be just over a wall from the start.  With the unordered
 *      queue, you very quickly get a high distance for the end
 *      pixel, which will be relaxed to the minimum distance only
 *      after all the pixels of the path have been visited and placed
 *      on the queue, multiple times for many of them.  So that's the
 *      price for not ordering the queue!
 */
PTA *
pixSearchGrayMaze(PIX     *pixs,
                  l_int32  xi,
                  l_int32  yi,
                  l_int32  xf,
                  l_int32  yf,
                  PIX    **ppixd)
{
l_int32   x, y, w, h, d;
l_uint32  val, valr, vals, rpixel, gpixel, bpixel;
void    **lines8, **liner32, **linep8;
l_int32   cost, dist, distparent, sival, sivals;
MAZEEL   *el, *elp;
PIX      *pixd;  /* optionally plot the path on this RGB version of pixs */
PIX      *pixr;  /* for bookkeeping, to indicate the minimum distance */
                 /* to pixels already visited */
PIX      *pixp;  /* for bookkeeping, to indicate direction to parent */
L_HEAP   *lh;
PTA      *pta;

    PROCNAME("pixSearchGrayMaze");

    if (ppixd) *ppixd = NULL;
    if (!pixs)
        return (PTA *)ERROR_PTR("pixs not defined", procName, NULL);
    pixGetDimensions(pixs, &w, &h, &d);
    if (d != 8)
        return (PTA *)ERROR_PTR("pixs not 8 bpp", procName, NULL);
    if (xi <= 0 || xi >= w)
        return (PTA *)ERROR_PTR("xi not valid", procName, NULL);
    if (yi <= 0 || yi >= h)
        return (PTA *)ERROR_PTR("yi not valid", procName, NULL);
    pixd = NULL;
    pta = NULL;

    pixr = pixCreate(w, h, 32);
    pixSetAll(pixr);  /* initialize to max value */
    pixp = pixCreate(w, h, 8);  /* direction to parent stored as enum val */
    lines8 = pixGetLinePtrs(pixs, NULL);
    linep8 = pixGetLinePtrs(pixp, NULL);
    liner32 = pixGetLinePtrs(pixr, NULL);

    lh = lheapCreate(0, L_SORT_INCREASING);  /* always remove closest pixels */

        /* Prime the heap with the first pixel */
    pixGetPixel(pixs, xi, yi, &val);
    el = mazeelCreate(xi, yi, 0);  /* don't need direction here */
    el->distance = 0;
    pixGetPixel(pixs, xi, yi, &val);
    el->val = val;
    pixSetPixel(pixr, xi, yi, 0);  /* distance is 0 */
    lheapAdd(lh, el);

        /* Breadth-first search with priority queue (implemented by
           a heap), labeling direction to parents in pixp and minimum
           distance to visited pixels in pixr.  Stop when we pull
           the destination point (xf, yf) off the queue. */
    while (lheapGetCount(lh) > 0) {
        elp = (MAZEEL *)lheapRemove(lh);
        if (!elp)
            return (PTA *)ERROR_PTR("heap broken!!", procName, NULL);
        x = elp->x;
        y = elp->y;
        if (x == xf && y == yf) {  /* exit condition */
            FREE(elp);
            break;
        }
        distparent = (l_int32)elp->distance;
        val = elp->val;
        sival = val;
            
        if (x > 0) {  /* check to west */
            vals = GET_DATA_BYTE(lines8[y], x - 1);
            valr = GET_DATA_FOUR_BYTES(liner32[y], x - 1);
            sivals = (l_int32)vals;
            cost = 1 + L_ABS(sivals - sival);  /* cost to move to this pixel */
            dist = distparent + cost;
            if (dist < valr) {  /* shortest path so far to this pixel */
                SET_DATA_FOUR_BYTES(liner32[y], x - 1, dist);  /* new dist */
                SET_DATA_BYTE(linep8[y], x - 1, DIR_EAST);  /* parent to E */
                el = mazeelCreate(x - 1, y, 0);
                el->val = vals;
                el->distance = dist;
                lheapAdd(lh, el);
            }
        }
        if (y > 0) {  /* check north */
            vals = GET_DATA_BYTE(lines8[y - 1], x);
            valr = GET_DATA_FOUR_BYTES(liner32[y - 1], x);
            sivals = (l_int32)vals;
            cost = 1 + L_ABS(sivals - sival);  /* cost to move to this pixel */
            dist = distparent + cost;
            if (dist < valr) {  /* shortest path so far to this pixel */
                SET_DATA_FOUR_BYTES(liner32[y - 1], x, dist);  /* new dist */
                SET_DATA_BYTE(linep8[y - 1], x, DIR_SOUTH);  /* parent to S */
                el = mazeelCreate(x, y - 1, 0);
                el->val = vals;
                el->distance = dist;
                lheapAdd(lh, el);
            }
        }
        if (x < w - 1) {  /* check east */
            vals = GET_DATA_BYTE(lines8[y], x + 1);
            valr = GET_DATA_FOUR_BYTES(liner32[y], x + 1);
            sivals = (l_int32)vals;
            cost = 1 + L_ABS(sivals - sival);  /* cost to move to this pixel */
            dist = distparent + cost;
            if (dist < valr) {  /* shortest path so far to this pixel */
                SET_DATA_FOUR_BYTES(liner32[y], x + 1, dist);  /* new dist */
                SET_DATA_BYTE(linep8[y], x + 1, DIR_WEST);  /* parent to W */
                el = mazeelCreate(x + 1, y, 0);
                el->val = vals;
                el->distance = dist;
                lheapAdd(lh, el);
            }
        }
        if (y < h - 1) {  /* check south */
            vals = GET_DATA_BYTE(lines8[y + 1], x);
            valr = GET_DATA_FOUR_BYTES(liner32[y + 1], x);
            sivals = (l_int32)vals;
            cost = 1 + L_ABS(sivals - sival);  /* cost to move to this pixel */
            dist = distparent + cost;
            if (dist < valr) {  /* shortest path so far to this pixel */
                SET_DATA_FOUR_BYTES(liner32[y + 1], x, dist);  /* new dist */
                SET_DATA_BYTE(linep8[y + 1], x, DIR_NORTH);  /* parent to N */
                el = mazeelCreate(x, y + 1, 0);
                el->val = vals;
                el->distance = dist;
                lheapAdd(lh, el);
            }
        }
        FREE(elp);
    }

    lheapDestroy(&lh, TRUE);

    if (ppixd) {
        pixd = pixConvert8To32(pixs);
        *ppixd = pixd;
    }
    composeRGBPixel(255, 0, 0, &rpixel);  /* start point */
    composeRGBPixel(0, 255, 0, &gpixel);
    composeRGBPixel(0, 0, 255, &bpixel);  /* end point */

    x = xf;
    y = yf;
    pta = ptaCreate(0);
    while (1) {  /* write path onto pixd */
        ptaAddPt(pta, x, y);
        if (x == xi && y == yi)
            break;
        if (pixd)
            pixSetPixel(pixd, x, y, gpixel);
        pixGetPixel(pixp, x, y, &val);
        if (val == DIR_NORTH)
            y--;
        else if (val == DIR_SOUTH)
            y++;
        else if (val == DIR_EAST)
            x++;
        else if (val == DIR_WEST)
            x--;
        pixGetPixel(pixr, x, y, &val);

#if  DEBUG_PATH
        fprintf(stderr, "(x,y) = (%d, %d); dist = %d\n", x, y, val);
#endif  /* DEBUG_PATH */

    }
    if (pixd) {
        pixSetPixel(pixd, xi, yi, rpixel);
        pixSetPixel(pixd, xf, yf, bpixel);
    }

    pixDestroy(&pixp);
    pixDestroy(&pixr);
    FREE(lines8);
    FREE(linep8);
    FREE(liner32);
    return pta;
}
Example #12
0
/*!
 *  pixRotateWithAlpha()
 *
 *      Input:  pixs (32 bpp rgb or cmapped)
 *              angle (radians; clockwise is positive)
 *              pixg (<optional> 8 bpp, can be null)
 *              fract (between 0.0 and 1.0, with 0.0 fully transparent
 *                     and 1.0 fully opaque)
 *      Return: pixd (32 bpp rgba), or null on error
 *
 *  Notes:
 *      (1) The alpha channel is transformed separately from pixs,
 *          and aligns with it, being fully transparent outside the
 *          boundary of the transformed pixs.  For pixels that are fully
 *          transparent, a blending function like pixBlendWithGrayMask()
 *          will give zero weight to corresponding pixels in pixs.
 *      (2) Rotation is about the center of the image; for very small
 *          rotations, just return a clone.  The dest is automatically
 *          expanded so that no image pixels are lost.
 *      (3) Rotation is by area mapping.  It doesn't matter what
 *          color is brought in because the alpha channel will
 *          be transparent (black) there.
 *      (4) If pixg is NULL, it is generated as an alpha layer that is
 *          partially opaque, using @fract.  Otherwise, it is cropped
 *          to pixs if required and @fract is ignored.  The alpha
 *          channel in pixs is never used.
 *      (4) Colormaps are removed to 32 bpp.
 *      (5) The default setting for the border values in the alpha channel
 *          is 0 (transparent) for the outermost ring of pixels and
 *          (0.5 * fract * 255) for the second ring.  When blended over
 *          a second image, this
 *          (a) shrinks the visible image to make a clean overlap edge
 *              with an image below, and
 *          (b) softens the edges by weakening the aliasing there.
 *          Use l_setAlphaMaskBorder() to change these values.
 *      (6) A subtle use of gamma correction is to remove gamma correction
 *          before rotation and restore it afterwards.  This is done
 *          by sandwiching this function between a gamma/inverse-gamma
 *          photometric transform:
 *              pixt = pixGammaTRCWithAlpha(NULL, pixs, 1.0 / gamma, 0, 255);
 *              pixd = pixRotateWithAlpha(pixt, angle, NULL, fract);
 *              pixGammaTRCWithAlpha(pixd, pixd, gamma, 0, 255);
 *              pixDestroy(&pixt);
 *          This has the side-effect of producing artifacts in the very
 *          dark regions.
 *
 *  *** Warning: implicit assumption about RGB component ordering ***
 */
PIX *
pixRotateWithAlpha(PIX *pixs,
                   l_float32 angle,
                   PIX *pixg,
                   l_float32 fract) {
    l_int32 ws, hs, d, spp;
    PIX *pixd, *pix32, *pixg2, *pixgr;

    PROCNAME("pixRotateWithAlpha");

    if (!pixs)
        return (PIX *) ERROR_PTR("pixs not defined", procName, NULL);
    pixGetDimensions(pixs, &ws, &hs, &d);
    if (d != 32 && pixGetColormap(pixs) == NULL)
        return (PIX *) ERROR_PTR("pixs not cmapped or 32 bpp", procName, NULL);
    if (pixg && pixGetDepth(pixg) != 8) {
        L_WARNING("pixg not 8 bpp; using @fract transparent alpha\n", procName);
        pixg = NULL;
    }
    if (!pixg && (fract < 0.0 || fract > 1.0)) {
        L_WARNING("invalid fract; using fully opaque\n", procName);
        fract = 1.0;
    }
    if (!pixg && fract == 0.0)
        L_WARNING("transparent alpha; image will not be blended\n", procName);

    /* Make sure input to rotation is 32 bpp rgb, and rotate it */
    if (d != 32)
        pix32 = pixConvertTo32(pixs);
    else
        pix32 = pixClone(pixs);
    spp = pixGetSpp(pix32);
    pixSetSpp(pix32, 3);  /* ignore the alpha channel for the rotation */
    pixd = pixRotate(pix32, angle, L_ROTATE_AREA_MAP, L_BRING_IN_WHITE, ws, hs);
    pixSetSpp(pix32, spp);  /* restore initial value in case it's a clone */
    pixDestroy(&pix32);

    /* Set up alpha layer with a fading border and rotate it */
    if (!pixg) {
        pixg2 = pixCreate(ws, hs, 8);
        if (fract == 1.0)
            pixSetAll(pixg2);
        else if (fract > 0.0)
            pixSetAllArbitrary(pixg2, (l_int32)(255.0 * fract));
    } else {
        pixg2 = pixResizeToMatch(pixg, NULL, ws, hs);
    }
    if (ws > 10 && hs > 10) {  /* see note 8 */
        pixSetBorderRingVal(pixg2, 1,
                            (l_int32)(255.0 * fract * AlphaMaskBorderVals[0]));
        pixSetBorderRingVal(pixg2, 2,
                            (l_int32)(255.0 * fract * AlphaMaskBorderVals[1]));
    }
    pixgr = pixRotate(pixg2, angle, L_ROTATE_AREA_MAP,
                      L_BRING_IN_BLACK, ws, hs);

    /* Combine into a 4 spp result */
    pixSetRGBComponent(pixd, pixgr, L_ALPHA_CHANNEL);

    pixDestroy(&pixg2);
    pixDestroy(&pixgr);
    return pixd;
}
Example #13
0
l_int32 main(int argc,
             char **argv) {
    l_int32 i, n;
    l_float32 a, b, c, d, e;
    NUMA *nax, *nafit;
    PIX *pixs, *pixn, *pixg, *pixb, *pixt1, *pixt2;
    PIXA *pixa;
    PTA *pta, *ptad;
    PTAA *ptaa1, *ptaa2;

    pixs = pixRead("cat-35.jpg");
/*    pixs = pixRead("zanotti-78.jpg"); */

    /* Normalize for varying background and binarize */
    pixn = pixBackgroundNormSimple(pixs, NULL, NULL);
    pixg = pixConvertRGBToGray(pixn, 0.5, 0.3, 0.2);
    pixb = pixThresholdToBinary(pixg, 130);
    pixDestroy(&pixn);
    pixDestroy(&pixg);

    /* Get the textline centers */
    pixa = pixaCreate(6);
    ptaa1 = dewarpGetTextlineCenters(pixb, 0);
    pixt1 = pixCreateTemplate(pixs);
    pixSetAll(pixt1);
    pixt2 = pixDisplayPtaa(pixt1, ptaa1);
    pixWrite("/tmp/textline1.png", pixt2, IFF_PNG);
    pixDisplayWithTitle(pixt2, 0, 100, "textline centers 1", 1);
    pixaAddPix(pixa, pixt2, L_INSERT);
    pixDestroy(&pixt1);

