Example #1
0
void
AddTestSet(PIXA      *pixa,
           PIX       *pixs,
           l_int32    filtertype,
           l_int32    edgethresh,
           l_int32    smoothx,
           l_int32    smoothy,
           l_float32  gamma,
           l_int32    minval,
           l_int32    maxval,
           l_int32    targetthresh)
{
PIX  *pixb, *pixd, *pixth;

    pixThresholdSpreadNorm(pixs, filtertype, edgethresh,
                           smoothx, smoothy, gamma, minval,
                           maxval, targetthresh, &pixth, NULL, &pixd);
    pixSaveTiled(pixth, pixa, 1.0, 1, 20, 0);
    pixSaveTiled(pixd, pixa, 1.0, 0, 20, 0);
    pixb = pixThresholdToBinary(pixd, targetthresh - 20);
    pixSaveTiled(pixb, pixa, 1.0, 0, 20, 0);
    pixDestroy(&pixb);
    pixb = pixThresholdToBinary(pixd, targetthresh);
    pixSaveTiled(pixb, pixa, 1.0, 0, 20, 0);
    pixDestroy(&pixb);
    pixb = pixThresholdToBinary(pixd, targetthresh + 20);
    pixSaveTiled(pixb, pixa, 1.0, 0, 20, 0);
    pixDestroy(&pixb);
    pixb = pixThresholdToBinary(pixd, targetthresh + 40);
    pixSaveTiled(pixb, pixa, 1.0, 0, 20, 0);
    pixDestroy(&pixb);
    pixDestroy(&pixth);
    pixDestroy(&pixd);
    return;
}
Example #2
0
main(int    argc,
     char **argv)
{
l_int32      i, w, h, d;
l_float32    time;
PIX         *pixs, *pixf, *pixd;
PIXA        *pixa;
char        *filein, *fileout;
static char  mainName[] = "edgetest";

    if (argc != 3)
	exit(ERROR_INT(" Syntax:  edgetest filein fileout", mainName, 1));

    filein = argv[1];
    fileout = argv[2];

    if ((pixs = pixRead(filein)) == NULL)
	exit(ERROR_INT("pix not made", mainName, 1));
    pixGetDimensions(pixs, &w, &h, &d);
    if (d != 8)
	exit(ERROR_INT("pix not 8 bpp", mainName, 1));

        /* Speed: about 12 Mpix/GHz/sec */
    startTimer();
    pixf = pixSobelEdgeFilter(pixs, L_HORIZONTAL_EDGES);
    pixd = pixThresholdToBinary(pixf, 60);
    pixInvert(pixd, pixd);
    time = stopTimer();
    fprintf(stderr, "Time =  %7.3f sec\n", time);
    fprintf(stderr, "MPix/sec: %7.3f\n", 0.000001 * w * h / time);
    pixDisplay(pixs, 0, 0);
    pixInvert(pixf, pixf);
    pixDisplay(pixf, 480, 0);
    pixDisplay(pixd, 960, 0);
    pixWrite(fileout, pixf, IFF_PNG);
    pixDestroy(&pixd);

        /* Threshold at different values */
    pixInvert(pixf, pixf);
    for (i = 10; i <= 120; i += 10) {
        pixd = pixThresholdToBinary(pixf, i);
        pixInvert(pixd, pixd);
        pixDisplayWrite(pixd, 1);
        pixDestroy(&pixd);
    }
    pixDestroy(&pixf);

        /* Display tiled */
    pixa = pixaReadFiles("/tmp", "junk_write_display");
    pixd = pixaDisplayTiledAndScaled(pixa, 8, 400, 3, 0, 25, 2);
    pixWrite("/tmp/junktiles.jpg", pixd, IFF_JFIF_JPEG);
    pixDestroy(&pixd);
    pixaDestroy(&pixa);

    pixDestroy(&pixs);
    exit(0);
}
Example #3
0
l_int32 main(int    argc,
             char **argv)
{
l_int32      pageno;
L_DEWARP    *dew1;
L_DEWARPA   *dewa;
PIX         *pixs, *pixn, *pixg, *pixb;
static char  mainName[] = "dewarptest2";
  
    if (argc != 1 && argc != 3)
        return ERROR_INT("Syntax: dewarptest2 [image pageno]", mainName, 1);

    if (argc == 1) {
        pixs = pixRead("cat-35.jpg");
        pageno = 35;
    }
    else {
        pixs = pixRead(argv[1]);
        pageno = atoi(argv[2]);
    }
    if (!pixs)
        return ERROR_INT("image not read", mainName, 1);

    dewa = dewarpaCreate(40, 30, 1, 6, 50);

#if NORMALIZE
        /* Normalize for varying background and binarize */
    pixn = pixBackgroundNormSimple(pixs, NULL, NULL);
    pixg = pixConvertRGBToGray(pixn, 0.5, 0.3, 0.2);
    pixb = pixThresholdToBinary(pixg, 130);
    pixDestroy(&pixn);
#else
        /* Don't normalize; just threshold and clean edges */
    pixg = pixConvertTo8(pixs, 0);
    pixb = pixThresholdToBinary(pixg, 100);
    pixSetOrClearBorder(pixb, 30, 30, 40, 40, PIX_CLR);
#endif

        /* Run the basic functions */
    dew1 = dewarpCreate(pixb, pageno);
    dewarpaInsertDewarp(dewa, dew1);
    dewarpBuildModel(dew1, "/tmp/dewarp_model1.pdf");
    dewarpaApplyDisparity(dewa, pageno, pixg, "/tmp/dewarp_apply1.pdf");

    dewarpaDestroy(&dewa);
    pixDestroy(&pixs);
    pixDestroy(&pixg);
    pixDestroy(&pixb);
    return 0;
}
Example #4
0
jlong Java_com_googlecode_leptonica_android_GrayQuant_nativePixThresholdToBinary(JNIEnv *env, jclass clazz,
                                                                                 jlong nativePix, jint thresh) {
  PIX *pixs = (PIX *) nativePix;
  PIX *pixd = pixThresholdToBinary(pixs, (l_int32) thresh);

  return (jlong) pixd;
}
Example #5
0
/* load PNG, TIFF, JPG, GIF or BMP to PIX datastructure. The actual supported
 * formats depends on how the leptonica was compiled */
PIX *loadimage(char *filename){
    PIX *pix, *pixt;
    int format, bpp;
    format=fileformat(filename);
        // In later versions of leptonica you will have to do this 
        // pixReadHeader(filename, format,NULL,NULL,NULL,bpp,NULL);
    if(format!=IFF_PNG && format!=IFF_JFIF_JPEG && format!=IFF_TIFF && format!=
IFF_GIF && format!=7 && format!=8){
        dfprintf(stderr,"Not recognised file format %i", format);
        return NULL;
    }
    if ((pix = pixRead(filename)) == NULL) return NULL;

/* TODO: convert image to 1-bpp 300dpi regardless of scan */
	bpp=pixGetDepth(pix);
	if(bpp>1){
	/*
		printf("Bits per pixel=%i",bpp);
		exit(1); */
		//pixThresholdForFgBg(pix,5,100,NULL,NULL);
		//pixContrastTRC(pix, pix, 1000);
		pixt = pixContrastNorm(NULL, pix, 10, 10, 40, 2, 2);
		pixDestroy(&pix);
		pix = pixGammaTRC(NULL, pixt, 1.5, 50, 235);
		pixt=pixThresholdToBinary(pix, 200);
		//pixt=pixThreshold8(pix,1,1,0);
		pixDestroy(&pix);
		pix=pixt;
	}
   return pix; 
}
Example #6
0
/*!
 *  pixRotateBinaryNice()
 *
 *      Input:  pixs (1 bpp)
 *              angle (radians; clockwise is positive; about the center)
 *              incolor (L_BRING_IN_WHITE, L_BRING_IN_BLACK)
 *      Return: pixd, or null on error
 *
 *  Notes:
 *      (1) For very small rotations, just return a clone.
 *      (2) This does a computationally expensive rotation of 1 bpp images.
 *          The fastest rotators (using shears or subsampling) leave
 *          visible horizontal and vertical shear lines across which
 *          the image shear changes by one pixel.  To ameliorate the
 *          visual effect one can introduce random dithering.  One
 *          way to do this in a not-too-random fashion is given here.
 *          We convert to 8 bpp, do a very small blur, rotate using
 *          linear interpolation (same as area mapping), do a
 *          small amount of sharpening to compensate for the initial
 *          blur, and threshold back to binary.  The shear lines
 *          are magically removed.
 *      (3) This operation is about 5x slower than rotation by sampling.
 */
PIX *
pixRotateBinaryNice(PIX       *pixs,
                    l_float32  angle,
                    l_int32    incolor)
{
PIX  *pixt1, *pixt2, *pixt3, *pixt4, *pixd;

    PROCNAME("pixRotateBinaryNice");

    if (!pixs || pixGetDepth(pixs) != 1)
        return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", procName, NULL);
    if (incolor != L_BRING_IN_WHITE && incolor != L_BRING_IN_BLACK)
        return (PIX *)ERROR_PTR("invalid incolor", procName, NULL);

    pixt1 = pixConvertTo8(pixs, 0);
    pixt2 = pixBlockconv(pixt1, 1, 1);  /* smallest blur allowed */
    pixt3 = pixRotateAM(pixt2, angle, incolor);
    pixt4 = pixUnsharpMasking(pixt3, 1, 1.0);  /* sharpen a bit */
    pixd = pixThresholdToBinary(pixt4, 128);
    pixDestroy(&pixt1);
    pixDestroy(&pixt2);
    pixDestroy(&pixt3);
    pixDestroy(&pixt4);
    return pixd;
}
Example #7
0
main(int    argc,
     char **argv)
{
char        *infile, *outfile;
l_int32      d;
PIX         *pixs, *pixgr, *pixb;
static char  mainName[] = "showedges";

    if (argc != 3)
	exit(ERROR_INT(" Syntax: showedges infile outfile", mainName, 1));

    infile = argv[1];
    outfile = argv[2];

    pixs = pixRead(infile);
    d = pixGetDepth(pixs);
    if (d != 8 && d != 32)
	exit(ERROR_INT("d not 8 or 32 bpp", mainName, 1));

    pixgr = pixHalfEdgeByBandpass(pixs, SMOOTH_WIDTH_1, SMOOTH_WIDTH_1,
                                        SMOOTH_WIDTH_2, SMOOTH_WIDTH_2);
    pixb = pixThresholdToBinary(pixgr, THRESHOLD);
    pixInvert(pixb, pixb);
/*    pixWrite("junkpixgr", pixgr, IFF_JFIF_JPEG); */
    pixWrite(outfile, pixb, IFF_PNG);

    return 0;
}
/*!
 *  dewarpSinglePageInit()
 *
 *      Input:  pixs (with text, any depth)
 *              thresh (for global thresholding to 1 bpp; ignored otherwise)
 *              adaptive (1 for adaptive thresholding; 0 for global threshold)
 *              use_both (1 for horizontal and vertical; 0 for vertical only)
 *              &pixb (<return> 1 bpp image)
 *              &dewa (<return> initialized dewa)
 *      Return: 0 if OK, 1 on error (list of page numbers), or null on error
 *
 *  Notes:
 *      (1) This binarizes the input pixs if necessary, returning the
 *          binarized image.  It also initializes the dewa to default values
 *          for the model parameters.
 *      (2) If pixs is 1 bpp, the parameters @adaptive and @thresh are ignored.
 *      (3) To change the model parameters, call dewarpaSetCurvatures()
 *          before running dewarpSinglePageRun().  For DC:
 *             dewarpSinglePageInit(pixs, 0, 1, 1, &pixb, &dewa);
 *             dewarpaSetCurvatures(dewa, 250, -1, -1, 80, 70, 150);
 *             dewarpSinglePageRun(pixs, pixb, dewa, &pixd, 0);
 *             dewarpaDestroy(&dewa);
 *             pixDestroy(&pixb);
 */
l_int32
dewarpSinglePageInit(PIX         *pixs,
                     l_int32      thresh,
                     l_int32      adaptive,
                     l_int32      use_both,
                     PIX        **ppixb,
                     L_DEWARPA  **pdewa)
{
PIX  *pix1;

    PROCNAME("dewarpSinglePageInit");

    if (ppixb) *ppixb = NULL;
    if (pdewa) *pdewa = NULL;
    if (!ppixb || !pdewa)
        return ERROR_INT("&pixb and &dewa not both defined", procName, 1);
    if (!pixs)
        return ERROR_INT("pixs not defined", procName, 1);

    *pdewa = dewarpaCreate(1, 0, 1, 0, -1);
    dewarpaUseBothArrays(*pdewa, use_both);

         /* Generate a binary image, if necessary */
    if (pixGetDepth(pixs) > 1) {
        pix1 = pixConvertTo8(pixs, 0);
        if (adaptive)
            *ppixb = pixAdaptThresholdToBinary(pix1, NULL, 1.0);
        else
            *ppixb = pixThresholdToBinary(pix1, thresh);
        pixDestroy(&pix1);
    } else {
        *ppixb = pixClone(pixs);
    }
    return 0;
}
Example #9
0
// threshold the image -- warning, operates ONLY on grayscale pixmaps
// original image is unchanged - a new modified image at raster's end
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
Pix Pix::ThresholdToBinary(int threshold)
{
	if(IsEmpty())
		return Pix();
	PIX *dPix = pixThresholdToBinary(pix, threshold);
	if(!dPix)
		return Pix();
	return Pix(&dPix);
	
} // END Pix::ThresholdToBinary()
Example #10
0
/*
 * Binarize and fix uneven illumination
 */
void MainWindow::on_actionBinarizeUnIl_triggered() {
  QApplication::setOverrideCursor(Qt::WaitCursor);
  PIX *pixc, *pixg, *pixsg, *pixd;

  /* Convert the RGB image to grayscale. */
  this->statusBar()->showMessage(tr("Convert the RGB image to grayscale."));
  pixsg = pixConvertRGBToLuminance(pixs);
  setPixToScene(pixsg);

  /* Remove the text in the fg. */
  this->statusBar()->showMessage(tr("Remove the text in the fg."));
  pixc = pixCloseGray(pixsg, 25, 25);
  setPixToScene(pixc);

  /* Smooth the bg with a convolution. */
  // pixsm = pixBlockconv(pixc, 15, 15);
  // pixDestroy(&pixsm);

  /* Normalize for uneven illumination on gray image. */
  this->statusBar()->showMessage(tr("Normalize for uneven illumination on gray image."));
  pixBackgroundNormGrayArrayMorph(pixsg, NULL, 4, 5, 200, &pixg);
  pixc = pixApplyInvBackgroundGrayMap(pixsg, pixg, 4, 4);
  pixDestroy(&pixsg);
  pixDestroy(&pixg);
  setPixToScene(pixc);

  /* Increase the dynamic range. */
  // make dark gray *black* and light gray *white*
  this->statusBar()->showMessage(tr("Increase the dynamic range."));
  pixd = pixGammaTRC(NULL, pixc, 1.0, 50, 220);
  setPixToScene(pixd);

  /* Threshold to 1 bpp. */
  this->statusBar()->showMessage(tr("Threshold to 1 bpp."));
  pixs = pixThresholdToBinary(pixd, 120);
  pixDestroy(&pixd);
  setPixToScene();

  this->statusBar()->showMessage(tr("Finished..."), 2000);
  modified = true;
  updateTitle();
  QApplication::restoreOverrideCursor();
}
Example #11
0
jint Java_com_googlecode_leptonica_android_Dewarp_nativeDewarp(JNIEnv *env, jclass clazz, jint nativePix) {
	  LOGV("%s",__FUNCTION__);
	  PIX* pixd=NULL;
  PIX *pixs = (PIX *) nativePix;
  PIX* pixb = pixThresholdToBinary(pixs, 130);
  //  Basic functioning:
  L_Dewarp *dew = dewarpCreate(pixb,0,60,5,1);
  int buildresult=dewarpBuildModel(dew, 0);
  if(buildresult==0){
    int applyresult=dewarpApplyDisparity(dew, pixs, 0);
    if(applyresult==0){
      pixd = pixClone(dew->pixd);
    }
  }
  pixDestroy(&pixb);
  dewarpDestroy(&dew);
  
  if(pixd!=NULL){
    return (jint) pixd;
  } else {
    return (jint) 0;
  }
}
Example #12
0
char* _process_frame_tickertext(struct lib_hardsubx_ctx *ctx, AVFrame *frame, int width, int height, int index)
{
	PIX *im;
	PIX *edge_im;
	PIX *lum_im;
	PIX *feat_im;
	char *subtitle_text=NULL;
	im = pixCreate(width,height,32);
	lum_im = pixCreate(width,height,32);
	feat_im = pixCreate(width,height,32);
	int i,j;
	for(i=(92*height)/100;i<height;i++)
	{
		for(j=0;j<width;j++)
		{
			int p=j*3+i*frame->linesize[0];
			int r=frame->data[0][p];
			int g=frame->data[0][p+1];
			int b=frame->data[0][p+2];
			pixSetRGBPixel(im,j,i,r,g,b);
			float L,A,B;
			rgb_to_lab((float)r,(float)g,(float)b,&L,&A,&B);
			if(L > ctx->lum_thresh)
				pixSetRGBPixel(lum_im,j,i,255,255,255);
			else
				pixSetRGBPixel(lum_im,j,i,0,0,0);
		}
	}

	//Handle the edge image
	edge_im = pixCreate(width,height,8);
	edge_im = pixConvertRGBToGray(im,0.0,0.0,0.0);
	edge_im = pixSobelEdgeFilter(edge_im, L_VERTICAL_EDGES);
	edge_im = pixDilateGray(edge_im, 21, 11);
	edge_im = pixThresholdToBinary(edge_im,50);

	for(i=92*(height/100);i<height;i++)
	{
		for(j=0;j<width;j++)
		{
			unsigned int p1,p2,p3;
			pixGetPixel(edge_im,j,i,&p1);
			// pixGetPixel(pixd,j,i,&p2);
			pixGetPixel(lum_im,j,i,&p3);
			if(p1==0&&p3>0)
				pixSetRGBPixel(feat_im,j,i,255,255,255);
			else
				pixSetRGBPixel(feat_im,j,i,0,0,0);
		}
	}

	// Tesseract OCR for the ticker text here
	subtitle_text = get_ocr_text_simple(ctx, lum_im);
	char write_path[100];
	sprintf(write_path,"./lum_im%04d.jpg",index);
	pixWrite(write_path,lum_im,IFF_JFIF_JPEG);
	sprintf(write_path,"./im%04d.jpg",index);
	pixWrite(write_path,im,IFF_JFIF_JPEG);

	pixDestroy(&lum_im);
	pixDestroy(&im);
	pixDestroy(&edge_im);
	pixDestroy(&feat_im);

	return subtitle_text;
}
Example #13
0
void _display_frame(struct lib_hardsubx_ctx *ctx, AVFrame *frame, int width, int height, int timestamp)
{
	// Debug: Display the frame after processing
	PIX *im;
	im = pixCreate(width,height,32);
	PIX *hue_im = pixCreate(width,height,32);

	int i,j;
	for(i=0;i<height;i++)
	{
		for(j=0;j<width;j++)
		{
			int p=j*3+i*frame->linesize[0];
			int r=frame->data[0][p];
			int g=frame->data[0][p+1];
			int b=frame->data[0][p+2];
			pixSetRGBPixel(im,j,i,r,g,b);
			float H,S,V;
			rgb_to_hsv((float)r,(float)g,(float)b,&H,&S,&V);
			if(abs(H-ctx->hue)<20)
			{
				pixSetRGBPixel(hue_im,j,i,r,g,b);
			}
		}
	}

	PIX *edge_im = pixCreate(width,height,8),*edge_im_2 = pixCreate(width,height,8);
	edge_im = pixConvertRGBToGray(im,0.0,0.0,0.0);
	edge_im = pixSobelEdgeFilter(edge_im, L_VERTICAL_EDGES);
	edge_im = pixDilateGray(edge_im, 21, 1);
	edge_im = pixThresholdToBinary(edge_im,50);
	PIX *pixd = pixCreate(width,height,1);
	pixSauvolaBinarize(pixConvertRGBToGray(hue_im,0.0,0.0,0.0), 15, 0.3, 1, NULL, NULL, NULL, &pixd);

	edge_im_2 = pixConvertRGBToGray(hue_im,0.0,0.0,0.0);
	edge_im_2 = pixDilateGray(edge_im_2, 5, 5);