    /* Remove short lines */
    fprintf(stderr, "Num all lines = %d\n", ptaaGetCount(ptaa1));
    ptaa2 = dewarpRemoveShortLines(pixb, ptaa1, 0.8, 0);
    pixt1 = pixCreateTemplate(pixs);
    pixSetAll(pixt1);
    pixt2 = pixDisplayPtaa(pixt1, ptaa2);
    pixWrite("/tmp/textline2.png", pixt2, IFF_PNG);
    pixDisplayWithTitle(pixt2, 300, 100, "textline centers 2", 1);
    pixaAddPix(pixa, pixt2, L_INSERT);
    pixDestroy(&pixt1);
    n = ptaaGetCount(ptaa2);
    fprintf(stderr, "Num long lines = %d\n", n);
    ptaaDestroy(&ptaa1);
    pixDestroy(&pixb);

    /* Long lines over input image */
    pixt1 = pixCopy(NULL, pixs);
    pixt2 = pixDisplayPtaa(pixt1, ptaa2);
    pixWrite("/tmp/textline3.png", pixt2, IFF_PNG);
    pixDisplayWithTitle(pixt2, 600, 100, "textline centers 3", 1);
    pixaAddPix(pixa, pixt2, L_INSERT);
    pixDestroy(&pixt1);

    /* Quadratic fit to curve */
    pixt1 = pixCopy(NULL, pixs);
    for (i = 0; i < n; i++) {
        pta = ptaaGetPta(ptaa2, i, L_CLONE);
        ptaGetArrays(pta, &nax, NULL);
        ptaGetQuadraticLSF(pta, &a, &b, &c, &nafit);
        fprintf(stderr, "Quadratic: a = %10.6f, b = %7.3f, c = %7.3f\n",
                a, b, c);
        ptad = ptaCreateFromNuma(nax, nafit);
        pixDisplayPta(pixt1, pixt1, ptad);
        ptaDestroy(&pta);
        ptaDestroy(&ptad);
        numaDestroy(&nax);
        numaDestroy(&nafit);
    }
    pixWrite("/tmp/textline4.png", pixt1, IFF_PNG);
    pixDisplayWithTitle(pixt1, 900, 100, "textline centers 4", 1);
    pixaAddPix(pixa, pixt1, L_INSERT);

    /* Cubic fit to curve */
    pixt1 = pixCopy(NULL, pixs);
    for (i = 0; i < n; i++) {
        pta = ptaaGetPta(ptaa2, i, L_CLONE);
        ptaGetArrays(pta, &nax, NULL);
        ptaGetCubicLSF(pta, &a, &b, &c, &d, &nafit);
        fprintf(stderr, "Cubic: a = %10.6f, b = %10.6f, c = %7.3f, d = %7.3f\n",
                a, b, c, d);
        ptad = ptaCreateFromNuma(nax, nafit);
        pixDisplayPta(pixt1, pixt1, ptad);
        ptaDestroy(&pta);
        ptaDestroy(&ptad);
        numaDestroy(&nax);
        numaDestroy(&nafit);
    }
    pixWrite("/tmp/textline5.png", pixt1, IFF_PNG);
    pixDisplayWithTitle(pixt1, 1200, 100, "textline centers 5", 1);
    pixaAddPix(pixa, pixt1, L_INSERT);

    /* Quartic fit to curve */
    pixt1 = pixCopy(NULL, pixs);
    for (i = 0; i < n; i++) {
        pta = ptaaGetPta(ptaa2, i, L_CLONE);
        ptaGetArrays(pta, &nax, NULL);
        ptaGetQuarticLSF(pta, &a, &b, &c, &d, &e, &nafit);
        fprintf(stderr,
                "Quartic: a = %7.3f, b = %7.3f, c = %9.5f, d = %7.3f, e = %7.3f\n",
                a, b, c, d, e);
        ptad = ptaCreateFromNuma(nax, nafit);
        pixDisplayPta(pixt1, pixt1, ptad);
        ptaDestroy(&pta);
        ptaDestroy(&ptad);
        numaDestroy(&nax);
        numaDestroy(&nafit);
    }
    pixWrite("/tmp/textline6.png", pixt1, IFF_PNG);
    pixDisplayWithTitle(pixt1, 1500, 100, "textline centers 6", 1);
    pixaAddPix(pixa, pixt1, L_INSERT);

    pixaConvertToPdf(pixa, 300, 0.5, L_JPEG_ENCODE, 75,
                     "LS fittings to textlines", "/tmp/dewarp_fittings.pdf");

    pixaDestroy(&pixa);
    pixDestroy(&pixs);
    ptaaDestroy(&ptaa2);
    return 0;
}
Example #14
0
/*!
 * \brief   selaAddCrossJunctions()
 *
 * \param[in]    sela [optional]
 * \param[in]    hlsize length of each line of hits from origin
 * \param[in]    mdist distance of misses from the origin
 * \param[in]    norient number of orientations; max of 8
 * \param[in]    debugflag 1 for debug output
 * \return  sela with additional sels, or NULL on error
 *
 * <pre>
 * Notes:
 *      (1) Adds hitmiss Sels for the intersection of two lines.
 *          If the lines are very thin, they must be nearly orthogonal
 *          to register.
 *      (2) The number of Sels generated is equal to %norient.
 *      (3) If %norient == 2, this generates 2 Sels of crosses, each with
 *          two perpendicular lines of hits.  One Sel has horizontal and
 *          vertical hits; the other has hits along lines at +-45 degrees.
 *          Likewise, if %norient == 3, this generates 3 Sels of crosses
 *          oriented at 30 degrees with each other.
 *      (4) It is suggested that %hlsize be chosen at least 1 greater
 *          than %mdist.  Try values of (%hlsize, %mdist) such as
 *          (6,5), (7,6), (8,7), (9,7), etc.
 * </pre>
 */
SELA *
selaAddCrossJunctions(SELA      *sela,
                      l_float32  hlsize,
                      l_float32  mdist,
                      l_int32    norient,
                      l_int32    debugflag)
{
char       name[L_BUF_SIZE];
l_int32    i, j, w, xc, yc;
l_float64  pi, halfpi, radincr, radang;
l_float64  angle;
PIX       *pixc, *pixm, *pixt;
PIXA      *pixa;
PTA       *pta1, *pta2, *pta3, *pta4;
SEL       *sel;

    PROCNAME("selaAddCrossJunctions");

    if (hlsize <= 0)
        return (SELA *)ERROR_PTR("hlsize not > 0", procName, NULL);
    if (norient < 1 || norient > 8)
        return (SELA *)ERROR_PTR("norient not in [1, ... 8]", procName, NULL);

    if (!sela) {
        if ((sela = selaCreate(0)) == NULL)
            return (SELA *)ERROR_PTR("sela not made", procName, NULL);
    }

    pi = 3.1415926535;
    halfpi = 3.1415926535 / 2.0;
    radincr = halfpi / (l_float64)norient;
    w = (l_int32)(2.2 * (L_MAX(hlsize, mdist) + 0.5));
    if (w % 2 == 0)
        w++;
    xc = w / 2;
    yc = w / 2;

    pixa = pixaCreate(norient);
    for (i = 0; i < norient; i++) {

            /* Set the don't cares */
        pixc = pixCreate(w, w, 32);
        pixSetAll(pixc);

            /* Add the green lines of hits */
        pixm = pixCreate(w, w, 1);
        radang = (l_float32)i * radincr;
        pta1 = generatePtaLineFromPt(xc, yc, hlsize + 1, radang);
        pta2 = generatePtaLineFromPt(xc, yc, hlsize + 1, radang + halfpi);
        pta3 = generatePtaLineFromPt(xc, yc, hlsize + 1, radang + pi);
        pta4 = generatePtaLineFromPt(xc, yc, hlsize + 1, radang + pi + halfpi);
        ptaJoin(pta1, pta2, 0, -1);
        ptaJoin(pta1, pta3, 0, -1);
        ptaJoin(pta1, pta4, 0, -1);
        pixRenderPta(pixm, pta1, L_SET_PIXELS);
        pixPaintThroughMask(pixc, pixm, 0, 0, 0x00ff0000);
        ptaDestroy(&pta1);
        ptaDestroy(&pta2);
        ptaDestroy(&pta3);
        ptaDestroy(&pta4);

            /* Add red misses between the lines */
        for (j = 0; j < 4; j++) {
            angle = radang + (j - 0.5) * halfpi;
            pixSetPixel(pixc, xc + (l_int32)(mdist * cos(angle)),
                        yc + (l_int32)(mdist * sin(angle)), 0xff000000);
        }

            /* Add dark green for origin */
        pixSetPixel(pixc, xc, yc, 0x00550000);

            /* Generate the sel */
        sel = selCreateFromColorPix(pixc, NULL);
        sprintf(name, "sel_cross_%d", i);
        selaAddSel(sela, sel, name, 0);

        if (debugflag) {
            pixt = pixScaleBySampling(pixc, 10.0, 10.0);
            pixaAddPix(pixa, pixt, L_INSERT);
        }
        pixDestroy(&pixm);
        pixDestroy(&pixc);
    }

    if (debugflag) {
        l_int32  w;
        lept_mkdir("lept/sel");
        pixaGetPixDimensions(pixa, 0, &w, NULL, NULL);
        pixt = pixaDisplayTiledAndScaled(pixa, 32, w, 1, 0, 10, 2);
        pixWrite("/tmp/lept/sel/xsel1.png", pixt, IFF_PNG);
        pixDisplay(pixt, 0, 100);
        pixDestroy(&pixt);
        pixt = selaDisplayInPix(sela, 15, 2, 20, 1);
        pixWrite("/tmp/lept/sel/xsel2.png", pixt, IFF_PNG);
        pixDisplay(pixt, 500, 100);
        pixDestroy(&pixt);
        selaWriteStream(stderr, sela);
    }
    pixaDestroy(&pixa);

    return sela;
}
Example #15
0
main(int    argc,
     char **argv)
{
l_int32       i, j, w, h;
l_int32       minsum[5] =    { 2, 40, 50, 50, 70};
l_int32       skipdist[5] =  { 5,  5, 10, 10, 30};
l_int32       delta[5] =     { 2, 10, 10, 25, 40};
l_int32       maxbg[5] =     {10, 15, 10, 20, 40};
BOX          *box1, *box2, *box3, *box4;
BOXA         *boxa;
PIX          *pixs, *pixc, *pixt, *pixd, *pix32;
PIXA         *pixas, *pixad;
L_REGPARAMS  *rp;

    if (regTestSetup(argc, argv, &rp))
        return 1;

        /* Generate and save 1 bpp masks */
    pixas = pixaCreate(0);
    pixs = pixCreate(300, 250, 1);
    pixSetAll(pixs);
    box1 = boxCreate(50, 0, 140, 25);
    box2 = boxCreate(120, 100, 100, 25);
    box3 = boxCreate(75, 170, 80, 20);
    box4 = boxCreate(150, 80, 25, 70);

    pixClearInRect(pixs, box1);
    pixaAddPix(pixas, pixs, L_COPY);
    pixt = pixRotateOrth(pixs, 1);
    pixaAddPix(pixas, pixt, L_INSERT);

    pixClearInRect(pixs, box2);
    pixaAddPix(pixas, pixs, L_COPY);
    pixt = pixRotateOrth(pixs, 1);
    pixaAddPix(pixas, pixt, L_INSERT);

    pixClearInRect(pixs, box3);
    pixaAddPix(pixas, pixs, L_COPY);
    pixt = pixRotateOrth(pixs, 1);
    pixaAddPix(pixas, pixt, L_INSERT);

    pixClearInRect(pixs, box4);
    pixaAddPix(pixas, pixs, L_COPY);
    pixt = pixRotateOrth(pixs, 1);
    pixaAddPix(pixas, pixt, L_INSERT);

    boxDestroy(&box1);
    boxDestroy(&box2);
    boxDestroy(&box3);
    boxDestroy(&box4);
    pixDestroy(&pixs);

        /* Do 5 splittings on each of the 8 masks */
    pixad = pixaCreate(0);
    for (j = 0; j < 8; j++) {
        pixt = pixaGetPix(pixas, j, L_CLONE);
        pixGetDimensions(pixt, &w, &h, NULL);
        pix32 = pixCreate(w, h, 32);
        pixSetAll(pix32);
        pixPaintThroughMask(pix32, pixt, 0, 0, 0xc0c0c000);
        pixSaveTiled(pix32, pixad, 1, 1, 30, 32);
        for (i = 0; i < 5; i++) {
            pixc = pixCopy(NULL, pix32);
            boxa = pixSplitComponentIntoBoxa(pixt, NULL, minsum[i], skipdist[i],
                                             delta[i], maxbg[i], 0, 1);
/*            boxaWriteStream(stderr, boxa); */
            pixd = pixBlendBoxaRandom(pixc, boxa, 0.4);
            pixRenderBoxaArb(pixd, boxa, 2, 255, 0, 0);
            pixSaveTiled(pixd, pixad, 1, 0, 30, 32);
            pixDestroy(&pixd);
            pixDestroy(&pixc);
            boxaDestroy(&boxa);
        }
        pixDestroy(&pixt);
        pixDestroy(&pix32);
    }

        /* Display results */
    pixd = pixaDisplay(pixad, 0, 0);
    regTestWritePixAndCheck(rp, pixd, IFF_PNG);  /* 0 */
    pixDisplayWithTitle(pixd, 100, 100, NULL, rp->display);
    pixDestroy(&pixd);
    pixaDestroy(&pixad);

        /* Put the 8 masks all together, and split 5 ways */
    pixad = pixaCreate(0);
    pixs = pixaDisplayOnLattice(pixas, 325, 325);
    pixGetDimensions(pixs, &w, &h, NULL);
    pix32 = pixCreate(w, h, 32);
    pixSetAll(pix32);
    pixPaintThroughMask(pix32, pixs, 0, 0, 0xc0c0c000);
    pixSaveTiled(pix32, pixad, 1, 1, 30, 32);
    for (i = 0; i < 5; i++) {
        pixc = pixCopy(NULL, pix32);
        boxa = pixSplitIntoBoxa(pixs, minsum[i], skipdist[i],
                                delta[i], maxbg[i], 0, 1);
/*        boxaWriteStream(stderr, boxa); */
        pixd = pixBlendBoxaRandom(pixc, boxa, 0.4);
        pixRenderBoxaArb(pixd, boxa, 2, 255, 0, 0);
        pixSaveTiled(pixd, pixad, 1, 0, 30, 32);
        pixDestroy(&pixd);
        pixDestroy(&pixc);
        boxaDestroy(&boxa);
    }
    pixDestroy(&pix32);
    pixDestroy(&pixs);