	PIX *feat_im = pixCreate(width,height,32);
	for(i=3*(height/4);i<height;i++)
	{
		for(j=0;j<width;j++)
		{
			unsigned int p1,p2,p3,p4;
			pixGetPixel(edge_im,j,i,&p1);
			pixGetPixel(pixd,j,i,&p2);
			// pixGetPixel(hue_im,j,i,&p3);
			pixGetPixel(edge_im_2,j,i,&p4);
			if(p1==0&&p2==0&&p4>0)//if(p4>0&&p1==0)//if(p2==0&&p1==0&&p3>0)
			{
				pixSetRGBPixel(feat_im,j,i,255,255,255);
			}
		}
	}

	char *txt=NULL;
	// txt = get_ocr_text_simple(ctx, feat_im);
	// txt=get_ocr_text_wordwise_threshold(ctx, feat_im, ctx->conf_thresh);
	// if(txt != NULL)printf("%s\n", txt);

	pixDestroy(&im);
	pixDestroy(&edge_im);
	pixDestroy(&feat_im);
	pixDestroy(&edge_im_2);
	pixDestroy(&pixd);
}
Example #14
0
char* _process_frame_white_basic(struct lib_hardsubx_ctx *ctx, AVFrame *frame, int width, int height, int index)
{
	//printf("frame : %04d\n", index);
	PIX *im;
	PIX *edge_im;
	PIX *lum_im;
	PIX *feat_im;
	char *subtitle_text=NULL;
	im = pixCreate(width,height,32);
	lum_im = pixCreate(width,height,32);
	feat_im = pixCreate(width,height,32);
	int i,j;
	for(i=(3*height)/4;i<height;i++)
	{
		for(j=0;j<width;j++)
		{
			int p=j*3+i*frame->linesize[0];
			int r=frame->data[0][p];
			int g=frame->data[0][p+1];
			int b=frame->data[0][p+2];
			pixSetRGBPixel(im,j,i,r,g,b);
			float L,A,B;
			rgb_to_lab((float)r,(float)g,(float)b,&L,&A,&B);
			if(L > ctx->lum_thresh)
				pixSetRGBPixel(lum_im,j,i,255,255,255);
			else
				pixSetRGBPixel(lum_im,j,i,0,0,0);
		}
	}

	//Handle the edge image
	edge_im = pixCreate(width,height,8);
	edge_im = pixConvertRGBToGray(im,0.0,0.0,0.0);
	edge_im = pixSobelEdgeFilter(edge_im, L_VERTICAL_EDGES);
	edge_im = pixDilateGray(edge_im, 21, 11);
	edge_im = pixThresholdToBinary(edge_im,50);

	for(i=3*(height/4);i<height;i++)
	{
		for(j=0;j<width;j++)
		{
			unsigned int p1,p2,p3;
			pixGetPixel(edge_im,j,i,&p1);
			// pixGetPixel(pixd,j,i,&p2);
			pixGetPixel(lum_im,j,i,&p3);
			if(p1==0&&p3>0)
				pixSetRGBPixel(feat_im,j,i,255,255,255);
			else
				pixSetRGBPixel(feat_im,j,i,0,0,0);
		}
	}

	if(ctx->detect_italics)
	{
		ctx->ocr_mode = HARDSUBX_OCRMODE_WORD;
	}

	// TESSERACT OCR FOR THE FRAME HERE
	switch(ctx->ocr_mode)
	{
		case HARDSUBX_OCRMODE_WORD:
			if(ctx->conf_thresh > 0)
				subtitle_text = get_ocr_text_wordwise_threshold(ctx, lum_im, ctx->conf_thresh);
			else
				subtitle_text = get_ocr_text_wordwise(ctx, lum_im);
			break;
		case HARDSUBX_OCRMODE_LETTER:
			if(ctx->conf_thresh > 0)
				subtitle_text = get_ocr_text_letterwise_threshold(ctx, lum_im, ctx->conf_thresh);
			else
				subtitle_text = get_ocr_text_letterwise(ctx, lum_im);
			break;
		case HARDSUBX_OCRMODE_FRAME:
			if(ctx->conf_thresh > 0)
				subtitle_text = get_ocr_text_simple_threshold(ctx, lum_im, ctx->conf_thresh);
			else
				subtitle_text = get_ocr_text_simple(ctx, lum_im);
			break;
		default:
			fatal(EXIT_MALFORMED_PARAMETER,"Invalid OCR Mode");
	}

	pixDestroy(&lum_im);
	pixDestroy(&im);
	pixDestroy(&edge_im);
	pixDestroy(&feat_im);

	return subtitle_text;
}
Example #15
0
l_int32 main(int argc,
             char **argv) {
    l_int32 i, n;
    l_float32 a, b, c, d, e;
    NUMA *nax, *nafit;
    PIX *pixs, *pixn, *pixg, *pixb, *pixt1, *pixt2;
    PIXA *pixa;
    PTA *pta, *ptad;
    PTAA *ptaa1, *ptaa2;

    pixs = pixRead("cat-35.jpg");
/*    pixs = pixRead("zanotti-78.jpg"); */

    /* Normalize for varying background and binarize */
    pixn = pixBackgroundNormSimple(pixs, NULL, NULL);
    pixg = pixConvertRGBToGray(pixn, 0.5, 0.3, 0.2);
    pixb = pixThresholdToBinary(pixg, 130);
    pixDestroy(&pixn);
    pixDestroy(&pixg);

    /* Get the textline centers */
    pixa = pixaCreate(6);
    ptaa1 = dewarpGetTextlineCenters(pixb, 0);
    pixt1 = pixCreateTemplate(pixs);
    pixSetAll(pixt1);
    pixt2 = pixDisplayPtaa(pixt1, ptaa1);
    pixWrite("/tmp/textline1.png", pixt2, IFF_PNG);
    pixDisplayWithTitle(pixt2, 0, 100, "textline centers 1", 1);
    pixaAddPix(pixa, pixt2, L_INSERT);
    pixDestroy(&pixt1);

    /* Remove short lines */
    fprintf(stderr, "Num all lines = %d\n", ptaaGetCount(ptaa1));
    ptaa2 = dewarpRemoveShortLines(pixb, ptaa1, 0.8, 0);
    pixt1 = pixCreateTemplate(pixs);
    pixSetAll(pixt1);
    pixt2 = pixDisplayPtaa(pixt1, ptaa2);
    pixWrite("/tmp/textline2.png", pixt2, IFF_PNG);
    pixDisplayWithTitle(pixt2, 300, 100, "textline centers 2", 1);
    pixaAddPix(pixa, pixt2, L_INSERT);
    pixDestroy(&pixt1);
    n = ptaaGetCount(ptaa2);
    fprintf(stderr, "Num long lines = %d\n", n);
    ptaaDestroy(&ptaa1);
    pixDestroy(&pixb);

    /* Long lines over input image */
    pixt1 = pixCopy(NULL, pixs);
    pixt2 = pixDisplayPtaa(pixt1, ptaa2);
    pixWrite("/tmp/textline3.png", pixt2, IFF_PNG);
    pixDisplayWithTitle(pixt2, 600, 100, "textline centers 3", 1);
    pixaAddPix(pixa, pixt2, L_INSERT);
    pixDestroy(&pixt1);

    /* Quadratic fit to curve */
    pixt1 = pixCopy(NULL, pixs);
    for (i = 0; i < n; i++) {
        pta = ptaaGetPta(ptaa2, i, L_CLONE);
        ptaGetArrays(pta, &nax, NULL);
        ptaGetQuadraticLSF(pta, &a, &b, &c, &nafit);
        fprintf(stderr, "Quadratic: a = %10.6f, b = %7.3f, c = %7.3f\n",
                a, b, c);
        ptad = ptaCreateFromNuma(nax, nafit);
        pixDisplayPta(pixt1, pixt1, ptad);
        ptaDestroy(&pta);
        ptaDestroy(&ptad);
        numaDestroy(&nax);
        numaDestroy(&nafit);
    }
    pixWrite("/tmp/textline4.png", pixt1, IFF_PNG);
    pixDisplayWithTitle(pixt1, 900, 100, "textline centers 4", 1);
    pixaAddPix(pixa, pixt1, L_INSERT);

    /* Cubic fit to curve */
    pixt1 = pixCopy(NULL, pixs);
    for (i = 0; i < n; i++) {
        pta = ptaaGetPta(ptaa2, i, L_CLONE);
        ptaGetArrays(pta, &nax, NULL);
        ptaGetCubicLSF(pta, &a, &b, &c, &d, &nafit);
        fprintf(stderr, "Cubic: a = %10.6f, b = %10.6f, c = %7.3f, d = %7.3f\n",
                a, b, c, d);
        ptad = ptaCreateFromNuma(nax, nafit);
        pixDisplayPta(pixt1, pixt1, ptad);
        ptaDestroy(&pta);
        ptaDestroy(&ptad);
        numaDestroy(&nax);
        numaDestroy(&nafit);
    }
    pixWrite("/tmp/textline5.png", pixt1, IFF_PNG);
    pixDisplayWithTitle(pixt1, 1200, 100, "textline centers 5", 1);
    pixaAddPix(pixa, pixt1, L_INSERT);

    /* Quartic fit to curve */
    pixt1 = pixCopy(NULL, pixs);
    for (i = 0; i < n; i++) {
        pta = ptaaGetPta(ptaa2, i, L_CLONE);
        ptaGetArrays(pta, &nax, NULL);
        ptaGetQuarticLSF(pta, &a, &b, &c, &d, &e, &nafit);
        fprintf(stderr,
                "Quartic: a = %7.3f, b = %7.3f, c = %9.5f, d = %7.3f, e = %7.3f\n",
                a, b, c, d, e);
        ptad = ptaCreateFromNuma(nax, nafit);
        pixDisplayPta(pixt1, pixt1, ptad);
        ptaDestroy(&pta);
        ptaDestroy(&ptad);
        numaDestroy(&nax);
        numaDestroy(&nafit);
    }
    pixWrite("/tmp/textline6.png", pixt1, IFF_PNG);
    pixDisplayWithTitle(pixt1, 1500, 100, "textline centers 6", 1);
    pixaAddPix(pixa, pixt1, L_INSERT);

    pixaConvertToPdf(pixa, 300, 0.5, L_JPEG_ENCODE, 75,
                     "LS fittings to textlines", "/tmp/dewarp_fittings.pdf");

    pixaDestroy(&pixa);
    pixDestroy(&pixs);
    ptaaDestroy(&ptaa2);
    return 0;
}
Example #16
0
int main(int argc,
         char **argv) {
    char *infile;
    l_int32 w, d, threshval, ival, newval;
    l_uint32 val;
    PIX *pixs, *pixg, *pixg2;
    PIX *pix1, *pix2;
    PIXA *pixa;
    static char mainName[] = "binarize_set";

    if (argc != 2)
        return ERROR_INT(" Syntax: binarize_set infile", mainName, 1);
    infile = argv[1];

    pixa = pixaCreate(5);
    pixs = pixRead(infile);
    pixGetDimensions(pixs, &w, NULL, &d);
    pixSaveTiled(pixs, pixa, 1.0, 1, 50, 32);
    pixDisplay(pixs, 100, 0);

#if ALL
    /* 1. Standard background normalization with a global threshold.  */
    pixg = pixConvertTo8(pixs, 0);
    pix1 = pixBackgroundNorm(pixg, NULL, NULL, 10, 15, 100, 50, 255, 2, 2);
    pix2 = pixThresholdToBinary(pix1, 160);
    pixWrite("/tmp/binar1.png", pix2, IFF_PNG);
    pixDisplay(pix2, 100, 0);
    pixSaveTiled(pix2, pixa, 1.0, 1, 50, 32);
    pixDestroy(&pixg);
    pixDestroy(&pix1);
    pixDestroy(&pix2);
#endif

#if ALL
    /* 2. Background normalization followed by Otsu thresholding.  Otsu
     * binarization attempts to split the image into two roughly equal
     * sets of pixels, and it does a very poor job when there are large
     * amounts of dark background.  By doing a background normalization
     * first (to get the background near 255), we remove this problem.
     * Then we use a modified Otsu to estimate the best global
     * threshold on the normalized image.  */
    pixg = pixConvertTo8(pixs, 0);
    pix1 = pixOtsuThreshOnBackgroundNorm(pixg, NULL, 10, 15, 100,
                                         50, 255, 2, 2, 0.10, &threshval);
    fprintf(stderr, "thresh val = %d\n", threshval);
    pixSaveTiled(pix1, pixa, 1.0, 1, 50, 32);
    pixWrite("/tmp/binar2.png", pix1, IFF_PNG);
    pixDisplay(pix1, 100, 200);
    pixDestroy(&pixg);
    pixDestroy(&pix1);
#endif

#if ALL
    /* 3. Background normalization with Otsu threshold estimation and
     * masking for threshold selection.  */
    pixg = pixConvertTo8(pixs, 0);
    pix1 = pixMaskedThreshOnBackgroundNorm(pixg, NULL, 10, 15, 100,
                                           50, 2, 2, 0.10, &threshval);
    fprintf(stderr, "thresh val = %d\n", threshval);
    pixSaveTiled(pix1, pixa, 1.0, 1, 50, 32);
    pixWrite("/tmp/binar3.png", pix1, IFF_PNG);
    pixDisplay(pix1, 100, 400);
    pixDestroy(&pixg);
    pixDestroy(&pix1);
#endif

#if ALL
    /* 4. Background normalization followed by Sauvola binarization */
    if (d == 32)
        pixg = pixConvertRGBToGray(pixs, 0.2, 0.7, 0.1);
    else
        pixg = pixConvertTo8(pixs, 0);
    pixg2 = pixContrastNorm(NULL, pixg, 20, 20, 130, 2, 2);
    pixSauvolaBinarizeTiled(pixg2, 25, 0.40, 1, 1, NULL, &pix1);
    pixSaveTiled(pix1, pixa, 1.0, 1, 50, 32);
    pixWrite("/tmp/binar4.png", pix1, IFF_PNG);
    pixDisplay(pix1, 100, 600);
    pixDestroy(&pixg);
    pixDestroy(&pixg2);
    pixDestroy(&pix1);
#endif

#if ALL
    /* 5. Contrast normalization followed by background normalization, and
     * thresholding. */
    if (d == 32)
        pixg = pixConvertRGBToGray(pixs, 0.2, 0.7, 0.1);
    else
        pixg = pixConvertTo8(pixs, 0);

    pixOtsuAdaptiveThreshold(pixg, 5000, 5000, 0, 0, 0.1, &pix1, NULL);
    pixGetPixel(pix1, 0, 0, &val);
    ival = (l_int32) val;
    newval = ival + (l_int32)(0.6 * (110 - ival));
    fprintf(stderr, "th1 = %d, th2 = %d\n", ival, newval);
    pixDestroy(&pix1);

    pixContrastNorm(pixg, pixg, 50, 50, 130, 2, 2);
    pixg2 = pixBackgroundNorm(pixg, NULL, NULL, 20, 20, 70, 40, 200, 2, 2);

    ival = L_MIN(ival, 110);
    pix1 = pixThresholdToBinary(pixg2, ival);
    pixSaveTiled(pix1, pixa, 1.0, 1, 50, 32);
    pixWrite("/tmp/binar5.png", pix1, IFF_PNG);
    pixDisplay(pix1, 100, 800);
    pixDestroy(&pixg);
    pixDestroy(&pixg2);
    pixDestroy(&pix1);
#endif

    pix1 = pixaDisplayTiledInRows(pixa, 32, w + 100, 1.0, 0, 30, 2);
    pixWrite("/tmp/binar6.png", pix1, IFF_PNG);
    pixDisplay(pix1, 1000, 0);
    pixDestroy(&pix1);
    pixaDestroy(&pixa);

    pixDestroy(&pixs);
    return 0;
}
Example #17
0
l_int32 main(int    argc,
             char **argv)
{
l_int32      method, pageno;
L_DEWARP    *dew1;
L_DEWARPA   *dewa;
PIX         *pixs, *pixn, *pixg, *pixb, *pixd;
static char  mainName[] = "dewarptest2";

    if (argc != 2 && argc != 4)
        return ERROR_INT("Syntax: dewarptest2 method [image pageno]",
                         mainName, 1);

    if (argc == 2) {
        pixs = pixRead("cat-35.jpg");
        pageno = 35;
    }
    else {
        pixs = pixRead(argv[2]);
        pageno = atoi(argv[3]);
    }
    if (!pixs)
        return ERROR_INT("image not read", mainName, 1);
    method = atoi(argv[1]);
    lept_mkdir("lept");

    if (method == 1) {  /* Use single page dewarp function */
        dewarpSinglePage(pixs, 1, 100, 1, &pixd, NULL, 1);
        pixDisplay(pixd, 100, 100);
    } else {  /* Break down into multiple steps; require min of only 6 lines */
        dewa = dewarpaCreate(40, 30, 1, 6, 50);
        dewarpaUseBothArrays(dewa, 1);

#if NORMALIZE
            /* Normalize for varying background and binarize */
        pixn = pixBackgroundNormSimple(pixs, NULL, NULL);
        pixg = pixConvertRGBToGray(pixn, 0.5, 0.3, 0.2);
        pixb = pixThresholdToBinary(pixg, 130);
        pixDestroy(&pixn);
#else
            /* Don't normalize; just threshold and clean edges */
        pixg = pixConvertTo8(pixs, 0);
        pixb = pixThresholdToBinary(pixg, 100);
        pixSetOrClearBorder(pixb, 30, 30, 40, 40, PIX_CLR);
#endif

            /* Run the basic functions */
        dew1 = dewarpCreate(pixb, pageno);
        dewarpaInsertDewarp(dewa, dew1);
        dewarpBuildPageModel(dew1, "/tmp/lept/test2_model.pdf");
        dewarpaApplyDisparity(dewa, pageno, pixg, -1, 0, 0, &pixd,
                              "/tmp/lept/test2_apply.pdf");

        dewarpaInfo(stderr, dewa);
        dewarpaDestroy(&dewa);
        pixDestroy(&pixg);
        pixDestroy(&pixb);
    }

    pixDestroy(&pixs);
    pixDestroy(&pixd);
    return 0;
}
Example #18
0
int main(int    argc,
         char **argv)
{
l_int32       index;
l_uint32      val32;
BOX          *box, *box1, *box2, *box3, *box4, *box5;
BOXA         *boxa;
L_KERNEL     *kel;
PIX          *pixs, *pixg, *pixb, *pixd, *pixt, *pix1, *pix2, *pix3, *pix4;
PIXA         *pixa;
PIXCMAP      *cmap;
L_REGPARAMS  *rp;

    if (regTestSetup(argc, argv, &rp))
        return 1;

    pixa = pixaCreate(0);

        /* Color non-white pixels on RGB */
    pixs = pixRead("lucasta-frag.jpg");
    pixt = pixConvert8To32(pixs);
    box = boxCreate(120, 30, 200, 200);
    pixColorGray(pixt, box, L_PAINT_DARK, 220, 0, 0, 255);
    regTestWritePixAndCheck(rp, pixt, IFF_JFIF_JPEG);  /* 0 */
    pixaAddPix(pixa, pixt, L_COPY);
    pixColorGray(pixt, NULL, L_PAINT_DARK, 220, 255, 100, 100);
    regTestWritePixAndCheck(rp, pixt, IFF_JFIF_JPEG);  /* 1 */
    pixaAddPix(pixa, pixt, L_INSERT);
    boxDestroy(&box);

        /* Color non-white pixels on colormap */
    pixt = pixThresholdTo4bpp(pixs, 6, 1);
    box = boxCreate(120, 30, 200, 200);
    pixColorGray(pixt, box, L_PAINT_DARK, 220, 0, 0, 255);
    regTestWritePixAndCheck(rp, pixt, IFF_PNG);  /* 2 */
    pixaAddPix(pixa, pixt, L_COPY);
    pixColorGray(pixt, NULL, L_PAINT_DARK, 220, 255, 100, 100);
    regTestWritePixAndCheck(rp, pixt, IFF_PNG);  /* 3 */
    pixaAddPix(pixa, pixt, L_INSERT);
    boxDestroy(&box);

        /* Color non-black pixels on RGB */
    pixt = pixConvert8To32(pixs);
    box = boxCreate(120, 30, 200, 200);
    pixColorGray(pixt, box, L_PAINT_LIGHT, 20, 0, 0, 255);
    regTestWritePixAndCheck(rp, pixt, IFF_PNG);  /* 4 */
    pixaAddPix(pixa, pixt, L_COPY);
    pixColorGray(pixt, NULL, L_PAINT_LIGHT, 80, 255, 100, 100);
    regTestWritePixAndCheck(rp, pixt, IFF_PNG);  /* 5 */
    pixaAddPix(pixa, pixt, L_INSERT);
    boxDestroy(&box);