        /* Display results */
    pixd = pixaDisplay(pixad, 0, 0);
    regTestWritePixAndCheck(rp, pixd, IFF_PNG);  /* 1 */
    pixDisplayWithTitle(pixd, 600, 100, NULL, rp->display);
    pixDestroy(&pixd);
    pixaDestroy(&pixad);

    pixaDestroy(&pixas);
    regTestCleanup(rp);
    return 0;
}
Example #16
0
main(int    argc,
     char **argv)
{
l_int32      i, j, w1, h1, w2, h2, w, h, same;
BOX         *box1, *box2;
PIX         *pixs, *pixs1, *pixs2, *pix1, *pix2;
PIX         *pixg, *pixg1, *pixg2, *pixc2, *pixbl, *pixd;
PIXA        *pixa;
static char  mainName[] = "blend2_reg";

        /* --- Set up the 8 bpp blending image --- */
    pixg = pixCreate(660, 500, 8);
    for (i = 0; i < 500; i++)
        for (j = 0; j < 660; j++)
            pixSetPixel(pixg, j, i, (l_int32)(0.775 * j) % 256);

        /* --- Set up the initial color images to be blended together --- */
    pixs1 = pixRead("wyom.jpg");
    pixs2 = pixRead("fish24.jpg");
    pixGetDimensions(pixs1, &w1, &h1, NULL);
    pixGetDimensions(pixs2, &w2, &h2, NULL);
    h = L_MIN(h1, h2);
    w = L_MIN(w1, w2);
    box1 = boxCreate(0, 0, w1, h1);
    box2 = boxCreate(0, 300, 660, 500);
    pix1 = pixClipRectangle(pixs1, box1, NULL);
    pix2 = pixClipRectangle(pixs2, box2, NULL);
    pixDestroy(&pixs1);
    pixDestroy(&pixs2);
    boxDestroy(&box1);
    boxDestroy(&box2);

        /* --- Blend 2 rgb images --- */
    pixa = pixaCreate(0);
    pixSaveTiled(pixg, pixa, 1, 1, 40, 32);
    pixd = pixBlendWithGrayMask(pix1, pix2, pixg, 50, 50);
    pixSaveTiled(pix1, pixa, 1, 1, 40, 32);
    pixSaveTiled(pix2, pixa, 1, 0, 40, 32);
    pixSaveTiled(pixd, pixa, 1, 0, 40, 32);
    pixDestroy(&pixd);

        /* --- Blend 2 grayscale images --- */
    pixg1 = pixConvertRGBToLuminance(pix1);
    pixg2 = pixConvertRGBToLuminance(pix2);
    pixd = pixBlendWithGrayMask(pixg1, pixg2, pixg, 50, 50);
    pixSaveTiled(pixg1, pixa, 1, 1, 40, 32);
    pixSaveTiled(pixg2, pixa, 1, 0, 40, 32);
    pixSaveTiled(pixd, pixa, 1, 0, 40, 32);
    pixDestroy(&pixg1);
    pixDestroy(&pixg2);
    pixDestroy(&pixd);

        /* --- Blend a colormap image and an rgb image --- */
    pixc2 = pixFixedOctcubeQuantGenRGB(pix2, 2);
    pixd = pixBlendWithGrayMask(pix1, pixc2, pixg, 50, 50);
    pixSaveTiled(pix1, pixa, 1, 1, 40, 32);
    pixSaveTiled(pixc2, pixa, 1, 0, 40, 32);
    pixSaveTiled(pixd, pixa, 1, 0, 40, 32);
    pixDestroy(&pixc2);
    pixDestroy(&pixd);

        /* --- Blend a colormap image and a grayscale image --- */
    pixg1 = pixConvertRGBToLuminance(pix1);
    pixc2 = pixFixedOctcubeQuantGenRGB(pix2, 2);
    pixd = pixBlendWithGrayMask(pixg1, pixc2, pixg, 50, 50);
    pixSaveTiled(pixg1, pixa, 1, 1, 40, 32);
    pixSaveTiled(pixc2, pixa, 1, 0, 40, 32);
    pixSaveTiled(pixd, pixa, 1, 0, 40, 32);
    pixDestroy(&pixd);
    pixd = pixBlendWithGrayMask(pixg1, pixc2, pixg, -100, -100);
    pixSaveTiled(pixg1, pixa, 1, 1, 40, 32);
    pixSaveTiled(pixc2, pixa, 1, 0, 40, 32);
    pixSaveTiled(pixd, pixa, 1, 0, 40, 32);
    pixDestroy(&pixd);
    pixDestroy(&pixg1);
    pixDestroy(&pixc2);

        /* --- Test png read/write with alpha channel --- */
        /* First make pixs1, using pixg as the alpha channel */
    pixs = pixRead("fish24.jpg");
    box1 = boxCreate(0, 300, 660, 500);
    pixs1 = pixClipRectangle(pixs, box1, NULL);
    pixSaveTiled(pixs1, pixa, 1, 1, 40, 32);
    pixSetRGBComponent(pixs1, pixg, L_ALPHA_CHANNEL);
        /* To see the alpha channel, blend with a black image */
    pixbl = pixCreate(660, 500, 32);
    pixd = pixBlendWithGrayMask(pixbl, pixs1, NULL, 0, 0);
    pixSaveTiled(pixd, pixa, 1, 0, 40, 32);
    pixDestroy(&pixd);
        /* Write out the RGBA image and read it back */
    l_pngSetWriteAlpha(1);
    pixWrite("/tmp/junkpixs1.png", pixs1, IFF_PNG);
    l_pngSetStripAlpha(0);
    pixs2 = pixRead("/tmp/junkpixs1.png");
        /* Make sure that the alpha channel image hasn't changed */
    pixg2 = pixGetRGBComponent(pixs2, L_ALPHA_CHANNEL);
    pixEqual(pixg, pixg2, &same);
    if (same)
        fprintf(stderr, "PNG with alpha read/write OK\n");
    else
        fprintf(stderr, "PNG with alpha read/write failed\n");
        /* Blend again with a black image */
    pixd = pixBlendWithGrayMask(pixbl, pixs2, NULL, 0, 0);
    pixSaveTiled(pixd, pixa, 1, 0, 40, 32);
    pixDestroy(&pixd);
        /* Blend with a white image */
    pixSetAll(pixbl);
    pixd = pixBlendWithGrayMask(pixbl, pixs2, NULL, 0, 0);
    pixSaveTiled(pixd, pixa, 1, 0, 40, 32);
    pixDestroy(&pixd);
    l_pngSetWriteAlpha(0);  /* reset to default */
    l_pngSetStripAlpha(1);  /* reset to default */
    pixDestroy(&pixbl);
    pixDestroy(&pixs);
    pixDestroy(&pixs1);
    pixDestroy(&pixs2);
    pixDestroy(&pixg2);
    boxDestroy(&box1);

        /* --- Display results --- */
    pixd = pixaDisplay(pixa, 0, 0);
    pixDisplay(pixd, 100, 100);
    pixWrite("/tmp/junkblend2.jpg", pixd, IFF_JFIF_JPEG);
    pixDestroy(&pixd);
    pixaDestroy(&pixa);

    pixDestroy(&pixg);
    pixDestroy(&pix1);
    pixDestroy(&pix2);
    return 0;
}
Example #17
0
int main(int    argc,
         char **argv)
{
l_int32       i, j, w, h, same, width, height, cx, cy;
l_uint32      val;
BOX          *box;
PIX          *pix0, *pixs, *pixse, *pixd1, *pixd2;
SEL          *sel;
L_REGPARAMS  *rp;

    if (regTestSetup(argc, argv, &rp))
        return 1;

    pix0 = pixRead("feyn-fract.tif");
    box = boxCreate(293, 37, pixGetWidth(pix0) - 691, pixGetHeight(pix0) -145);
    pixs = pixClipRectangle(pix0, box, NULL);
    boxDestroy(&box);
    if (rp->display) pixDisplay(pixs, 100, 100);

        /* Test 63 different sizes */
    for (width = 1; width <= 25; width += 3) {   /* 9 values */
	for (height = 1; height <= 25; height += 4) {  /* 7 values */

	    cx = width / 2;
	    cy = height / 2;

		/* Dilate using an actual sel */
	    sel = selCreateBrick(height, width, cy, cx, SEL_HIT);
	    pixd1 = pixDilate(NULL, pixs, sel);

		/* Dilate using a pix as a sel */
	    pixse = pixCreate(width, height, 1);
	    pixSetAll(pixse);
	    pixd2 = pixCopy(NULL, pixs);
	    w = pixGetWidth(pixs);
	    h = pixGetHeight(pixs);
	    for (i = 0; i < h; i++) {
		for (j = 0; j < w; j++) {
		    pixGetPixel(pixs, j, i, &val);
		    if (val)
			pixRasterop(pixd2, j - cx, i - cy, width, height,
				    PIX_SRC | PIX_DST, pixse, 0, 0);
		}
	    }

	    pixEqual(pixd1, pixd2, &same);
            regTestCompareValues(rp, 1, same, 0.0);  /* 0 - 62 */
	    if (same == 0) {
		fprintf(stderr,
                        "Results differ for SE (width,height) = (%d,%d)\n",
                        width, height);
            }

	    pixDestroy(&pixse);
	    pixDestroy(&pixd1);
	    pixDestroy(&pixd2);
	    selDestroy(&sel);
	}
    }
    pixDestroy(&pix0);
    pixDestroy(&pixs);
    return regTestCleanup(rp);
}
Example #18
0
int main(int    argc,
         char **argv)
{
PIX          *pixs2, *pixs3, *pixb1, *pixb2, *pixb3;
PIX          *pixr2, *pixr3;
PIX          *pixc1, *pixc2, *pixc3, *pixcs1, *pixcs2, *pixcs3;
PIX          *pixd, *pixt1, *pixt2, *pixt3;
PTA          *ptas1, *ptas2, *ptas3, *ptad1, *ptad2, *ptad3;
L_REGPARAMS  *rp;

    if (regTestSetup(argc, argv, &rp))
        return 1;

    pixc1 = pixRead("test24.jpg");
    pixc2 = pixRead("wyom.jpg");
    pixc3 = pixRead("marge.jpg");

        /* Test alpha blend scaling */
    pixd = pixCreate(900, 400, 32);
    pixSetAll(pixd);
    pixs2 = pixScaleWithAlpha(pixc2, 0.5, 0.5, NULL, 0.3);
    pixs3 = pixScaleWithAlpha(pixc3, 0.4, 0.4, NULL, 0.7);
    pixb1 = pixBlendWithGrayMask(pixd, pixs3, NULL, 100, 100);
    pixb2 = pixBlendWithGrayMask(pixb1, pixs2, NULL, 300, 130);
    pixb3 = pixBlendWithGrayMask(pixb2, pixs3, NULL, 600, 160);
    regTestWritePixAndCheck(rp, pixb3, IFF_PNG);  /* 0 */
    pixDisplayWithTitle(pixb3, 900, 100, NULL, rp->display);
    pixDestroy(&pixd);
    pixDestroy(&pixs2);
    pixDestroy(&pixs3);
    pixDestroy(&pixb1);
    pixDestroy(&pixb2);
    pixDestroy(&pixb3);

        /* Test alpha blend rotation */
    pixd = pixCreate(1200, 800, 32);
    pixSetAll(pixd);
    pixr3 = pixRotateWithAlpha(pixc3, -0.3, NULL, 1.0);
    pixr2 = pixRotateWithAlpha(pixc2, +0.3, NULL, 1.0);
    pixb3 = pixBlendWithGrayMask(pixd, pixr3, NULL, 100, 100);
    pixb2 = pixBlendWithGrayMask(pixb3, pixr2, NULL, 400, 100);
    regTestWritePixAndCheck(rp, pixb2, IFF_PNG);  /* 1 */
    pixDisplayWithTitle(pixb2, 500, 100, NULL, rp->display);
    pixDestroy(&pixd);
    pixDestroy(&pixr3);
    pixDestroy(&pixr2);
    pixDestroy(&pixb3);
    pixDestroy(&pixb2);

    pixcs1 = pixScale(pixc1, 0.35, 0.35);
    pixcs2 = pixScale(pixc2, 0.55, 0.55);
    pixcs3 = pixScale(pixc3, 0.65, 0.65);

        /* Test alpha blend affine */
    pixd = pixCreate(800, 900, 32);
    pixSetAll(pixd);
    MakePtas(2, 3, &ptas1, &ptad1);
    MakePtas(4, 3, &ptas2, &ptad2);
    MakePtas(3, 3, &ptas3, &ptad3);
    pixt1 = pixAffinePtaWithAlpha(pixcs1, ptad1, ptas1, NULL, 1.0, 300);
    pixt2 = pixAffinePtaWithAlpha(pixcs2, ptad2, ptas2, NULL, 0.8, 400);
    pixt3 = pixAffinePtaWithAlpha(pixcs3, ptad3, ptas3, NULL, 0.7, 300);
    pixb1 = pixBlendWithGrayMask(pixd, pixt1, NULL, -250, 20);
    pixb2 = pixBlendWithGrayMask(pixb1, pixt2, NULL, -150, -250);
    pixb3 = pixBlendWithGrayMask(pixb2, pixt3, NULL, -100, 220);
    regTestWritePixAndCheck(rp, pixb3, IFF_PNG);  /* 2 */
    pixDisplayWithTitle(pixb3, 100, 100, NULL, rp->display);
    pixDestroy(&pixd);
    pixDestroy(&pixb1);
    pixDestroy(&pixb2);
    pixDestroy(&pixb3);
    pixDestroy(&pixt1);
    pixDestroy(&pixt2);
    pixDestroy(&pixt3);
    ptaDestroy(&ptas1);
    ptaDestroy(&ptas2);
    ptaDestroy(&ptas3);
    ptaDestroy(&ptad1);
    ptaDestroy(&ptad2);
    ptaDestroy(&ptad3);

        /* Test alpha blend projective */
    pixd = pixCreate(900, 900, 32);
    pixSetAll(pixd);
    MakePtas(2, 4, &ptas1, &ptad1);
    MakePtas(4, 4, &ptas2, &ptad2);
    MakePtas(3, 4, &ptas3, &ptad3);
    pixt1 = pixProjectivePtaWithAlpha(pixcs1, ptad1, ptas1, NULL, 1.0, 300);
    pixt2 = pixProjectivePtaWithAlpha(pixcs2, ptad2, ptas2, NULL, 0.8, 400);
    pixt3 = pixProjectivePtaWithAlpha(pixcs3, ptad3, ptas3, NULL, 0.7, 400);
    pixb1 = pixBlendWithGrayMask(pixd, pixt1, NULL, -150, 20);
    pixb2 = pixBlendWithGrayMask(pixb1, pixt2, NULL, -50, -250);
    pixb3 = pixBlendWithGrayMask(pixb2, pixt3, NULL, -100, 220);
    regTestWritePixAndCheck(rp, pixb3, IFF_PNG);  /* 3 */
    pixDisplayWithTitle(pixb3, 300, 100, NULL, rp->display);
    pixDestroy(&pixd);
    pixDestroy(&pixb1);
    pixDestroy(&pixb2);
    pixDestroy(&pixb3);
    pixDestroy(&pixt1);
    pixDestroy(&pixt2);
    pixDestroy(&pixt3);
    ptaDestroy(&ptas1);
    ptaDestroy(&ptas2);
    ptaDestroy(&ptas3);
    ptaDestroy(&ptad1);
    ptaDestroy(&ptad2);
    ptaDestroy(&ptad3);

        /* Test alpha blend bilinear */
    pixd = pixCreate(900, 900, 32);
    pixSetAll(pixd);
    MakePtas(2, 4, &ptas1, &ptad1);
    MakePtas(4, 4, &ptas2, &ptad2);
    MakePtas(3, 4, &ptas3, &ptad3);
    pixt1 = pixBilinearPtaWithAlpha(pixcs1, ptad1, ptas1, NULL, 1.0, 300);
    pixt2 = pixBilinearPtaWithAlpha(pixcs2, ptad2, ptas2, NULL, 0.8, 400);
    pixt3 = pixBilinearPtaWithAlpha(pixcs3, ptad3, ptas3, NULL, 0.7, 400);
    pixb1 = pixBlendWithGrayMask(pixd, pixt1, NULL, -150, 20);
    pixb2 = pixBlendWithGrayMask(pixb1, pixt2, NULL, -50, -250);
    pixb3 = pixBlendWithGrayMask(pixb2, pixt3, NULL, -100, 220);
    regTestWritePixAndCheck(rp, pixb3, IFF_PNG);  /* 4 */
    pixDisplayWithTitle(pixb3, 500, 100, NULL, rp->display);
    pixDestroy(&pixd);
    pixDestroy(&pixb1);
    pixDestroy(&pixb2);
    pixDestroy(&pixb3);
    pixDestroy(&pixt1);
    pixDestroy(&pixt2);
    pixDestroy(&pixt3);
    ptaDestroy(&ptas1);
    ptaDestroy(&ptas2);
    ptaDestroy(&ptas3);
    ptaDestroy(&ptad1);
    ptaDestroy(&ptad2);
    ptaDestroy(&ptad3);

    pixDestroy(&pixc1);
    pixDestroy(&pixc2);
    pixDestroy(&pixc3);
    pixDestroy(&pixcs1);
    pixDestroy(&pixcs2);
    pixDestroy(&pixcs3);
    return regTestCleanup(rp);
}
Example #19
0
// Auto page segmentation. Divide the page image into blocks of uniform
// text linespacing and images.
// Width, height and resolution are derived from the input image.
// If the pix is non-NULL, then it is assumed to be the input, and it is
// copied to the image, otherwise the image is used directly.
// The output goes in the blocks list with corresponding TO_BLOCKs in the
// to_blocks list.
// If single_column is true, then no attempt is made to divide the image
// into columns, but multiple blocks are still made if the text is of
// non-uniform linespacing.
int Tesseract::AutoPageSeg(int width, int height, int resolution,
                           bool single_column, IMAGE* image,
                           BLOCK_LIST* blocks, TO_BLOCK_LIST* to_blocks) {
  int vertical_x = 0;
  int vertical_y = 1;
  TabVector_LIST v_lines;
  TabVector_LIST h_lines;
  ICOORD bleft(0, 0);
  Boxa* boxa = NULL;
  Pixa* pixa = NULL;
  // The blocks made by the ColumnFinder. Moved to blocks before return.
  BLOCK_LIST found_blocks;

#ifdef HAVE_LIBLEPT
  if (pix_binary_ != NULL) {
    if (textord_debug_images) {
      Pix* grey_pix = pixCreate(width, height, 8);
      // Printable images are light grey on white, but for screen display
      // they are black on dark grey so the other colors show up well.
      if (textord_debug_printable) {
        pixSetAll(grey_pix);
        pixSetMasked(grey_pix, pix_binary_, 192);
      } else {
        pixSetAllArbitrary(grey_pix, 64);
        pixSetMasked(grey_pix, pix_binary_, 0);
      }
      AlignedBlob::IncrementDebugPix();
      pixWrite(AlignedBlob::textord_debug_pix().string(), grey_pix, IFF_PNG);
      pixDestroy(&grey_pix);
    }
    if (tessedit_dump_pageseg_images)
      pixWrite("tessinput.png", pix_binary_, IFF_PNG);
    // Leptonica is used to find the lines and image regions in the input.
    LineFinder::FindVerticalLines(resolution, pix_binary_,
                                  &vertical_x, &vertical_y, &v_lines);
    LineFinder::FindHorizontalLines(resolution, pix_binary_, &h_lines);
    if (tessedit_dump_pageseg_images)
      pixWrite("tessnolines.png", pix_binary_, IFF_PNG);
    ImageFinder::FindImages(pix_binary_, &boxa, &pixa);
    if (tessedit_dump_pageseg_images)
      pixWrite("tessnoimages.png", pix_binary_, IFF_PNG);
    // Copy the Pix to the IMAGE.
    image->FromPix(pix_binary_);
    if (single_column)
      v_lines.clear();
  }
#endif
  TO_BLOCK_LIST land_blocks, port_blocks;
  TBOX page_box;
  // The rest of the algorithm uses the usual connected components.
  find_components(blocks, &land_blocks, &port_blocks, &page_box);

  TO_BLOCK_IT to_block_it(&port_blocks);
  ASSERT_HOST(!to_block_it.empty());
  for (to_block_it.mark_cycle_pt(); !to_block_it.cycled_list();
       to_block_it.forward()) {
    TO_BLOCK* to_block = to_block_it.data();
    TBOX blkbox = to_block->block->bounding_box();
    if (to_block->line_size >= 2) {
      // Note: if there are multiple blocks, then v_lines, boxa, and pixa
      // are empty on the next iteration, but in this case, we assume
      // that there aren't any interesting line separators or images, since
      // it means that we have a pre-defined unlv zone file.
      ColumnFinder finder(static_cast<int>(to_block->line_size),
                          blkbox.botleft(), blkbox.topright(),
                          &v_lines, &h_lines, vertical_x, vertical_y);
      if (finder.FindBlocks(height, resolution, single_column,
                            to_block, boxa, pixa, &found_blocks, to_blocks) < 0)
        return -1;
      finder.ComputeDeskewVectors(&deskew_, &reskew_);
      boxa = NULL;
      pixa = NULL;
    }
  }
#ifdef HAVE_LIBLEPT
  boxaDestroy(&boxa);
  pixaDestroy(&pixa);
#endif
  blocks->clear();
  BLOCK_IT block_it(blocks);
  // Move the found blocks to the input/output blocks.
  block_it.add_list_after(&found_blocks);

  if (textord_debug_images) {
    // The debug image is no longer needed so delete it.
    unlink(AlignedBlob::textord_debug_pix().string());
  }
  return 0;
}
Example #20
0
/*!
 * \brief   boxaDisplayTiled()
 *
 * \param[in]    boxas
 * \param[in]    pixa          [optional] background for each box
 * \param[in]    first         index of first box
 * \param[in]    last          index of last box; use -1 to go to end
 * \param[in]    maxwidth      of output image
 * \param[in]    linewidth     width of box outlines, before scaling
 * \param[in]    scalefactor   applied to every box; use 1.0 for no scaling
 * \param[in]    background    0 for white, 1 for black; this is the color
 *                             of the spacing between the images
 * \param[in]    spacing       between images, and on outside
 * \param[in]    border        width of black border added to each image;
 *                             use 0 for no border
 * \return  pixd of tiled images of boxes, or NULL on error
 *
 * <pre>
 * Notes:
 *      (1) Displays each box separately in a tiled 32 bpp image.
 *      (2) If pixa is defined, it must have the same count as the boxa,
 *          and it will be a background over with each box is rendered.
 *          If pixa is not defined, the boxes will be rendered over
 *          blank images of identical size.
 *      (3) See pixaDisplayTiledInRows() for other parameters.
 * </pre>
 */
PIX *
boxaDisplayTiled(BOXA        *boxas,
                 PIXA        *pixa,
                 l_int32      first,
                 l_int32      last,
                 l_int32      maxwidth,
                 l_int32      linewidth,
                 l_float32    scalefactor,
                 l_int32      background,
                 l_int32      spacing,
                 l_int32      border)
{
char     buf[32];
l_int32  i, n, npix, w, h, fontsize;
L_BMF   *bmf;
BOX     *box;
BOXA    *boxa;
PIX     *pix1, *pix2, *pixd;
PIXA    *pixat;

    PROCNAME("boxaDisplayTiled");

    if (!boxas)
        return (PIX *)ERROR_PTR("boxas not defined", procName, NULL);

    boxa = boxaSaveValid(boxas, L_COPY);
    n = boxaGetCount(boxa);
    if (pixa) {
        npix = pixaGetCount(pixa);
        if (n != npix) {
            boxaDestroy(&boxa);
            return (PIX *)ERROR_PTR("boxa and pixa counts differ",
                                    procName, NULL);
        }
    }
    first = L_MAX(0, first);
    if (last < 0) last = n - 1;
    if (first >= n) {
        boxaDestroy(&boxa);
        return (PIX *)ERROR_PTR("invalid first", procName, NULL);
    }
    if (last >= n) {
        L_WARNING("last = %d is beyond max index = %d; adjusting\n",
                  procName, last, n - 1);
        last = n - 1;
    }
    if (first > last) {
        boxaDestroy(&boxa);
        return (PIX *)ERROR_PTR("first > last", procName, NULL);
    }

        /* Because the bitmap font will be reduced when tiled, choose the
         * font size inversely with the scale factor. */
    if (scalefactor > 0.8)
        fontsize = 6;
    else if (scalefactor > 0.6)
        fontsize = 10;
    else if (scalefactor > 0.4)
        fontsize = 14;
    else if (scalefactor > 0.3)
        fontsize = 18;
    else fontsize = 20;
    bmf = bmfCreate(NULL, fontsize);

    pixat = pixaCreate(n);
    boxaGetExtent(boxa, &w, &h, NULL);
    for (i = first; i <= last; i++) {
        box = boxaGetBox(boxa, i, L_CLONE);
        if (!pixa) {
            pix1 = pixCreate(w, h, 32);
            pixSetAll(pix1);
        } else {
            pix1 = pixaGetPix(pixa, i, L_COPY);
        }
        pixSetBorderVal(pix1, 0, 0, 0, 2, 0x0000ff00);
        snprintf(buf, sizeof(buf), "%d", i);
        pix2 = pixAddSingleTextblock(pix1, bmf, buf, 0x00ff0000,
                                     L_ADD_BELOW, NULL);
        pixDestroy(&pix1);
        pixRenderBoxArb(pix2, box, linewidth, 255, 0, 0);
        pixaAddPix(pixat, pix2, L_INSERT);
        boxDestroy(&box);
    }
    bmfDestroy(&bmf);
    boxaDestroy(&boxa);

    pixd = pixaDisplayTiledInRows(pixat, 32, maxwidth, scalefactor, background,
                                  spacing, border);
    pixaDestroy(&pixat);
    return pixd;
}
Example #21
0
/*!
 * Note: this method is generally inferior to pixHasColorRegions(); it
 *       is retained as a reference only
 *
 * \brief   pixFindColorRegionsLight()
 *
 * \param[in]    pixs        32 bpp rgb
 * \param[in]    pixm        [optional] 1 bpp mask image
 * \param[in]    factor      subsample factor; integer >= 1
 * \param[in]    darkthresh  threshold to eliminate dark pixels (e.g., text)
 *                           from consideration; typ. 70; -1 for default.
 * \param[in]    lightthresh threshold for minimum gray value at 95% rank
 *                           near white; typ. 220; -1 for default
 * \param[in]    mindiff     minimum difference from 95% rank value, used
 *                           to count darker pixels; typ. 50; -1 for default
 * \param[in]    colordiff   minimum difference in (max - min) component to
 *                           qualify as a color pixel; typ. 40; -1 for default
 * \param[out]   pcolorfract fraction of 'color' pixels found
 * \param[out]   pcolormask1 [optional] mask over background color, if any
 * \param[out]   pcolormask2 [optional] filtered mask over background color
 * \param[out]   pixadb      [optional] debug intermediate results
 * \return  0 if OK, 1 on error
 *
 * <pre>
 * Notes:
 *      (1) This function tries to determine if there is a significant
 *          color or darker region on a scanned page image where part
 *          of the image is very close to "white".  It will also allow
 *          extraction of small regions of lightly colored pixels.
 *          If the background is darker (and reddish), use instead
 *          pixHasColorRegions2().
 *      (2) If %pixm exists, only pixels under fg are considered. Typically,
 *          the inverse of %pixm would have fg pixels over a photograph.
 *      (3) There are four thresholds.
 *          * %darkthresh: ignore pixels darker than this (typ. fg text).
 *            We make a 1 bpp mask of these pixels, and then dilate it to
 *            remove all vestiges of fg from their vicinity.
 *          * %lightthresh: let val95 be the pixel value for which 95%
 *            of the non-masked pixels have a lower value (darker) of
 *            their min component.  Then if val95 is darker than
 *            %lightthresh, the image is not considered to have a
 *            light bg, and this returns 0.0 for %colorfract.
 *          * %mindiff: we are interested in the fraction of pixels that
 *            have two conditions.  The first is that their min component
 *            is at least %mindiff darker than val95.
 *          * %colordiff: the second condition is that the max-min diff
 *            of the pixel components exceeds %colordiff.
 *      (4) This returns in %pcolorfract the fraction of pixels that have
 *          both a min component that is at least %mindiff below that at the
 *          95% rank value (where 100% rank is the lightest value), and
 *          a max-min diff that is at least %colordiff.  Without the
 *          %colordiff constraint, gray pixels of intermediate value
 *          could get flagged by this function.
 *      (5) No masks are returned unless light color pixels are found.
 *          If colorfract > 0.0 and %pcolormask1 is defined, this returns
 *          a 1 bpp mask with fg pixels over the color background.
 *          This mask may have some holes in it.
 *      (6) If colorfract > 0.0 and %pcolormask2 is defined, this returns
 *          a filtered version of colormask1.  The two changes are
 *            (a) small holes have been filled
 *            (b) components near the border have been removed.
 *          The latter insures that dark pixels near the edge of the
 *          image are not included.
 *      (7) To generate a boxa of rectangular regions from the overlap
 *          of components in the filtered mask:
 *                boxa1 = pixConnCompBB(colormask2, 8);
 *                boxa2 = boxaCombineOverlaps(boxa1);
 *          This is done here in debug mode.
 * </pre>
 */
static l_int32
pixFindColorRegionsLight(PIX        *pixs,
                         PIX        *pixm,
                         l_int32     factor,
                         l_int32     darkthresh,
                         l_int32     lightthresh,
                         l_int32     mindiff,
                         l_int32     colordiff,
                         l_float32  *pcolorfract,
                         PIX       **pcolormask1,
                         PIX       **pcolormask2,
                         PIXA       *pixadb)
{
l_int32    lightbg, w, h, count;
l_float32  ratio, val95, rank;
BOXA      *boxa1, *boxa2;
NUMA      *nah;
PIX       *pix1, *pix2, *pix3, *pix4, *pix5, *pixm1, *pixm2, *pixm3;