        /* Color non-black pixels on colormap */
    pixt = pixThresholdTo4bpp(pixs, 6, 1);
    box = boxCreate(120, 30, 200, 200);
    pixColorGray(pixt, box, L_PAINT_LIGHT, 20, 0, 0, 255);
    regTestWritePixAndCheck(rp, pixt, IFF_PNG);  /* 6 */
    pixaAddPix(pixa, pixt, L_COPY);
    pixColorGray(pixt, NULL, L_PAINT_LIGHT, 20, 255, 100, 100);
    regTestWritePixAndCheck(rp, pixt, IFF_PNG);  /* 7 */
    pixaAddPix(pixa, pixt, L_INSERT);
    boxDestroy(&box);

        /* Add highlight color to RGB */
    pixt = pixConvert8To32(pixs);
    box = boxCreate(507, 5, 385, 45);
    pixg = pixClipRectangle(pixs, box, NULL);
    pixb = pixThresholdToBinary(pixg, 180);
    pixInvert(pixb, pixb);
    pixDisplayWrite(pixb, 1);
    composeRGBPixel(50, 0, 250, &val32);
    pixPaintThroughMask(pixt, pixb, box->x, box->y, val32);
    boxDestroy(&box);
    pixDestroy(&pixg);
    pixDestroy(&pixb);
    box = boxCreate(236, 107, 262, 40);
    pixg = pixClipRectangle(pixs, box, NULL);
    pixb = pixThresholdToBinary(pixg, 180);
    pixInvert(pixb, pixb);
    composeRGBPixel(250, 0, 50, &val32);
    pixPaintThroughMask(pixt, pixb, box->x, box->y, val32);
    boxDestroy(&box);
    pixDestroy(&pixg);
    pixDestroy(&pixb);
    box = boxCreate(222, 208, 247, 43);
    pixg = pixClipRectangle(pixs, box, NULL);
    pixb = pixThresholdToBinary(pixg, 180);
    pixInvert(pixb, pixb);
    composeRGBPixel(60, 250, 60, &val32);
    pixPaintThroughMask(pixt, pixb, box->x, box->y, val32);
    regTestWritePixAndCheck(rp, pixt, IFF_PNG);  /* 8 */
    pixaAddPix(pixa, pixt, L_INSERT);
    boxDestroy(&box);
    pixDestroy(&pixg);
    pixDestroy(&pixb);

        /* Add highlight color to colormap */
    pixt = pixThresholdTo4bpp(pixs, 5, 1);
    cmap = pixGetColormap(pixt);
    pixcmapGetIndex(cmap, 255, 255, 255, &index);
    box = boxCreate(507, 5, 385, 45);
    pixSetSelectCmap(pixt, box, index, 50, 0, 250);
    boxDestroy(&box);
    box = boxCreate(236, 107, 262, 40);
    pixSetSelectCmap(pixt, box, index, 250, 0, 50);
    boxDestroy(&box);
    box = boxCreate(222, 208, 247, 43);
    pixSetSelectCmap(pixt, box, index, 60, 250, 60);
    regTestWritePixAndCheck(rp, pixt, IFF_PNG);  /* 9 */
    pixaAddPix(pixa, pixt, L_INSERT);
    boxDestroy(&box);

        /* Paint lines on RGB */
    pixt = pixConvert8To32(pixs);
    pixRenderLineArb(pixt, 450, 20, 850, 320, 5, 200, 50, 125);
    pixRenderLineArb(pixt, 30, 40, 440, 40, 5, 100, 200, 25);
    box = boxCreate(70, 80, 300, 245);
    pixRenderBoxArb(pixt, box, 3, 200, 200, 25);
    regTestWritePixAndCheck(rp, pixt, IFF_JFIF_JPEG);  /* 10 */
    pixaAddPix(pixa, pixt, L_INSERT);
    boxDestroy(&box);

        /* Paint lines on colormap */
    pixt = pixThresholdTo4bpp(pixs, 5, 1);
    pixRenderLineArb(pixt, 450, 20, 850, 320, 5, 200, 50, 125);
    pixRenderLineArb(pixt, 30, 40, 440, 40, 5, 100, 200, 25);
    box = boxCreate(70, 80, 300, 245);
    pixRenderBoxArb(pixt, box, 3, 200, 200, 25);
    regTestWritePixAndCheck(rp, pixt, IFF_PNG);  /* 11 */
    pixaAddPix(pixa, pixt, L_INSERT);
    boxDestroy(&box);

        /* Blend lines on RGB */
    pixt = pixConvert8To32(pixs);
    pixRenderLineBlend(pixt, 450, 20, 850, 320, 5, 200, 50, 125, 0.35);
    pixRenderLineBlend(pixt, 30, 40, 440, 40, 5, 100, 200, 25, 0.35);
    box = boxCreate(70, 80, 300, 245);
    pixRenderBoxBlend(pixt, box, 3, 200, 200, 25, 0.6);
    regTestWritePixAndCheck(rp, pixt, IFF_JFIF_JPEG);  /* 12 */
    pixaAddPix(pixa, pixt, L_INSERT);
    boxDestroy(&box);

        /* Colorize gray on cmapped image. */
    pix1 = pixRead("lucasta.150.jpg");
    pix2 = pixThresholdTo4bpp(pix1, 7, 1);
    box1 = boxCreate(73, 206, 140, 27);
    pixColorGrayCmap(pix2, box1, L_PAINT_LIGHT, 130, 207, 43);
    regTestWritePixAndCheck(rp, pix2, IFF_PNG);  /* 13 */
    pixaAddPix(pixa, pix2, L_COPY);
    if (rp->display)
        pixPrintStreamInfo(stderr, pix2, "One box added");

    box2 = boxCreate(255, 404, 197, 25);
    pixColorGrayCmap(pix2, box2, L_PAINT_LIGHT, 230, 67, 119);
    regTestWritePixAndCheck(rp, pix2, IFF_PNG);  /* 14 */
    pixaAddPix(pixa, pix2, L_COPY);
    if (rp->display)
        pixPrintStreamInfo(stderr, pix2, "Two boxes added");

    box3 = boxCreate(122, 756, 224, 22);
    pixColorGrayCmap(pix2, box3, L_PAINT_DARK, 230, 67, 119);
    regTestWritePixAndCheck(rp, pix2, IFF_PNG);  /* 15 */
    pixaAddPix(pixa, pix2, L_COPY);
    if (rp->display)
        pixPrintStreamInfo(stderr, pix2, "Three boxes added");

    box4 = boxCreate(11, 780, 147, 22);
    pixColorGrayCmap(pix2, box4, L_PAINT_LIGHT, 70, 137, 229);
    regTestWritePixAndCheck(rp, pix2, IFF_PNG);  /* 16 */
    pixaAddPix(pixa, pix2, L_COPY);
    if (rp->display)
        pixPrintStreamInfo(stderr, pix2, "Four boxes added");

    box5 = boxCreate(163, 605, 78, 22);
    pixColorGrayCmap(pix2, box5, L_PAINT_LIGHT, 70, 137, 229);
    regTestWritePixAndCheck(rp, pix2, IFF_PNG);  /* 17 */
    pixaAddPix(pixa, pix2, L_INSERT);
    if (rp->display)
        pixPrintStreamInfo(stderr, pix2, "Five boxes added");
    pixDestroy(&pix1);
    boxDestroy(&box1);
    boxDestroy(&box2);
    boxDestroy(&box3);
    boxDestroy(&box4);
    boxDestroy(&box5);
    pixDestroy(&pixs);

        /* Make a gray image and identify the fg pixels (val > 230) */
    pixs = pixRead("feyn-fract.tif");
    pix1 = pixConvertTo8(pixs, 0);
    kel = makeGaussianKernel(2, 2, 1.5, 1.0);
    pix2 = pixConvolve(pix1, kel, 8, 1);
    pix3 = pixThresholdToBinary(pix2, 230);
    boxa = pixConnComp(pix3, NULL, 8);
    pixDestroy(&pixs);
    pixDestroy(&pix1);
    pixDestroy(&pix3);
    kernelDestroy(&kel);

        /* Color the individual components in the gray image */
    pix4 = pixColorGrayRegions(pix2, boxa, L_PAINT_DARK, 230, 255, 0, 0);
    regTestWritePixAndCheck(rp, pix4, IFF_PNG);  /* 18 */
    pixaAddPix(pixa, pix4, L_INSERT);
    pixDisplayWithTitle(pix4, 0, 0, NULL, rp->display);

        /* Threshold to 10 levels of gray */
    pix3 = pixThresholdOn8bpp(pix2, 10, 1);
    regTestWritePixAndCheck(rp, pix3, IFF_PNG);  /* 19 */
    pixaAddPix(pixa, pix3, L_COPY);

        /* Color the individual components in the cmapped image */
    pix4 = pixColorGrayRegions(pix3, boxa, L_PAINT_DARK, 230, 255, 0, 0);
    regTestWritePixAndCheck(rp, pix4, IFF_PNG);  /* 20 */
    pixaAddPix(pixa, pix4, L_INSERT);
    pixDisplayWithTitle(pix4, 0, 100, NULL, rp->display);
    boxaDestroy(&boxa);

        /* Color the entire gray image (not component-wise) */
    pixColorGray(pix2, NULL, L_PAINT_DARK, 230, 255, 0, 0);
    regTestWritePixAndCheck(rp, pix2, IFF_PNG);  /* 21 */
    pixaAddPix(pixa, pix2, L_INSERT);

        /* Color the entire cmapped image (not component-wise) */
    pixColorGray(pix3, NULL, L_PAINT_DARK, 230, 255, 0, 0);
    regTestWritePixAndCheck(rp, pix3, IFF_PNG);  /* 22 */
    pixaAddPix(pixa, pix3, L_INSERT);

        /* Reconstruct cmapped images */
    pixd = ReconstructByValue(rp, "weasel2.4c.png");
    regTestWritePixAndCheck(rp, pixd, IFF_PNG);  /* 23 */
    pixaAddPix(pixa, pixd, L_INSERT);
    pixd = ReconstructByValue(rp, "weasel4.11c.png");
    regTestWritePixAndCheck(rp, pixd, IFF_PNG);  /* 24 */
    pixaAddPix(pixa, pixd, L_INSERT);
    pixd = ReconstructByValue(rp, "weasel8.240c.png");
    regTestWritePixAndCheck(rp, pixd, IFF_PNG);  /* 25 */
    pixaAddPix(pixa, pixd, L_INSERT);