    PROCNAME("pixFindColorRegionsLight");

    if (pcolormask1) *pcolormask1 = NULL;
    if (pcolormask2) *pcolormask2 = NULL;
    if (!pcolorfract)
        return ERROR_INT("&colorfract not defined", procName, 1);
    *pcolorfract = 0.0;
    if (!pixs || pixGetDepth(pixs) != 32)
        return ERROR_INT("pixs not defined or not 32 bpp", procName, 1);
    if (factor < 1) factor = 1;
    if (darkthresh < 0) darkthresh = 70;  /* defaults */
    if (lightthresh < 0) lightthresh = 220;
    if (mindiff < 0) mindiff = 50;
    if (colordiff < 0) colordiff = 40;

        /* Check if pixm covers most of the image.  If so, just return. */
    pixGetDimensions(pixs, &w, &h, NULL);
    if (pixm) {
        pixCountPixels(pixm, &count, NULL);
        ratio = (l_float32)count / ((l_float32)(w) * h);
        if (ratio > 0.7) {
            if (pixadb) L_INFO("pixm has big fg: %f5.2\n", procName, ratio);
            return 0;
        }
    }

        /* Make a mask pixm1 over the dark pixels in the image:
         * convert to gray using the average of the components;
         * threshold using %darkthresh; do a small dilation;
         * combine with pixm. */
    pix1 = pixConvertRGBToGray(pixs, 0.33, 0.34, 0.33);
    if (pixadb) pixaAddPix(pixadb, pixs, L_COPY);
    if (pixadb) pixaAddPix(pixadb, pix1, L_COPY);
    pixm1 = pixThresholdToBinary(pix1, darkthresh);
    pixDilateBrick(pixm1, pixm1, 7, 7);
    if (pixadb) pixaAddPix(pixadb, pixm1, L_COPY);
    if (pixm) {
        pixOr(pixm1, pixm1, pixm);
        if (pixadb) pixaAddPix(pixadb, pixm1, L_COPY);
    }
    pixDestroy(&pix1);

        /* Convert to gray using the minimum component value and
         * find the gray value at rank 0.95, that represents the light
         * pixels in the image.  If it is too dark, quit. */
    pix1 = pixConvertRGBToGrayMinMax(pixs, L_SELECT_MIN);
    pix2 = pixInvert(NULL, pixm1);  /* pixels that are not dark */
    pixGetRankValueMasked(pix1, pix2, 0, 0, factor, 0.95, &val95, &nah);
    pixDestroy(&pix2);
    if (pixadb) {
        L_INFO("val at 0.95 rank = %5.1f\n", procName, val95);
        gplotSimple1(nah, GPLOT_PNG, "/tmp/lept/histo1", "gray histo");
        pix3 = pixRead("/tmp/lept/histo1.png");
        pix4 = pixExpandReplicate(pix3, 2);
        pixaAddPix(pixadb, pix4, L_INSERT);
        pixDestroy(&pix3);
    }
    lightbg = (l_int32)val95 >= lightthresh;
    numaDestroy(&nah);
    if (!lightbg) {
        pixDestroy(&pix1);
        pixDestroy(&pixm1);
        return 0;
    }

        /* Make mask pixm2 over pixels that are darker than val95 - mindiff. */
    pixm2 = pixThresholdToBinary(pix1, val95 - mindiff);
    if (pixadb) pixaAddPix(pixadb, pixm2, L_COPY);
    pixDestroy(&pix1);

        /* Make a mask pixm3 over pixels that have some color saturation,
         * with a (max - min) component difference >= %colordiff,
         * and combine using AND with pixm2. */
    pix2 = pixConvertRGBToGrayMinMax(pixs, L_CHOOSE_MAXDIFF);
    pixm3 = pixThresholdToBinary(pix2, colordiff);
    pixDestroy(&pix2);
    pixInvert(pixm3, pixm3);  /* need pixels above threshold */
    if (pixadb) pixaAddPix(pixadb, pixm3, L_COPY);
    pixAnd(pixm2, pixm2, pixm3);
    if (pixadb) pixaAddPix(pixadb, pixm2, L_COPY);
    pixDestroy(&pixm3);

        /* Subtract the dark pixels represented by pixm1.
         * pixm2 now holds all the color pixels of interest  */
    pixSubtract(pixm2, pixm2, pixm1);
    pixDestroy(&pixm1);
    if (pixadb) pixaAddPix(pixadb, pixm2, L_COPY);

        /* But we're not quite finished.  Remove pixels from any component
         * that is touching the image border.  False color pixels can
         * sometimes be found there if the image is much darker near
         * the border, due to oxidation or reduced illumination. */
    pixm3 = pixRemoveBorderConnComps(pixm2, 8);
    pixDestroy(&pixm2);
    if (pixadb) pixaAddPix(pixadb, pixm3, L_COPY);

        /* Get the fraction of light color pixels */
    pixCountPixels(pixm3, &count, NULL);
    *pcolorfract = (l_float32)count / (w * h);
    if (pixadb) {
        if (count == 0)
            L_INFO("no light color pixels found\n", procName);
        else
            L_INFO("fraction of light color pixels = %5.3f\n", procName,
                   *pcolorfract);
    }

        /* Debug: extract the color pixels from pixs */
    if (pixadb && count > 0) {
            /* Use pixm3 to extract the color pixels */
        pix3 = pixCreateTemplate(pixs);
        pixSetAll(pix3);
        pixCombineMasked(pix3, pixs, pixm3);
        pixaAddPix(pixadb, pix3, L_INSERT);

            /* Use additional filtering to extract the color pixels */
        pix3 = pixCloseSafeBrick(NULL, pixm3, 15, 15);
        pixaAddPix(pixadb, pix3, L_INSERT);
        pix5 = pixCreateTemplate(pixs);
        pixSetAll(pix5);
        pixCombineMasked(pix5, pixs, pix3);
        pixaAddPix(pixadb, pix5, L_INSERT);

            /* Get the combined bounding boxes of the mask components
             * in pix3, and extract those pixels from pixs. */
        boxa1 = pixConnCompBB(pix3, 8);
        boxa2 = boxaCombineOverlaps(boxa1, NULL);
        pix4 = pixCreateTemplate(pix3);
        pixMaskBoxa(pix4, pix4, boxa2, L_SET_PIXELS);
        pixaAddPix(pixadb, pix4, L_INSERT);
        pix5 = pixCreateTemplate(pixs);
        pixSetAll(pix5);
        pixCombineMasked(pix5, pixs, pix4);
        pixaAddPix(pixadb, pix5, L_INSERT);
        boxaDestroy(&boxa1);
        boxaDestroy(&boxa2);
        pixaAddPix(pixadb, pixs, L_COPY);
    }

        /* Optional colormask returns */
    if (pcolormask2 && count > 0)
        *pcolormask2 = pixCloseSafeBrick(NULL, pixm3, 15, 15);
    if (pcolormask1 && count > 0)
        *pcolormask1 = pixm3;
    else
        pixDestroy(&pixm3);
    return 0;
}
Example #22
0
l_int32 main(int    argc,
             char **argv)
{
L_BMF        *bmf;
PIX          *pixs1, *pixs2, *pixg, *pixt, *pixd;
PIXA         *pixa;
L_REGPARAMS  *rp;

    if (regTestSetup(argc, argv, &rp))
        return 1;

    bmf = bmfCreate("./fonts", 8);
    pixs1 = pixCreate(301, 301, 32);
    pixs2 = pixCreate(601, 601, 32);
    pixSetAll(pixs1);
    pixSetAll(pixs2);
    pixRenderLineArb(pixs1, 0, 20, 300, 20, 5, 0, 0, 255);
    pixRenderLineArb(pixs1, 0, 70, 300, 70, 5, 0, 255, 0);
    pixRenderLineArb(pixs1, 0, 120, 300, 120, 5, 0, 255, 255);
    pixRenderLineArb(pixs1, 0, 170, 300, 170, 5, 255, 0, 0);
    pixRenderLineArb(pixs1, 0, 220, 300, 220, 5, 255, 0, 255);
    pixRenderLineArb(pixs1, 0, 270, 300, 270, 5, 255, 255, 0);
    pixRenderLineArb(pixs2, 0, 20, 300, 20, 5, 0, 0, 255);
    pixRenderLineArb(pixs2, 0, 70, 300, 70, 5, 0, 255, 0);
    pixRenderLineArb(pixs2, 0, 120, 300, 120, 5, 0, 255, 255);
    pixRenderLineArb(pixs2, 0, 170, 300, 170, 5, 255, 0, 0);
    pixRenderLineArb(pixs2, 0, 220, 300, 220, 5, 255, 0, 255);
    pixRenderLineArb(pixs2, 0, 270, 300, 270, 5, 255, 255, 0);

        /* Color, small pix */
    pixa = pixaCreate(0);
    pixt = pixQuadraticVShear(pixs1, L_WARP_TO_LEFT,
                                   60, -20, L_SAMPLED, L_BRING_IN_WHITE);
    PixSave(&pixt, pixa, 1, bmf, "sampled-left");
    pixt = pixQuadraticVShear(pixs1, L_WARP_TO_RIGHT,
                                   60, -20, L_SAMPLED, L_BRING_IN_WHITE);
    PixSave(&pixt, pixa, 0, bmf, "sampled-right");
    pixt = pixQuadraticVShear(pixs1, L_WARP_TO_LEFT,
                                   60, -20, L_INTERPOLATED, L_BRING_IN_WHITE);
    PixSave(&pixt, pixa, 1, bmf, "interpolated-left");
    pixt = pixQuadraticVShear(pixs1, L_WARP_TO_RIGHT,
                                   60, -20, L_INTERPOLATED, L_BRING_IN_WHITE);
    PixSave(&pixt, pixa, 0, bmf, "interpolated-right");
    pixd = pixaDisplay(pixa, 0, 0);
    regTestWritePixAndCheck(rp, pixd, IFF_PNG);
    pixDisplayWithTitle(pixd, 50, 50, NULL, rp->display);
    pixDestroy(&pixd);
    pixaDestroy(&pixa);

        /* Grayscale, small pix */
    pixg = pixConvertTo8(pixs1, 0);
    pixa = pixaCreate(0);
    pixt = pixQuadraticVShear(pixg, L_WARP_TO_LEFT,
                                   60, -20, L_SAMPLED, L_BRING_IN_WHITE);
    PixSave(&pixt, pixa, 1, bmf, "sampled-left");
    pixt = pixQuadraticVShear(pixg, L_WARP_TO_RIGHT,
                                   60, -20, L_SAMPLED, L_BRING_IN_WHITE);
    PixSave(&pixt, pixa, 0, bmf, "sampled-right");
    pixt = pixQuadraticVShear(pixg, L_WARP_TO_LEFT,
                                   60, -20, L_INTERPOLATED, L_BRING_IN_WHITE);
    PixSave(&pixt, pixa, 1, bmf, "interpolated-left");
    pixt = pixQuadraticVShear(pixg, L_WARP_TO_RIGHT,
                                   60, -20, L_INTERPOLATED, L_BRING_IN_WHITE);
    PixSave(&pixt, pixa, 0, bmf, "interpolated-right");
    pixd = pixaDisplay(pixa, 0, 0);
    regTestWritePixAndCheck(rp, pixd, IFF_PNG);
    pixDisplayWithTitle(pixd, 250, 50, NULL, rp->display);
    pixDestroy(&pixg);
    pixDestroy(&pixd);
    pixaDestroy(&pixa);

        /* Color, larger pix */
    pixa = pixaCreate(0);
    pixt = pixQuadraticVShear(pixs2, L_WARP_TO_LEFT,
                              120, -40, L_SAMPLED, L_BRING_IN_WHITE);
    PixSave(&pixt, pixa, 1, bmf, "sampled-left");
    pixt = pixQuadraticVShear(pixs2, L_WARP_TO_RIGHT,
                              120, -40, L_SAMPLED, L_BRING_IN_WHITE);
    PixSave(&pixt, pixa, 0, bmf, "sampled-right");
    pixt = pixQuadraticVShear(pixs2, L_WARP_TO_LEFT,
                              120, -40, L_INTERPOLATED, L_BRING_IN_WHITE);
    PixSave(&pixt, pixa, 1, bmf, "interpolated-left");
    pixt = pixQuadraticVShear(pixs2, L_WARP_TO_RIGHT,
                              120, -40, L_INTERPOLATED, L_BRING_IN_WHITE);
    PixSave(&pixt, pixa, 0, bmf, "interpolated-right");
    pixd = pixaDisplay(pixa, 0, 0);
    regTestWritePixAndCheck(rp, pixd, IFF_PNG);
    pixDisplayWithTitle(pixd, 550, 50, NULL, rp->display);
    pixDestroy(&pixd);
    pixaDestroy(&pixa);