        /* Fake reconstruct cmapped images, with one color into a band */
    pixd = FakeReconstructByBand(rp, "weasel2.4c.png");
    regTestWritePixAndCheck(rp, pixd, IFF_PNG);  /* 26 */
    pixaAddPix(pixa, pixd, L_INSERT);
    pixd = FakeReconstructByBand(rp, "weasel4.11c.png");
    regTestWritePixAndCheck(rp, pixd, IFF_PNG);  /* 27 */
    pixaAddPix(pixa, pixd, L_INSERT);
    pixd = FakeReconstructByBand(rp, "weasel8.240c.png");
    regTestWritePixAndCheck(rp, pixd, IFF_PNG);  /* 28 */
    pixaAddPix(pixa, pixd, L_INSERT);

        /* If in testing mode, make a pdf */
    if (rp->display) {
        pixaConvertToPdf(pixa, 100, 1.0, L_FLATE_ENCODE, 0,
                         "Colorize and paint", "/tmp/lept/regout/paint.pdf");
        L_INFO("Output pdf: /tmp/lept/regout/paint.pdf\n", rp->testname);
    }

    pixaDestroy(&pixa);
    return regTestCleanup(rp);
}
Example #19
0
main(int    argc,
char **argv)
{
l_float32     sum, sumx, sumy, diff;
L_DEWARP     *dew;
L_DEWARPA    *dewa;
FPIX         *fpixs, *fpixs2, *fpixs3, *fpixs4, *fpixg, *fpixd;
FPIX         *fpix1, *fpix2, *fpixt1, *fpixt2;
DPIX         *dpix, *dpix2;
L_KERNEL     *kel, *kelx, *kely;
PIX          *pixs, *pixs2, *pixs3, *pixt, *pixd, *pixg, *pixb, *pixn;
PIX          *pixt1, *pixt2, *pixt3, *pixt4, *pixt5, *pixt6;
PIXA         *pixa;
PTA          *ptas, *ptad;
L_REGPARAMS  *rp;

    if (regTestSetup(argc, argv, &rp))
        return 1;

    pixa = pixaCreate(0);

        /* Gaussian kernel */
    kel = makeGaussianKernel(5, 5, 3.0, 4.0);
    kernelGetSum(kel, &sum);
    if (rp->display) fprintf(stderr, "Sum for 2d gaussian kernel = %f\n", sum);
    pixt = kernelDisplayInPix(kel, 41, 2);
    regTestWritePixAndCheck(rp, pixt, IFF_PNG);  /* 0 */
    pixSaveTiled(pixt, pixa, 1, 1, 20, 8);
    pixDestroy(&pixt);

        /* Separable gaussian kernel */
    makeGaussianKernelSep(5, 5, 3.0, 4.0, &kelx, &kely);
    kernelGetSum(kelx, &sumx);
    if (rp->display) fprintf(stderr, "Sum for x gaussian kernel = %f\n", sumx);
    kernelGetSum(kely, &sumy);
    if (rp->display) fprintf(stderr, "Sum for y gaussian kernel = %f\n", sumy);
    if (rp->display) fprintf(stderr, "Sum for x * y gaussian kernel = %f\n",
                         sumx * sumy);
    pixt = kernelDisplayInPix(kelx, 41, 2);
    regTestWritePixAndCheck(rp, pixt, IFF_PNG);  /* 1 */
    pixSaveTiled(pixt, pixa, 1, 0, 20, 8);
    pixDestroy(&pixt);
    pixt = kernelDisplayInPix(kely, 41, 2);
    regTestWritePixAndCheck(rp, pixt, IFF_PNG);  /* 2 */
    pixSaveTiled(pixt, pixa, 1, 0, 20, 8);
    pixDestroy(&pixt);

        /* Use pixRasterop() to generate source image */
    pixs = pixRead("test8.jpg");
    pixs2 = pixRead("karen8.jpg");
    pixRasterop(pixs, 150, 125, 150, 100, PIX_SRC, pixs2, 75, 100);
    regTestWritePixAndCheck(rp, pixs, IFF_JFIF_JPEG);  /* 3 */

        /* Convolution directly with pix */
    pixt1 = pixConvolve(pixs, kel, 8, 1);
    regTestWritePixAndCheck(rp, pixt1, IFF_JFIF_JPEG);  /* 4 */
    pixSaveTiled(pixt1, pixa, 1, 1, 20, 8);
    pixt2 = pixConvolveSep(pixs, kelx, kely, 8, 1);
    regTestWritePixAndCheck(rp, pixt2, IFF_JFIF_JPEG);  /* 5 */
    pixSaveTiled(pixt2, pixa, 1, 0, 20, 8);

        /* Convolution indirectly with fpix, using fpixRasterop()
         * to generate the source image. */
    fpixs = pixConvertToFPix(pixs, 3);
    fpixs2 = pixConvertToFPix(pixs2, 3);
    fpixRasterop(fpixs, 150, 125, 150, 100, fpixs2, 75, 100);
    fpixt1 = fpixConvolve(fpixs, kel, 1);
    pixt3 = fpixConvertToPix(fpixt1, 8, L_CLIP_TO_ZERO, 1);
    regTestWritePixAndCheck(rp, pixt3, IFF_JFIF_JPEG);  /* 6 */
    pixSaveTiled(pixt3, pixa, 1, 1, 20, 8);
    fpixt2 = fpixConvolveSep(fpixs, kelx, kely, 1);
    pixt4 = fpixConvertToPix(fpixt2, 8, L_CLIP_TO_ZERO, 1);
    regTestWritePixAndCheck(rp, pixt4, IFF_JFIF_JPEG);  /* 7 */
    pixSaveTiled(pixt4, pixa, 1, 0, 20, 8);
    pixDestroy(&pixs2);
    fpixDestroy(&fpixs2);
    fpixDestroy(&fpixt1);
    fpixDestroy(&fpixt2);

        /* Comparison of results */
    pixCompareGray(pixt1, pixt2, L_COMPARE_ABS_DIFF, 0, NULL,
                   &diff, NULL, NULL);
    if (rp->display)
        fprintf(stderr, "Ave diff of pixConvolve and pixConvolveSep: %f\n",
                diff);
    pixCompareGray(pixt3, pixt4, L_COMPARE_ABS_DIFF, 0, NULL,
                   &diff, NULL, NULL);
    if (rp->display)
        fprintf(stderr, "Ave diff of fpixConvolve and fpixConvolveSep: %f\n",
                diff);
    pixCompareGray(pixt1, pixt3, L_COMPARE_ABS_DIFF, 0, NULL,
                   &diff, NULL, NULL);
    if (rp->display)
        fprintf(stderr, "Ave diff of pixConvolve and fpixConvolve: %f\n", diff);
    pixCompareGray(pixt2, pixt4, L_COMPARE_ABS_DIFF, GPLOT_PNG, NULL,
                   &diff, NULL, NULL);
    if (rp->display)
        fprintf(stderr, "Ave diff of pixConvolveSep and fpixConvolveSep: %f\n",
                diff);
    pixDestroy(&pixt1);
    pixDestroy(&pixt2);
    pixDestroy(&pixt3);
    pixDestroy(&pixt4);

        /* Test arithmetic operations; add in a fraction rotated by 180 */
    pixs3 = pixRotate180(NULL, pixs);
    regTestWritePixAndCheck(rp, pixs3, IFF_JFIF_JPEG);  /* 8 */
    pixSaveTiled(pixs3, pixa, 1, 1, 20, 8);
    fpixs3 = pixConvertToFPix(pixs3, 3);
    fpixd = fpixLinearCombination(NULL, fpixs, fpixs3, 20.0, 5.0);
    fpixAddMultConstant(fpixd, 0.0, 23.174);   /* multiply up in magnitude */
    pixd = fpixDisplayMaxDynamicRange(fpixd);  /* bring back to 8 bpp */
    regTestWritePixAndCheck(rp, pixd, IFF_JFIF_JPEG);  /* 9 */
    pixSaveTiled(pixd, pixa, 1, 0, 20, 8);
    pixDestroy(&pixs3);
    fpixDestroy(&fpixs3);
    fpixDestroy(&fpixd);
    pixDestroy(&pixd);
    pixDestroy(&pixs);
    fpixDestroy(&fpixs);

        /* Save the comparison graph; gnuplot should have made it by now! */
#ifndef _WIN32
    sleep(2);
#else
    Sleep(2000);
#endif  /* _WIN32 */
    pixt5 = pixRead("/tmp/grayroot.png");
    regTestWritePixAndCheck(rp, pixt5, IFF_PNG);  /* 10 */
    pixSaveTiled(pixt5, pixa, 1, 1, 20, 8);
    pixDestroy(&pixt5);

        /* Display results */
    pixd = pixaDisplay(pixa, 0, 0);
    regTestWritePixAndCheck(rp, pixd, IFF_JFIF_JPEG);  /* 11 */
    pixDisplayWithTitle(pixd, 100, 100, NULL, rp->display);
    pixDestroy(&pixd);
    pixaDestroy(&pixa);

        /* Test some more convolutions, with sampled output. First on pix */
    pixa = pixaCreate(0);
    pixs = pixRead("1555-7.jpg");
    pixg = pixConvertTo8(pixs, 0);
    l_setConvolveSampling(5, 5);
    pixt1 = pixConvolve(pixg, kel, 8, 1);
    regTestWritePixAndCheck(rp, pixt1, IFF_JFIF_JPEG);  /* 12 */
    pixSaveTiled(pixt1, pixa, 1, 1, 20, 32);
    pixt2 = pixConvolveSep(pixg, kelx, kely, 8, 1);
    regTestWritePixAndCheck(rp, pixt2, IFF_JFIF_JPEG);  /* 13 */
    pixSaveTiled(pixt2, pixa, 1, 0, 20, 32);
    pixt3 = pixConvolveRGB(pixs, kel);
    regTestWritePixAndCheck(rp, pixt3, IFF_JFIF_JPEG);  /* 14 */
    pixSaveTiled(pixt3, pixa, 1, 0, 20, 32);
    pixt4 = pixConvolveRGBSep(pixs, kelx, kely);
    regTestWritePixAndCheck(rp, pixt4, IFF_JFIF_JPEG);  /* 15 */
    pixSaveTiled(pixt4, pixa, 1, 0, 20, 32);