        /* Grayscale, larger pix */
    pixg = pixConvertTo8(pixs2, 0);
    pixa = pixaCreate(0);
    pixt = pixQuadraticVShear(pixg, L_WARP_TO_LEFT,
                              60, -20, L_SAMPLED, L_BRING_IN_WHITE);
    PixSave(&pixt, pixa, 1, bmf, "sampled-left");
    pixt = pixQuadraticVShear(pixg, L_WARP_TO_RIGHT,
                              60, -20, L_SAMPLED, L_BRING_IN_WHITE);
    PixSave(&pixt, pixa, 0, bmf, "sampled-right");
    pixt = pixQuadraticVShear(pixg, L_WARP_TO_LEFT,
                              60, -20, L_INTERPOLATED, L_BRING_IN_WHITE);
    PixSave(&pixt, pixa, 1, bmf, "interpolated-left");
    pixt = pixQuadraticVShear(pixg, L_WARP_TO_RIGHT,
                              60, -20, L_INTERPOLATED, L_BRING_IN_WHITE);
    PixSave(&pixt, pixa, 0, bmf, "interpolated-right");
    pixd = pixaDisplay(pixa, 0, 0);
    regTestWritePixAndCheck(rp, pixd, IFF_PNG);
    pixDisplayWithTitle(pixd, 850, 50, NULL, rp->display);
    pixDestroy(&pixg);
    pixDestroy(&pixd);
    pixaDestroy(&pixa);

    pixDestroy(&pixs1);
    pixDestroy(&pixs2);
    bmfDestroy(&bmf);
    return regTestCleanup(rp);
}
Example #23
0
/*!
 *  pixProjectiveSampled()
 *
 *      Input:  pixs (all depths)
 *              vc  (vector of 8 coefficients for projective transformation)
 *              incolor (L_BRING_IN_WHITE, L_BRING_IN_BLACK)
 *      Return: pixd, or null on error
 *
 *  Notes:
 *      (1) Brings in either black or white pixels from the boundary.
 *      (2) Retains colormap, which you can do for a sampled transform..
 *      (3) For 8 or 32 bpp, much better quality is obtained by the
 *          somewhat slower pixProjective().  See that function
 *          for relative timings between sampled and interpolated.
 */
PIX *
pixProjectiveSampled(PIX        *pixs,
                     l_float32  *vc,
                     l_int32     incolor)
{
l_int32     i, j, w, h, d, x, y, wpls, wpld, color, cmapindex;
l_uint32    val;
l_uint32   *datas, *datad, *lines, *lined;
PIX        *pixd;
PIXCMAP    *cmap;

    PROCNAME("pixProjectiveSampled");

    if (!pixs)
        return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
    if (!vc)
        return (PIX *)ERROR_PTR("vc not defined", procName, NULL);
    if (incolor != L_BRING_IN_WHITE && incolor != L_BRING_IN_BLACK)
        return (PIX *)ERROR_PTR("invalid incolor", procName, NULL);
    pixGetDimensions(pixs, &w, &h, &d);
    if (d != 1 && d != 2 && d != 4 && d != 8 && d != 32)
        return (PIX *)ERROR_PTR("depth not 1, 2, 4, 8 or 16", procName, NULL);

        /* Init all dest pixels to color to be brought in from outside */
    pixd = pixCreateTemplate(pixs);
    if ((cmap = pixGetColormap(pixs)) != NULL) {
        if (incolor == L_BRING_IN_WHITE)
            color = 1;
        else
            color = 0;
        pixcmapAddBlackOrWhite(cmap, color, &cmapindex);
        pixSetAllArbitrary(pixd, cmapindex);
    }
    else {
        if ((d == 1 && incolor == L_BRING_IN_WHITE) ||
            (d > 1 && incolor == L_BRING_IN_BLACK))
            pixClearAll(pixd);
        else
            pixSetAll(pixd);
    }

        /* Scan over the dest pixels */
    datas = pixGetData(pixs);
    wpls = pixGetWpl(pixs);
    datad = pixGetData(pixd);
    wpld = pixGetWpl(pixd);
    for (i = 0; i < h; i++) {
        lined = datad + i * wpld;
        for (j = 0; j < w; j++) {
            projectiveXformSampledPt(vc, j, i, &x, &y);
            if (x < 0 || y < 0 || x >=w || y >= h)
                continue;
            lines = datas + y * wpls;
            if (d == 1) {
                val = GET_DATA_BIT(lines, x);
                SET_DATA_BIT_VAL(lined, j, val);
            }
            else if (d == 8) {
                val = GET_DATA_BYTE(lines, x);
                SET_DATA_BYTE(lined, j, val);
            }
            else if (d == 32) {
                lined[j] = lines[x];
            }
            else if (d == 2) {
                val = GET_DATA_DIBIT(lines, x);
                SET_DATA_DIBIT(lined, j, val);
            }
            else if (d == 4) {
                val = GET_DATA_QBIT(lines, x);
                SET_DATA_QBIT(lined, j, val);
            }
        }
    }

    return pixd;
}
Example #24
0
int main(int    argc,
         char **argv)
{
char       buf[256];
l_int32    w, h, i, j, k, index, op, dir, stretch;
l_float32  del, angle, angledeg;
BOX       *box;
L_BMF     *bmf;
PIX       *pixs, *pix1, *pix2, *pixd;
PIXA      *pixa;
static char  mainName[] = "warpertest";

    if (argc != 1)
        return ERROR_INT("syntax: warpertest", mainName, 1);
    bmf = bmfCreate(NULL, 6);

    /* --------   Stereoscopic warping --------------*/
#if RUN_WARP
    pixs = pixRead("german.png");
    pixGetDimensions(pixs, &w, &h, NULL);
    pixa = pixaCreate(50);
    for (i = 0; i < 50; i++) {  /* need to test > 2 widths ! */
        j = 7 * i;
        box = boxCreate(0, 0, w - j, h - j);
        pix1 = pixClipRectangle(pixs, box, NULL);
        pixd = pixWarpStereoscopic(pix1, 15, 22, 8, 30, -20, 1);
        pixSetChromaSampling(pixd, 0);
        pixaAddPix(pixa, pixd, L_INSERT);
        pixDestroy(&pix1);
        boxDestroy(&box);
    }
    pixDestroy(&pixs);

    pixaConvertToPdf(pixa, 100, 1.0, L_JPEG_ENCODE, 0, "warp.pdf",
                     "/tmp/warp.pdf");
    pixd = pixaDisplayTiledInRows(pixa, 32, 2000, 1.0, 0, 20, 2);
    pixWrite("/tmp/warp.jpg", pixd, IFF_JFIF_JPEG);
    pixaDestroy(&pixa);
    pixDestroy(&pixd);
#endif

    /* --------   Quadratic Vertical Shear  --------------*/
#if RUN_QUAD_VERT_SHEAR
    pixs = pixCreate(501, 501, 32);
    pixGetDimensions(pixs, &w, &h, NULL);
    pixSetAll(pixs);
    pixRenderLineArb(pixs, 0, 30, 500, 30, 5, 0, 0, 255);
    pixRenderLineArb(pixs, 0, 110, 500, 110, 5, 0, 255, 0);
    pixRenderLineArb(pixs, 0, 190, 500, 190, 5, 0, 255, 255);
    pixRenderLineArb(pixs, 0, 270, 500, 270, 5, 255, 0, 0);
    pixRenderLineArb(pixs, 0, 360, 500, 360, 5, 255, 0, 255);
    pixRenderLineArb(pixs, 0, 450, 500, 450, 5, 255, 255, 0);
    pixa = pixaCreate(50);
    for (i = 0; i < 50; i++) {
        j = 3 * i;
        dir = ((i / 2) & 1) ? L_WARP_TO_RIGHT : L_WARP_TO_LEFT;
        op = (i & 1) ? L_INTERPOLATED : L_SAMPLED;
        box = boxCreate(0, 0, w - j, h - j);
        pix1 = pixClipRectangle(pixs, box, NULL);
        pix2 = pixQuadraticVShear(pix1, dir, 60, -20, op, L_BRING_IN_WHITE);

        snprintf(buf, sizeof(buf), "%s, %s", dirstr[dir], opstr[op]);
        pixd = pixAddSingleTextblock(pix2, bmf, buf, 0xff000000,
                                     L_ADD_BELOW, 0);
        pixaAddPix(pixa, pixd, L_INSERT);
        pixDestroy(&pix1);
        pixDestroy(&pix2);
        boxDestroy(&box);
    }
    pixDestroy(&pixs);

    pixaConvertToPdf(pixa, 100, 1.0, L_FLATE_ENCODE, 0, "quad_vshear.pdf",
                     "/tmp/quad_vshear.pdf");
    pixd = pixaDisplayTiledInRows(pixa, 32, 2000, 1.0, 0, 20, 2);
    pixWrite("/tmp/quad_vshear.jpg", pixd, IFF_PNG);
    pixaDestroy(&pixa);
    pixDestroy(&pixd);
#endif

    /* --------  Linear Horizontal stretching  --------------*/
#if RUN_LIN_HORIZ_STRETCH
    pixs = pixRead("german.png");
    pixa = pixaCreate(50);
    for (k = 0; k < 2; k++) {
        for (i = 0; i < 25; i++) {
            index = 25 * k + i;
            stretch = 10 + 4 * i;
            if (k == 0) stretch = -stretch;
            dir = (k == 1) ? L_WARP_TO_RIGHT : L_WARP_TO_LEFT;
            op = (i & 1) ? L_INTERPOLATED : L_SAMPLED;
            pix1 = pixStretchHorizontal(pixs, dir, L_LINEAR_WARP,
                                        stretch, op, L_BRING_IN_WHITE);
            snprintf(buf, sizeof(buf), "%s, %s", dirstr[dir], opstr[op]);
            pixd = pixAddSingleTextblock(pix1, bmf, buf, 0xff000000,
                                         L_ADD_BELOW, 0);
            pixaAddPix(pixa, pixd, L_INSERT);
            pixDestroy(&pix1);
        }
    }
    pixDestroy(&pixs);

    pixaConvertToPdf(pixa, 100, 1.0, L_JPEG_ENCODE, 0, "linear_hstretch.pdf",
                     "/tmp/linear_hstretch.pdf");
    pixd = pixaDisplayTiledInRows(pixa, 32, 2500, 1.0, 0, 20, 2);
    pixWrite("/tmp/linear_hstretch.jpg", pixd, IFF_JFIF_JPEG);
    pixaDestroy(&pixa);
    pixDestroy(&pixd);
#endif

    /* --------  Quadratic Horizontal stretching  --------------*/
#if RUN_QUAD_HORIZ_STRETCH
    pixs = pixRead("german.png");
    pixa = pixaCreate(50);
    for (k = 0; k < 2; k++) {
        for (i = 0; i < 25; i++) {
            index = 25 * k + i;
            stretch = 10 + 4 * i;
            if (k == 0) stretch = -stretch;
            dir = (k == 1) ? L_WARP_TO_RIGHT : L_WARP_TO_LEFT;
            op = (i & 1) ? L_INTERPOLATED : L_SAMPLED;
            pix1 = pixStretchHorizontal(pixs, dir, L_QUADRATIC_WARP,
                                        stretch, op, L_BRING_IN_WHITE);
            snprintf(buf, sizeof(buf), "%s, %s", dirstr[dir], opstr[op]);
            pixd = pixAddSingleTextblock(pix1, bmf, buf, 0xff000000,
                                         L_ADD_BELOW, 0);
            pixaAddPix(pixa, pixd, L_INSERT);
            pixDestroy(&pix1);
        }
    }
    pixDestroy(&pixs);

    pixaConvertToPdf(pixa, 100, 1.0, L_JPEG_ENCODE, 0, "quad_hstretch.pdf",
                     "/tmp/quad_hstretch.pdf");
    pixd = pixaDisplayTiledInRows(pixa, 32, 2500, 1.0, 0, 20, 2);
    pixWrite("/tmp/quad_hstretch.jpg", pixd, IFF_JFIF_JPEG);
    pixaDestroy(&pixa);
    pixDestroy(&pixd);
#endif

    /* --------  Horizontal Shear --------------*/
#if RUN_HORIZ_SHEAR
    pixs = pixRead("german.png");
    pixGetDimensions(pixs, &w, &h, NULL);
    pixa = pixaCreate(50);
    for (i = 0; i < 25; i++) {
        del = 0.2 / 12.;
        angle = -0.2 + (i - (i & 1)) * del;
        angledeg = 180. * angle / 3.14159265;
        op = (i & 1) ? L_INTERPOLATED : L_SAMPLED;
        if (op == L_SAMPLED)
            pix1 = pixHShear(NULL, pixs, h / 2, angle, L_BRING_IN_WHITE);
        else
            pix1 = pixHShearLI(pixs, h / 2, angle, L_BRING_IN_WHITE);
        snprintf(buf, sizeof(buf), "%6.2f degree, %s", angledeg, opstr[op]);
        pixd = pixAddSingleTextblock(pix1, bmf, buf, 0xff000000,
                                     L_ADD_BELOW, 0);
        pixaAddPix(pixa, pixd, L_INSERT);
        pixDestroy(&pix1);
    }
    pixDestroy(&pixs);

    pixaConvertToPdf(pixa, 100, 1.0, L_JPEG_ENCODE, 0, "hshear.pdf",
                     "/tmp/hshear.pdf");
    pixd = pixaDisplayTiledInRows(pixa, 32, 2500, 1.0, 0, 20, 2);
    pixWrite("/tmp/hshear.jpg", pixd, IFF_JFIF_JPEG);
    pixaDestroy(&pixa);
    pixDestroy(&pixd);
#endif

    /* --------  Vertical Shear --------------*/
#if RUN_VERT_SHEAR
    pixs = pixRead("german.png");
    pixGetDimensions(pixs, &w, &h, NULL);
    pixa = pixaCreate(50);
    for (i = 0; i < 25; i++) {
        del = 0.2 / 12.;
        angle = -0.2 + (i - (i & 1)) * del;
        angledeg = 180. * angle / 3.14159265;
        op = (i & 1) ? L_INTERPOLATED : L_SAMPLED;
        if (op == L_SAMPLED)
            pix1 = pixVShear(NULL, pixs, w / 2, angle, L_BRING_IN_WHITE);
        else
            pix1 = pixVShearLI(pixs, w / 2, angle, L_BRING_IN_WHITE);
        snprintf(buf, sizeof(buf), "%6.2f degree, %s", angledeg, opstr[op]);
        pixd = pixAddSingleTextblock(pix1, bmf, buf, 0xff000000,
                                     L_ADD_BELOW, 0);
        pixaAddPix(pixa, pixd, L_INSERT);
        pixDestroy(&pix1);
    }

    pixDestroy(&pixs);
    pixaConvertToPdf(pixa, 100, 1.0, L_JPEG_ENCODE, 0, "vshear.pdf",
                     "/tmp/vshear.pdf");
    pixd = pixaDisplayTiledInRows(pixa, 32, 2500, 1.0, 0, 20, 2);
    pixWrite("/tmp/vshear.jpg", pixd, IFF_JFIF_JPEG);
    pixaDestroy(&pixa);
    pixDestroy(&pixd);
#endif

    bmfDestroy(&bmf);
    return 0;
}
Example #25
0
/*!
 *  pixProjectivePtaWithAlpha()
 *
 *      Input:  pixs (32 bpp rgb)
 *              ptad  (4 pts of final coordinate space)
 *              ptas  (4 pts of initial coordinate space)
 *              pixg (<optional> 8 bpp, for alpha channel, can be null)
 *              fract (between 0.0 and 1.0, with 0.0 fully transparent
 *                     and 1.0 fully opaque)
 *              border (of pixels added to capture transformed source pixels)
 *      Return: pixd, or null on error
 *
 *  Notes:
 *      (1) The alpha channel is transformed separately from pixs,
 *          and aligns with it, being fully transparent outside the
 *          boundary of the transformed pixs.  For pixels that are fully
 *          transparent, a blending function like pixBlendWithGrayMask()
 *          will give zero weight to corresponding pixels in pixs.
 *      (2) If pixg is NULL, it is generated as an alpha layer that is
 *          partially opaque, using @fract.  Otherwise, it is cropped
 *          to pixs if required and @fract is ignored.  The alpha channel
 *          in pixs is never used.
 *      (3) Colormaps are removed.
 *      (4) When pixs is transformed, it doesn't matter what color is brought
 *          in because the alpha channel will be transparent (0) there.
 *      (5) To avoid losing source pixels in the destination, it may be
 *          necessary to add a border to the source pix before doing
 *          the projective transformation.  This can be any non-negative
 *          number.
 *      (6) The input @ptad and @ptas are in a coordinate space before
 *          the border is added.  Internally, we compensate for this
 *          before doing the projective transform on the image after
 *          the border is added.
 *      (7) The default setting for the border values in the alpha channel
 *          is 0 (transparent) for the outermost ring of pixels and
 *          (0.5 * fract * 255) for the second ring.  When blended over
 *          a second image, this
 *          (a) shrinks the visible image to make a clean overlap edge
 *              with an image below, and
 *          (b) softens the edges by weakening the aliasing there.
 *          Use l_setAlphaMaskBorder() to change these values.
 */
PIX *
pixProjectivePtaWithAlpha(PIX       *pixs,
                          PTA       *ptad,
                          PTA       *ptas,
                          PIX       *pixg,
                          l_float32  fract,
                          l_int32    border)
{
l_int32  ws, hs, d;
PIX     *pixd, *pixb1, *pixb2, *pixg2, *pixga;
PTA     *ptad2, *ptas2;

    PROCNAME("pixProjectivePtaWithAlpha");

    if (!pixs)
        return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
    pixGetDimensions(pixs, &ws, &hs, &d);
    if (d != 32 && pixGetColormap(pixs) == NULL)
        return (PIX *)ERROR_PTR("pixs not cmapped or 32 bpp", procName, NULL);
    if (pixg && pixGetDepth(pixg) != 8) {
        L_WARNING("pixg not 8 bpp; using @fract transparent alpha", procName);
        pixg = NULL;
    }
    if (!pixg && (fract < 0.0 || fract > 1.0)) {
        L_WARNING("invalid fract; using 1.0 (fully transparent)", procName);
        fract = 1.0;
    }
    if (!pixg && fract == 0.0)
        L_WARNING("fully opaque alpha; image will not be blended", procName);
    if (!ptad)
        return (PIX *)ERROR_PTR("ptad not defined", procName, NULL);
    if (!ptas)
        return (PIX *)ERROR_PTR("ptas not defined", procName, NULL);

        /* Add border; the color doesn't matter */
    pixb1 = pixAddBorder(pixs, border, 0);

        /* Transform the ptr arrays to work on the bordered image */
    ptad2 = ptaTransform(ptad, border, border, 1.0, 1.0);
    ptas2 = ptaTransform(ptas, border, border, 1.0, 1.0);

        /* Do separate projective transform of rgb channels of pixs
         * and of pixg */
    pixd = pixProjectivePtaColor(pixb1, ptad2, ptas2, 0);
    if (!pixg) {
        pixg2 = pixCreate(ws, hs, 8);
        if (fract == 1.0)
            pixSetAll(pixg2);
        else
            pixSetAllArbitrary(pixg2, (l_int32)(255.0 * fract));
    }
    else
        pixg2 = pixResizeToMatch(pixg, NULL, ws, hs);
    if (ws > 10 && hs > 10) {  /* see note 7 */
        pixSetBorderRingVal(pixg2, 1,
                            (l_int32)(255.0 * fract * AlphaMaskBorderVals[0]));
        pixSetBorderRingVal(pixg2, 2,
                            (l_int32)(255.0 * fract * AlphaMaskBorderVals[1]));

    }
    pixb2 = pixAddBorder(pixg2, border, 0);  /* must be black border */
    pixga = pixProjectivePtaGray(pixb2, ptad2, ptas2, 0);
    pixSetRGBComponent(pixd, pixga, L_ALPHA_CHANNEL);

    pixDestroy(&pixg2);
    pixDestroy(&pixb1);
    pixDestroy(&pixb2);
    pixDestroy(&pixga);
    ptaDestroy(&ptad2);
    ptaDestroy(&ptas2);
    return pixd;
}
Example #26
0
/*!
 *  selaAddTJunctions()
 *
 *      Input:  sela (<optional>)
 *              hlsize (length of each line of hits from origin)
 *              mdist (distance of misses from the origin)
 *              norient (number of orientations; max of 8)
 *              debugflag (1 for debug output)
 *      Return: sela with additional sels, or null on error
 *
 *  Notes:
 *      (1) Adds hitmiss Sels for the T-junction of two lines.
 *          If the lines are very thin, they must be nearly orthogonal
 *          to register.
 *      (2) The number of Sels generated is 4 * @norient.
 *      (3) It is suggested that @hlsize be chosen at least 1 greater
 *          than @mdist.  Try values of (@hlsize, @mdist) such as
 *          (6,5), (7,6), (8,7), (9,7), etc.
 */
SELA *
selaAddTJunctions(SELA      *sela,
                  l_float32  hlsize,
                  l_float32  mdist,
                  l_int32    norient,
                  l_int32    debugflag)
{
char       name[L_BUF_SIZE];
l_int32    i, j, k, w, xc, yc;
l_float64  pi, halfpi, radincr, jang, radang;
l_float64  angle[3], dist[3];
PIX       *pixc, *pixm, *pixt;
PIXA      *pixa;
PTA       *pta1, *pta2, *pta3;
SEL       *sel;

    PROCNAME("selaAddTJunctions");

    if (hlsize <= 2)
        return (SELA *)ERROR_PTR("hlsizel not > 1", procName, NULL);
    if (norient < 1 || norient > 8)
        return (SELA *)ERROR_PTR("norient not in [1, ... 8]", procName, NULL);

    if (!sela) {
        if ((sela = selaCreate(0)) == NULL)
            return (SELA *)ERROR_PTR("sela not made", procName, NULL);
    }

    pi = 3.1415926535;
    halfpi = 3.1415926535 / 2.0;
    radincr = halfpi / (l_float32)norient;
    w = (l_int32)(2.4 * (L_MAX(hlsize, mdist) + 0.5));
    if (w % 2 == 0)
        w++;
    xc = w / 2;
    yc = w / 2;

    pixa = pixaCreate(4 * norient);
    for (i = 0; i < norient; i++) {
        for (j = 0; j < 4; j++) {  /* 4 orthogonal orientations */
            jang = (l_float32)j * halfpi;

                /* Set the don't cares */
            pixc = pixCreate(w, w, 32);
            pixSetAll(pixc);

                /* Add the green lines of hits */
            pixm = pixCreate(w, w, 1);
            radang = (l_float32)i * radincr;
            pta1 = generatePtaLineFromPt(xc, yc, hlsize + 1, jang + radang);
            pta2 = generatePtaLineFromPt(xc, yc, hlsize + 1,
                                         jang + radang + halfpi);
            pta3 = generatePtaLineFromPt(xc, yc, hlsize + 1,
                                         jang + radang + pi);
            ptaJoin(pta1, pta2, 0, -1);
            ptaJoin(pta1, pta3, 0, -1);
            pixRenderPta(pixm, pta1, L_SET_PIXELS);
            pixPaintThroughMask(pixc, pixm, 0, 0, 0x00ff0000);
            ptaDestroy(&pta1);
            ptaDestroy(&pta2);
            ptaDestroy(&pta3);

                /* Add red misses between the lines */
            angle[0] = radang + jang - halfpi;
            angle[1] = radang + jang + 0.5 * halfpi;
            angle[2] = radang + jang + 1.5 * halfpi;
            dist[0] = 0.8 * mdist;
            dist[1] = dist[2] = mdist;
            for (k = 0; k < 3; k++) {
                pixSetPixel(pixc, xc + (l_int32)(dist[k] * cos(angle[k])),
                            yc + (l_int32)(dist[k] * sin(angle[k])),
                            0xff000000);
            }

                /* Add dark green for origin */
            pixSetPixel(pixc, xc, yc, 0x00550000);

                /* Generate the sel */
            sel = selCreateFromColorPix(pixc, NULL);
            sprintf(name, "sel_cross_%d", 4 * i + j);
            selaAddSel(sela, sel, name, 0);

            if (debugflag) {
                pixt = pixScaleBySampling(pixc, 10.0, 10.0);
                pixaAddPix(pixa, pixt, L_INSERT);
            }
            pixDestroy(&pixm);
            pixDestroy(&pixc);
        }
    }

    if (debugflag) {
        l_int32  w;
        pixaGetPixDimensions(pixa, 0, &w, NULL, NULL);
        pixt = pixaDisplayTiledAndScaled(pixa, 32, w, 4, 0, 10, 2);
        pixWriteTempfile("/tmp", "tsel1.png", pixt, IFF_PNG, 0);
        pixDisplay(pixt, 0, 100);
        pixDestroy(&pixt);
        pixt = selaDisplayInPix(sela, 15, 2, 20, 4);
        pixWriteTempfile("/tmp", "tsel2.png", pixt, IFF_PNG, 0);
        pixDisplay(pixt, 500, 100);
        pixDestroy(&pixt);
        selaWriteStream(stderr, sela);
    }
    pixaDestroy(&pixa);

    return sela;
}
Example #27
0
main(int    argc,
     char **argv)
{
l_int32       i, j, x, y, rval, gval, bval;
l_uint32      pixel;
l_float32     frval, fgval, fbval;
NUMA         *nahue, *nasat, *napk;
PIX          *pixs, *pixhsv, *pixh, *pixg, *pixf, *pixd;
PIX          *pixr, *pixt1, *pixt2, *pixt3;
PIXA         *pixa, *pixapk;
PTA          *ptapk;
L_REGPARAMS  *rp;
	l_chooseDisplayProg(L_DISPLAY_WITH_XV);

    if (regTestSetup(argc, argv, &rp))
        return 1;

        /* Make a graded frame color */
    pixs = pixCreate(650, 900, 32);
    for (i = 0; i < 900; i++) {
        rval = 40 + i / 30;
        for (j = 0; j < 650; j++) {
            gval = 255 - j / 30;
            bval = 70 + j / 30;
            composeRGBPixel(rval, gval, bval, &pixel);
            pixSetPixel(pixs, j, i, pixel);
        }
    }
            
        /* Place an image inside the frame and convert to HSV */
    pixt1 = pixRead("1555-3.jpg");
    pixt2 = pixScale(pixt1, 0.5, 0.5);
    pixRasterop(pixs, 100, 100, 2000, 2000, PIX_SRC, pixt2, 0, 0);
    pixDestroy(&pixt1);
    pixDestroy(&pixt2);
    pixDisplayWithTitle(pixs, 400, 0, "Input image", rp->display);
    pixa = pixaCreate(0);
    pixhsv = pixConvertRGBToHSV(NULL, pixs);

        /* Work in the HS projection of HSV */
    pixh = pixMakeHistoHS(pixhsv, 5, &nahue, &nasat);
    pixg = pixMaxDynamicRange(pixh, L_LOG_SCALE);
    pixf = pixConvertGrayToFalseColor(pixg, 1.0);
    regTestWritePixAndCheck(rp, pixf, IFF_PNG);   /* 0 */
    pixDisplayWithTitle(pixf, 100, 0, "False color HS histo", rp->display);
    pixaAddPix(pixa, pixs, L_COPY);
    pixaAddPix(pixa, pixhsv, L_INSERT);
    pixaAddPix(pixa, pixg, L_INSERT);
    pixaAddPix(pixa, pixf, L_INSERT);
    gplotSimple1(nahue, GPLOT_PNG, "/tmp/junkhue", "Histogram of hue values");
#ifndef  _WIN32
    sleep(1);
#else
    Sleep(1000);
#endif  /* _WIN32 */
    pixt3 = pixRead("/tmp/junkhue.png");
    regTestWritePixAndCheck(rp, pixt3, IFF_PNG);  /* 1 */
    pixDisplayWithTitle(pixt3, 100, 300, "Histo of hue", rp->display);
    pixaAddPix(pixa, pixt3, L_INSERT);
    gplotSimple1(nasat, GPLOT_PNG, "/tmp/junksat",
                 "Histogram of saturation values");
#ifndef  _WIN32
    sleep(1);
#else
    Sleep(1000);
#endif  /* _WIN32 */
    pixt3 = pixRead("/tmp/junksat.png");
    regTestWritePixAndCheck(rp, pixt3, IFF_PNG);  /* 2 */
    pixDisplayWithTitle(pixt3, 100, 800, "Histo of saturation", rp->display);
    pixaAddPix(pixa, pixt3, L_INSERT);
    pixd = pixaDisplayTiledAndScaled(pixa, 32, 270, 7, 0, 30, 3);
    regTestWritePixAndCheck(rp, pixd, IFF_PNG);  /* 3 */
    pixDisplayWithTitle(pixd, 0, 400, "Hue and Saturation Mosaic", rp->display);
    pixDestroy(&pixd);
    pixaDestroy(&pixa);
    numaDestroy(&nahue);
    numaDestroy(&nasat);

        /* Find all the peaks */
    pixFindHistoPeaksHSV(pixh, L_HS_HISTO, 20, 20, 6, 2.0,
                         &ptapk, &napk, &pixapk);
    numaWriteStream(stderr, napk);
    ptaWriteStream(stderr, ptapk, 1);
    pixd = pixaDisplayTiledInRows(pixapk, 32, 1400, 1.0, 0, 30, 2);
    regTestWritePixAndCheck(rp, pixd, IFF_PNG);  /* 4 */
    pixDisplayWithTitle(pixd, 0, 550, "Peaks in HS", rp->display);
    pixDestroy(&pixh);
    pixDestroy(&pixd);
    pixaDestroy(&pixapk);