        /* Then on fpix */
    fpixg = pixConvertToFPix(pixg, 1);
    fpixt1 = fpixConvolve(fpixg, kel, 1);
    pixt5 = fpixConvertToPix(fpixt1, 8, L_CLIP_TO_ZERO, 0);
    regTestWritePixAndCheck(rp, pixt5, IFF_JFIF_JPEG);  /* 16 */
    pixSaveTiled(pixt5, pixa, 1, 1, 20, 32);
    fpixt2 = fpixConvolveSep(fpixg, kelx, kely, 1);
    pixt6 = fpixConvertToPix(fpixt2, 8, L_CLIP_TO_ZERO, 0);
    regTestWritePixAndCheck(rp, pixt6, IFF_JFIF_JPEG);  /* 17 */
    pixSaveTiled(pixt2, pixa, 1, 0, 20, 32);
    regTestCompareSimilarPix(rp, pixt1, pixt5, 2, 0.00, 0);  /* 18 */
    regTestCompareSimilarPix(rp, pixt2, pixt6, 2, 0.00, 0);  /* 19 */
    pixDestroy(&pixt1);
    pixDestroy(&pixt2);
    pixDestroy(&pixt3);
    pixDestroy(&pixt4);
    pixDestroy(&pixt5);
    pixDestroy(&pixt6);
    fpixDestroy(&fpixg);
    fpixDestroy(&fpixt1);
    fpixDestroy(&fpixt2);

    pixd = pixaDisplay(pixa, 0, 0);
    regTestWritePixAndCheck(rp, pixd, IFF_JFIF_JPEG);  /* 20 */
    pixDisplayWithTitle(pixd, 600, 100, NULL, rp->display);
    pixDestroy(&pixs);
    pixDestroy(&pixg);
    pixDestroy(&pixd);
    pixaDestroy(&pixa);

        /* Test extension (continued and slope).
         * First, build a smooth vertical disparity array;
         * then extend and show the contours. */
    pixs = pixRead("cat-35.jpg");
    pixn = pixBackgroundNormSimple(pixs, NULL, NULL);
    pixg = pixConvertRGBToGray(pixn, 0.5, 0.3, 0.2);
    pixb = pixThresholdToBinary(pixg, 130);
    dewa = dewarpaCreate(1, 30, 1, 15, 0);
    dew = dewarpCreate(pixb, 35);
    dewarpaInsertDewarp(dewa, dew);
    dewarpBuildModel(dew, NULL);
    dewarpPopulateFullRes(dew, NULL);
    fpixs = dew->fullvdispar;
    fpixs2 = fpixAddContinuedBorder(fpixs, 200, 200, 100, 300);
    fpixs3 = fpixAddSlopeBorder(fpixs, 200, 200, 100, 300);
    dpix = fpixConvertToDPix(fpixs3);
    fpixs4 = dpixConvertToFPix(dpix);
    pixt1 = fpixRenderContours(fpixs, 2.0, 0.2);
    pixt2 = fpixRenderContours(fpixs2, 2.0, 0.2);
    pixt3 = fpixRenderContours(fpixs3, 2.0, 0.2);
    pixt4 = fpixRenderContours(fpixs4, 2.0, 0.2);
    pixt5 = pixRead("karen8.jpg");
    dpix2 = pixConvertToDPix(pixt5, 1);
    pixt6 = dpixConvertToPix(dpix2, 8, L_CLIP_TO_ZERO, 0);
    regTestWritePixAndCheck(rp, pixt1, IFF_PNG);  /* 21 */
    pixDisplayWithTitle(pixt1, 0, 100, NULL, rp->display);
    regTestWritePixAndCheck(rp, pixt2, IFF_PNG);  /* 22 */
    pixDisplayWithTitle(pixt2, 470, 100, NULL, rp->display);
    regTestWritePixAndCheck(rp, pixt3, IFF_PNG);  /* 23 */
    pixDisplayWithTitle(pixt3, 1035, 100, NULL, rp->display);
    regTestComparePix(rp, pixt3, pixt4);  /* 24 */
    regTestComparePix(rp, pixt5, pixt6);  /* 25 */
    pixDestroy(&pixs);
    pixDestroy(&pixn);
    pixDestroy(&pixg);
    pixDestroy(&pixb);
    pixDestroy(&pixt1);
    pixDestroy(&pixt2);
    pixDestroy(&pixt3);
    pixDestroy(&pixt4);
    pixDestroy(&pixt5);
    pixDestroy(&pixt6);
    fpixDestroy(&fpixs2);
    fpixDestroy(&fpixs3);
    fpixDestroy(&fpixs4);
    dpixDestroy(&dpix);
    dpixDestroy(&dpix2);

        /* Test affine and projective transforms on fpix */
    fpixWrite("/tmp/fpix1.fp", dew->fullvdispar);
    fpix1 = fpixRead("/tmp/fpix1.fp");
    pixt1 = fpixAutoRenderContours(fpix1, 40);
    regTestWritePixAndCheck(rp, pixt1, IFF_PNG);  /* 26 */
    pixDisplayWithTitle(pixt1, 0, 500, NULL, rp->display);
    pixDestroy(&pixt1);

    MakePtasAffine(1, &ptas, &ptad);
    fpix2 = fpixAffinePta(fpix1, ptad, ptas, 200, 0.0);
    pixt2 = fpixAutoRenderContours(fpix2, 40);
    regTestWritePixAndCheck(rp, pixt2, IFF_PNG);  /* 27 */
    pixDisplayWithTitle(pixt2, 400, 500, NULL, rp->display);
    fpixDestroy(&fpix2);
    pixDestroy(&pixt2);
    ptaDestroy(&ptas);
    ptaDestroy(&ptad);

    MakePtas(1, &ptas, &ptad);
    fpix2 = fpixProjectivePta(fpix1, ptad, ptas, 200, 0.0);
    pixt3 = fpixAutoRenderContours(fpix2, 40);
    regTestWritePixAndCheck(rp, pixt3, IFF_PNG);  /* 28 */
    pixDisplayWithTitle(pixt3, 400, 500, NULL, rp->display);
    fpixDestroy(&fpix2);
    pixDestroy(&pixt3);
    ptaDestroy(&ptas);
    ptaDestroy(&ptad);
    fpixDestroy(&fpix1);
    dewarpaDestroy(&dewa);

    kernelDestroy(&kel);
    kernelDestroy(&kelx);
    kernelDestroy(&kely);
    return regTestCleanup(rp);
}
Example #20
0
/*!
 *  deskew()
 *
 *      Input:  pixs
 *              redsearch  (for binary search: reduction factor = 1, 2 or 4)
 *      Return: deskewed pix, or NULL on error
 */
PIX *
deskew(PIX     *pixs,
       l_int32  redsearch)
{
l_float32  angle, conf, deg2rad;
PIX       *pixg;  /* gray version */
PIX       *pixb; /* binary version */
PIX       *pixd;  /* destination image */

    PROCNAME("deskew");

    if (!pixs)
	return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);

    /* Calculate a skew angle.  We may need to make a binary version of the
     * image for this calculation.
     */
    if (pixGetDepth(pixs) != 1) {
	/* FIX ME:  We should probably pick a threshold value with more care.  */
	/* Create a grayscale image if we need one.  */
	if (pixGetDepth(pixs) >= 24) {
	    pixg = pixConvertRGBToGray(pixs, 0.0, 0.0, 0.0);
	} else {
	    pixg = pixs;
	}
	    
	pixb = pixThresholdToBinary(pixg, 127);
	if (pixg != pixs) {
	    pixDestroy(&pixg);
	}
	/* Assert:  We are done with any gray image.  */
    } else {
	pixb = pixs;
    }
    /* Assert: We have a valid binary image.  */
    if (redsearch != 1 && redsearch != 2 && redsearch != 4)
	return (PIX *)ERROR_PTR("redsearch not in {1,2,4}", procName, NULL);

    deg2rad = 3.1415926535 / 180.;
    if (pixFindSkewSweepAndSearch(pixb, &angle, &conf,
				  DEFAULT_SWEEP_REDUCTION, redsearch,
				  DEFAULT_SWEEP_RANGE, DEFAULT_SWEEP_DELTA,
				  DEFAULT_MINBS_DELTA)) {
	pixd = pixClone(pixs);
	goto finish;
    }
	
    if (L_ABS(angle) < MIN_DESKEW_ANGLE || conf < MIN_ALLOWED_CONFIDENCE) {
	pixd = pixClone(pixs);
	goto finish;
    }

    /* If the pixel depth of pixs is 1, we need to use a bit-depth
     * independent rotate instead of the more accurate area mapping rotate.
     */
    if (pixGetDepth(pixs) == 1) {
	if ((pixd = pixRotateShear(pixs, 0, 0, deg2rad * angle, 0xffffff00)) == NULL) {
	    pixd = pixClone(pixs);
	}
    } else {
#if defined(COLOR_ROTATE)
	if ((pixd = pixRotateAMColorFast(pixs, deg2rad * angle)) == NULL) {
	    pixd = pixClone(pixs);
	}
#else
	if ((pixd = pixRotateAM(pixs, deg2rad * angle, 0xffffff00)) == NULL) {
	    pixd = pixClone(pixs);
	}
#endif
    }

   finish:
    if (pixb != pixs) {
	pixDestroy(&pixb);
    }
    return pixd;
}
Example #21
0
int main(int    argc,
         char **argv)
{
char         label[512];
l_int32      rval, gval, bval, w, h, i, j, rwhite, gwhite, bwhite, count;
l_uint32     pixel;
GPLOT       *gplot1, *gplot2;
NUMA        *naseq, *na;
NUMAA       *naa1, *naa2;
PIX         *pixs, *pixt, *pixt0, *pixt1, *pixt2;
PIX         *pixr, *pixg, *pixb;
PIXA        *pixa;
PIXCMAP     *cmap;
static char  mainName[] = "colorspacetest";

    if (argc != 2)
        return ERROR_INT(" Syntax:  colorspacetest filein", mainName, 1);

    if ((pixs = pixRead(argv[1])) == NULL)
        return ERROR_INT("pixs not made", mainName, 1);