        /* Make masks for each of the peaks */
    pixa = pixaCreate(0);
    pixr = pixScaleBySampling(pixs, 0.4, 0.4);
    for (i = 0; i < 6; i++) {
        ptaGetIPt(ptapk, i, &x, &y);
        pixt1 = pixMakeRangeMaskHS(pixr, y, 20, x, 20, L_INCLUDE_REGION);
        pixaAddPix(pixa, pixt1, L_INSERT);
        pixGetAverageMaskedRGB(pixr, pixt1, 0, 0, 1, L_MEAN_ABSVAL,
                               &frval, &fgval, &fbval);
        composeRGBPixel((l_int32)frval, (l_int32)fgval, (l_int32)fbval,
                        &pixel);
        pixt2 = pixCreateTemplate(pixr);
        pixSetAll(pixt2);
        pixPaintThroughMask(pixt2, pixt1, 0, 0, pixel);
        pixaAddPix(pixa, pixt2, L_INSERT);
        pixt3 = pixCreateTemplate(pixr);
        pixSetAllArbitrary(pixt3, pixel);
        pixaAddPix(pixa, pixt3, L_INSERT);
    }
    pixd = pixaDisplayTiledAndScaled(pixa, 32, 225, 3, 0, 30, 3);
    regTestWritePixAndCheck(rp, pixd, IFF_PNG);  /* 5 */
    pixDisplayWithTitle(pixd, 600, 0, "Masks over peaks", rp->display);
    pixDestroy(&pixs);
    pixDestroy(&pixr);
    pixDestroy(&pixd);
    pixaDestroy(&pixa);
    ptaDestroy(&ptapk);
    numaDestroy(&napk);

    regTestCleanup(rp);
    return 0;
}
Example #28
0
/*!
 *  kernelDisplayInPix()
 *
 *      Input:  kernel
 *              size (of grid interiors; odd; either 1 or a minimum size
 *                    of 17 is enforced)
 *              gthick (grid thickness; either 0 or a minimum size of 2
 *                      is enforced)
 *      Return: pix (display of kernel), or null on error
 *
 *  Notes:
 *      (1) This gives a visual representation of a kernel.
 *      (2) There are two modes of display:
 *          (a) Grid lines of minimum width 2, surrounding regions
 *              representing kernel elements of minimum size 17,
 *              with a "plus" mark at the kernel origin, or
 *          (b) A pix without grid lines and using 1 pixel per kernel element.
 *      (3) For both cases, the kernel absolute value is displayed,
 *          normalized such that the maximum absolute value is 255.
 *      (4) Large 2D separable kernels should be used for convolution
 *          with two 1D kernels.  However, for the bilateral filter,
 *          the computation time is independent of the size of the
 *          2D content kernel.
 */
PIX *
kernelDisplayInPix(L_KERNEL     *kel,
                   l_int32       size,
                   l_int32       gthick)
{
l_int32    i, j, w, h, sx, sy, cx, cy, width, x0, y0;
l_int32    normval;
l_float32  minval, maxval, max, val, norm;
PIX       *pixd, *pixt0, *pixt1;

    PROCNAME("kernelDisplayInPix");

    if (!kel)
        return (PIX *)ERROR_PTR("kernel not defined", procName, NULL);

        /* Normalize the max value to be 255 for display */
    kernelGetParameters(kel, &sy, &sx, &cy, &cx);
    kernelGetMinMax(kel, &minval, &maxval);
    max = L_MAX(maxval, -minval);
    if (max == 0.0)
        return (PIX *)ERROR_PTR("kernel elements all 0.0", procName, NULL);
    norm = 255. / (l_float32)max;

        /* Handle the 1 element/pixel case; typically with large kernels */
    if (size == 1 && gthick == 0) {
        pixd = pixCreate(sx, sy, 8);
        for (i = 0; i < sy; i++) {
            for (j = 0; j < sx; j++) {
                kernelGetElement(kel, i, j, &val);
                normval = (l_int32)(norm * L_ABS(val));
                pixSetPixel(pixd, j, i, normval);
            }
        }
        return pixd;
    }

        /* Enforce the constraints for the grid line version */
    if (size < 17) {
        L_WARNING("size < 17; setting to 17\n", procName);
        size = 17;
    }
    if (size % 2 == 0)
        size++;
    if (gthick < 2) {
        L_WARNING("grid thickness < 2; setting to 2\n", procName);
        gthick = 2;
    }

    w = size * sx + gthick * (sx + 1);
    h = size * sy + gthick * (sy + 1);
    pixd = pixCreate(w, h, 8);

        /* Generate grid lines */
    for (i = 0; i <= sy; i++)
        pixRenderLine(pixd, 0, gthick / 2 + i * (size + gthick),
                      w - 1, gthick / 2 + i * (size + gthick),
                      gthick, L_SET_PIXELS);
    for (j = 0; j <= sx; j++)
        pixRenderLine(pixd, gthick / 2 + j * (size + gthick), 0,
                      gthick / 2 + j * (size + gthick), h - 1,
                      gthick, L_SET_PIXELS);

        /* Generate mask for each element */
    pixt0 = pixCreate(size, size, 1);
    pixSetAll(pixt0);

        /* Generate crossed lines for origin pattern */
    pixt1 = pixCreate(size, size, 1);
    width = size / 8;
    pixRenderLine(pixt1, size / 2, (l_int32)(0.12 * size),
                           size / 2, (l_int32)(0.88 * size),
                           width, L_SET_PIXELS);
    pixRenderLine(pixt1, (l_int32)(0.15 * size), size / 2,
                           (l_int32)(0.85 * size), size / 2,
                           width, L_FLIP_PIXELS);
    pixRasterop(pixt1, size / 2 - width, size / 2 - width,
                2 * width, 2 * width, PIX_NOT(PIX_DST), NULL, 0, 0);

        /* Paste the patterns in */
    y0 = gthick;
    for (i = 0; i < sy; i++) {
        x0 = gthick;
        for (j = 0; j < sx; j++) {
            kernelGetElement(kel, i, j, &val);
            normval = (l_int32)(norm * L_ABS(val));
            pixSetMaskedGeneral(pixd, pixt0, normval, x0, y0);
	    if (i == cy && j == cx)
                pixPaintThroughMask(pixd, pixt1, x0, y0, 255 - normval);
            x0 += size + gthick;
        }
        y0 += size + gthick;
    }

    pixDestroy(&pixt0);
    pixDestroy(&pixt1);
    return pixd;
}
Example #29
0
main(int    argc,
     char **argv)
{
char       buf[256];
l_int32    w, h, i, j, k, index, op, dir, stretch;
l_float32  del, angle, angledeg;
BOX       *box;
L_BMF     *bmf;
PIX       *pixs, *pixt, *pixt2, *pixd;
static char  mainName[] = "warpertest";

    if (argc != 1)
        exit(ERROR_INT("syntax: warpertest", mainName, 1));

    /* --------   Stereoscopic warping --------------*/
#if RUN_WARP
    pixs = pixRead("german.png");
    pixGetDimensions(pixs, &w, &h, NULL);
    l_jpegSetNoChromaSampling(1);
    for (i = 0; i < 50; i++) {  /* need to test > 2 widths ! */
        j = 7 * i;
        box = boxCreate(0, 0, w - j, h - j);
        pixt = pixClipRectangle(pixs, box, NULL);
        pixd = pixWarpStereoscopic(pixt, 15, 22, 8, 30, -20, 1);
        snprintf(buf, sizeof(buf), "/tmp/junkpixw.%02d.jpg", i);
        pixWrite(buf, pixd, IFF_JFIF_JPEG);
        pixDestroy(&pixd);
        pixDestroy(&pixt);
        boxDestroy(&box);
    }
    pixDestroy(&pixs);
    pixDisplayMultiple("/tmp/junkpixw*.jpg");
#endif

    /* --------   Quadratic Vertical Shear  --------------*/
#if RUN_QUAD_VERT_SHEAR
    pixs = pixCreate(501, 501, 32);
    pixGetDimensions(pixs, &w, &h, NULL);
    pixSetAll(pixs);
    pixRenderLineArb(pixs, 0, 30, 500, 30, 5, 0, 0, 255);
    pixRenderLineArb(pixs, 0, 110, 500, 110, 5, 0, 255, 0);
    pixRenderLineArb(pixs, 0, 190, 500, 190, 5, 0, 255, 255);
    pixRenderLineArb(pixs, 0, 270, 500, 270, 5, 255, 0, 0);
    pixRenderLineArb(pixs, 0, 360, 500, 360, 5, 255, 0, 255);
    pixRenderLineArb(pixs, 0, 450, 500, 450, 5, 255, 255, 0);
    bmf = bmfCreate("./fonts", 6);
    for (i = 0; i < 50; i++) {
        j = 3 * i;
        dir = ((i / 2) & 1) ? L_WARP_TO_RIGHT : L_WARP_TO_LEFT;
        op = (i & 1) ? L_INTERPOLATED : L_SAMPLED;
        Box *box = boxCreate(0, 0, w - j, h - j);
        pixt = pixClipRectangle(pixs, box, NULL);
        pixt2 = pixQuadraticVShear(pixt, dir, 60, -20, op, L_BRING_IN_WHITE);

        snprintf(buf, sizeof(buf), "%s, %s", dirstr[dir], opstr[op]);
        pixd = pixAddSingleTextblock(pixt2, bmf, buf, 0xff000000,
                                     L_ADD_BELOW, 0);
        snprintf(buf, sizeof(buf), "/tmp/junkpixvs.%02d.png", i);
        pixWrite(buf, pixd, IFF_PNG);
        pixDestroy(&pixd);
        pixDestroy(&pixt);
        pixDestroy(&pixt2);
        boxDestroy(&box);
    }
    pixDestroy(&pixs);
    bmfDestroy(&bmf);
    pixDisplayMultiple("/tmp/junkpixvs*.png");
#endif

    /* --------  Linear Horizontal stretching  --------------*/
#if RUN_LIN_HORIZ_STRETCH
    pixs = pixRead("german.png");
    bmf = bmfCreate("./fonts", 6);
    for (k = 0; k < 2; k++) {
        for (i = 0; i < 25; i++) {
            index = 25 * k + i;
            stretch = 10 + 4 * i;
            if (k == 0) stretch = -stretch;
            dir = (k == 1) ? L_WARP_TO_RIGHT : L_WARP_TO_LEFT;
            op = (i & 1) ? L_INTERPOLATED : L_SAMPLED;
            pixt = pixStretchHorizontal(pixs, dir, L_LINEAR_WARP,
                                        stretch, op, L_BRING_IN_WHITE);
            snprintf(buf, sizeof(buf), "%s, %s", dirstr[dir], opstr[op]);
            pixd = pixAddSingleTextblock(pixt, bmf, buf, 0xff000000,
                                         L_ADD_BELOW, 0);
            snprintf(buf, sizeof(buf), "/tmp/junkpixlhs.%02d.jpg", index);
            pixWrite(buf, pixd, IFF_JFIF_JPEG);
            pixDestroy(&pixd);
            pixDestroy(&pixt);
        }
    }

    pixDestroy(&pixs);
    bmfDestroy(&bmf);
    pixDisplayMultiple("/tmp/junkpixlhs*.jpg");
#endif

    /* --------  Quadratic Horizontal stretching  --------------*/
#if RUN_QUAD_HORIZ_STRETCH
    pixs = pixRead("german.png");
    bmf = bmfCreate("./fonts", 6);
    for (k = 0; k < 2; k++) {
        for (i = 0; i < 25; i++) {
            index = 25 * k + i;
            stretch = 10 + 4 * i;
            if (k == 0) stretch = -stretch;
            dir = (k == 1) ? L_WARP_TO_RIGHT : L_WARP_TO_LEFT;
            op = (i & 1) ? L_INTERPOLATED : L_SAMPLED;
            pixt = pixStretchHorizontal(pixs, dir, L_QUADRATIC_WARP,
                                        stretch, op, L_BRING_IN_WHITE);
            snprintf(buf, sizeof(buf), "%s, %s", dirstr[dir], opstr[op]);
            pixd = pixAddSingleTextblock(pixt, bmf, buf, 0xff000000,
                                         L_ADD_BELOW, 0);
            snprintf(buf, sizeof(buf), "/tmp/junkpixqhs.%02d.jpg", index);
            pixWrite(buf, pixd, IFF_JFIF_JPEG);
            pixDestroy(&pixd);
            pixDestroy(&pixt);
        }
    }

    pixDestroy(&pixs);
    bmfDestroy(&bmf);
    pixDisplayMultiple("/tmp/junkpixqhs*.jpg");
#endif

    /* --------  Horizontal Shear --------------*/
#if RUN_HORIZ_SHEAR
    pixs = pixRead("german.png");
    pixGetDimensions(pixs, &w, &h, NULL);
    bmf = bmfCreate("./fonts", 6);
    for (i = 0; i < 25; i++) {
        del = 0.2 / 12.;
        angle = -0.2 + (i - (i & 1)) * del;
        angledeg = 180. * angle / 3.14159265;
        op = (i & 1) ? L_INTERPOLATED : L_SAMPLED;
        if (op == L_SAMPLED)
            pixt = pixHShear(NULL, pixs, h / 2, angle, L_BRING_IN_WHITE);
        else
            pixt = pixHShearLI(pixs, h / 2, angle, L_BRING_IN_WHITE);
        snprintf(buf, sizeof(buf), "%6.2f degree, %s", angledeg, opstr[op]);
        pixd = pixAddSingleTextblock(pixt, bmf, buf, 0xff000000,
                                     L_ADD_BELOW, 0);
        snprintf(buf, sizeof(buf), "/tmp/junkpixsh.%02d.jpg", i);
        pixWrite(buf, pixd, IFF_JFIF_JPEG);
        pixDestroy(&pixd);
        pixDestroy(&pixt);
    }

    pixDestroy(&pixs);
    bmfDestroy(&bmf);
    pixDisplayMultiple("/tmp/junkpixsh*.jpg");
#endif

    /* --------  Vertical Shear --------------*/
#if RUN_VERT_SHEAR
    pixs = pixRead("german.png");
    pixGetDimensions(pixs, &w, &h, NULL);
    bmf = bmfCreate("./fonts", 6);
    for (i = 0; i < 25; i++) {
        del = 0.2 / 12.;
        angle = -0.2 + (i - (i & 1)) * del;
        angledeg = 180. * angle / 3.14159265;
        op = (i & 1) ? L_INTERPOLATED : L_SAMPLED;
        if (op == L_SAMPLED)
            pixt = pixVShear(NULL, pixs, w / 2, angle, L_BRING_IN_WHITE);
        else
            pixt = pixVShearLI(pixs, w / 2, angle, L_BRING_IN_WHITE);
        snprintf(buf, sizeof(buf), "%6.2f degree, %s", angledeg, opstr[op]);
        pixd = pixAddSingleTextblock(pixt, bmf, buf, 0xff000000,
                                     L_ADD_BELOW, 0);
        snprintf(buf, sizeof(buf), "/tmp/junkpixsv.%02d.jpg", i);
        pixWrite(buf, pixd, IFF_JFIF_JPEG);
        pixDestroy(&pixd);
        pixDestroy(&pixt);
    }

    pixDestroy(&pixs);
    bmfDestroy(&bmf);
    pixDisplayMultiple("/tmp/junkpixsv*.jpg");
#endif

    return 0;
}