        /* Generate colors by sampling hue with max sat and value.
         * This was used to make the color strip 19-colors.png.  */
    pixa = pixaCreate(19);
    for (i = 0; i < 19; i++) {
        convertHSVToRGB((240 * i / 18), 255, 255, &rval, &gval, &bval);
        composeRGBPixel(rval, gval, bval, &pixel);
        pixt1 = pixCreate(50, 100, 32);
        pixSetAllArbitrary(pixt1, pixel);
        pixaAddPix(pixa, pixt1, L_INSERT);
    }
    pixt2 = pixaDisplayTiledInRows(pixa, 32, 1100, 1.0, 0, 0, 0);
    pixDisplayWrite(pixt2, 1);
    pixDestroy(&pixt2);
    pixaDestroy(&pixa);

        /* Colorspace conversion in rgb */
    pixDisplayWrite(pixs, 1);
    pixt = pixConvertRGBToHSV(NULL, pixs);
    pixDisplayWrite(pixt, 1);
    pixConvertHSVToRGB(pixt, pixt);
    pixDisplayWrite(pixt, 1);
    pixDestroy(&pixt);

        /* Colorspace conversion on a colormap */
    pixt = pixOctreeQuantNumColors(pixs, 25, 0);
    pixDisplayWrite(pixt, 1);
    cmap = pixGetColormap(pixt);
    pixcmapWriteStream(stderr, cmap);
    pixcmapConvertRGBToHSV(cmap);
    pixcmapWriteStream(stderr, cmap);
    pixDisplayWrite(pixt, 1);
    pixcmapConvertHSVToRGB(cmap);
    pixcmapWriteStream(stderr, cmap);
    pixDisplayWrite(pixt, 1);
    pixDestroy(&pixt);

        /* Color content extraction */
    pixColorContent(pixs, 0, 0, 0, 0, &pixr, &pixg, &pixb);
    pixDisplayWrite(pixr, 1);
    pixDisplayWrite(pixg, 1);
    pixDisplayWrite(pixb, 1);
    pixDestroy(&pixr);
    pixDestroy(&pixg);
    pixDestroy(&pixb);

        /* Color content measurement */
    pixa = pixaCreate(20);
    naseq = numaMakeSequence(100, 5, 20);
    naa1 = numaaCreate(6);
    naa2 = numaaCreate(6);
    for (i = 0; i < 6; i++) {
        na = numaCreate(20);
        numaaAddNuma(naa1, na, L_COPY);
        numaaAddNuma(naa2, na, L_INSERT);
    }
    pixGetDimensions(pixs, &w, &h, NULL);
    for (i = 0; i < 20; i++) {
        rwhite = 100 + 5 * i;
        gwhite = 200 - 5 * i;
        bwhite = 150;
        pixt0 = pixGlobalNormRGB(NULL, pixs, rwhite, gwhite, bwhite, 255);
        pixaAddPix(pixa, pixt0, L_INSERT);
        pixt1 = pixColorMagnitude(pixs, rwhite, gwhite, bwhite,
                                  L_MAX_DIFF_FROM_AVERAGE_2);
        for (j = 0; j < 6; j++) {
            pixt2 = pixThresholdToBinary(pixt1, 30 + 10 * j);
            pixInvert(pixt2, pixt2);
            pixCountPixels(pixt2, &count, NULL);
            na = numaaGetNuma(naa1, j, L_CLONE);
            numaAddNumber(na, (l_float32)count / (l_float32)(w * h));
            numaDestroy(&na);
            pixDestroy(&pixt2);
        }
        pixDestroy(&pixt1);
        pixt1 = pixColorMagnitude(pixs, rwhite, gwhite, bwhite,
                                  L_MAX_MIN_DIFF_FROM_2);
        for (j = 0; j < 6; j++) {
            pixt2 = pixThresholdToBinary(pixt1, 30 + 10 * j);
            pixInvert(pixt2, pixt2);
            pixCountPixels(pixt2, &count, NULL);
            na = numaaGetNuma(naa2, j, L_CLONE);
            numaAddNumber(na, (l_float32)count / (l_float32)(w * h));
            numaDestroy(&na);
            pixDestroy(&pixt2);
        }
        pixDestroy(&pixt1);
    }
    gplot1 = gplotCreate("/tmp/junkplot1", GPLOT_X11,
                         "Fraction with given color (diff from average)",
                         "white point space for red", "amount of color");
    gplot2 = gplotCreate("/tmp/junkplot2", GPLOT_X11,
                         "Fraction with given color (min diff)",
                         "white point space for red", "amount of color");
    for (j = 0; j < 6; j++) {
        na = numaaGetNuma(naa1, j, L_CLONE);
        sprintf(label, "thresh %d", 30 + 10 * j);
        gplotAddPlot(gplot1, naseq, na, GPLOT_LINES, label);
        numaDestroy(&na);
        na = numaaGetNuma(naa2, j, L_CLONE);
        gplotAddPlot(gplot2, naseq, na, GPLOT_LINES, label);
        numaDestroy(&na);
    }
    gplotMakeOutput(gplot1);
    gplotMakeOutput(gplot2);
    gplotDestroy(&gplot1);
    gplotDestroy(&gplot2);
    pixt1 = pixaDisplayTiledAndScaled(pixa, 32, 250, 4, 0, 10, 2);
    pixWrite("/tmp/junkcolormag", pixt1, IFF_PNG);
    pixDisplayWithTitle(pixt1, 0, 100, "Color magnitude", 1);
    pixDestroy(&pixt1);
    pixaDestroy(&pixa);
    numaDestroy(&naseq);
    numaaDestroy(&naa1);
    numaaDestroy(&naa2);

    pixDisplayMultiple("/tmp/display/file*");

    pixDestroy(&pixs);
    return 0;
}
Example #22
0
/*
 *  pixWriteSegmentedPageToPS()
 *
 *      Input:  pixs (all depths; colormap ok)
 *              pixm (<optional> 1 bpp segmentation mask over image region)
 *              textscale (scale of text output relative to pixs)
 *              imagescale (scale of image output relative to pixs)
 *              threshold (threshold for binarization; typ. 190)
 *              pageno (page number in set; use 1 for new output file)
 *              fileout (output ps file)
 *      Return: 0 if OK, 1 on error
 *
 *  Notes:
 *      (1) This generates the PS string for a mixed text/image page,
 *          and adds it to an existing file if @pageno > 1.
 *          The PS output is determined by fitting the result to
 *          a letter-size (8.5 x 11 inch) page.
 *      (2) The two images (pixs and pixm) are at the same resolution
 *          (typically 300 ppi).  They are used to generate two compressed
 *          images, pixb and pixc, that are put directly into the output
 *          PS file.
 *      (3) pixb is the text component.  In the PostScript world, we think of
 *          it as a mask through which we paint black.  It is produced by
 *          scaling pixs by @textscale, and thresholding to 1 bpp.
 *      (4) pixc is the image component, which is that part of pixs under
 *          the mask pixm.  It is scaled from pixs by @imagescale.
 *      (5) Typical values are textscale = 2.0 and imagescale = 0.5.
 *      (6) If pixm == NULL, the page has only text.  If it is all black,
 *          the page is all image and has no text.
 *      (7) This can be used to write a multi-page PS file, by using
 *          sequential page numbers with the same output file.  It can
 *          also be used to write separate PS files for each page,
 *          by using different output files with @pageno = 0 or 1.
 */
l_int32
pixWriteSegmentedPageToPS(PIX         *pixs,
                          PIX         *pixm,
                          l_float32    textscale,
                          l_float32    imagescale,
                          l_int32      threshold,
                          l_int32      pageno,
                          const char  *fileout)
{
l_int32    alltext, notext, d, ret;
l_uint32   val;
l_float32  scaleratio;
PIX       *pixmi, *pixmis, *pixt, *pixg, *pixsc, *pixb, *pixc;

    PROCNAME("pixWriteSegmentedPageToPS");

    if (!pixs)
        return ERROR_INT("pixs not defined", procName, 1);
    if (!fileout)
        return ERROR_INT("fileout not defined", procName, 1);
    if (imagescale <= 0.0 || textscale <= 0.0)
        return ERROR_INT("relative scales must be > 0.0", procName, 1);

        /* Analyze the page.  Determine the ratio by which the
         * binary text mask is scaled relative to the image part.
         * If there is no image region (alltext == TRUE), the
         * text mask will be rendered directly to fit the page,
         * and scaleratio = 1.0.  */
    alltext = TRUE;
    notext = FALSE;
    scaleratio = 1.0;
    if (pixm) {
        pixZero(pixm, &alltext);  /* pixm empty: all text */
        if (alltext)
            pixm = NULL;  /* treat it as not existing here */
        else {
            pixmi = pixInvert(NULL, pixm);
            pixZero(pixmi, &notext);  /* pixm full; no text */
            pixDestroy(&pixmi);
            scaleratio = textscale / imagescale;
        }
    }

    if (pixGetDepth(pixs) == 1) {  /* render tiff g4 */
        pixb = pixClone(pixs);
        pixc = NULL;
    }
    else {
        pixt = pixConvertTo8Or32(pixs, 0, 0);  /* this can be a clone of pixs */

            /* Get the binary text mask.  Note that pixg cannot be a
             * clone of pixs, because it may be altered by pixSetMasked(). */
        pixb = NULL;
        if (notext == FALSE) {
            d = pixGetDepth(pixt);
            if (d == 8)
                pixg = pixCopy(NULL, pixt);
            else  /* d == 32 */
                pixg = pixConvertRGBToLuminance(pixt);
            if (pixm)  /* clear out the image parts */
                pixSetMasked(pixg, pixm, 255);
            if (textscale == 1.0)
                pixsc = pixClone(pixg);
            else if (textscale >= 0.7)
                pixsc = pixScaleGrayLI(pixg, textscale, textscale);
            else
                pixsc = pixScaleAreaMap(pixg, textscale, textscale);
            pixb = pixThresholdToBinary(pixsc, threshold);
            pixDestroy(&pixg);
            pixDestroy(&pixsc);
        }

            /* Get the scaled image region */
        pixc = NULL;
        if (pixm) {
            if (imagescale == 1.0)
                pixsc = pixClone(pixt);  /* can possibly be a clone of pixs */
            else
                pixsc = pixScale(pixt, imagescale, imagescale);

                /* If pixm is not full, clear the pixels in pixsc
                 * corresponding to bg in pixm, where there can be text
                 * that is written through the mask pixb.  Note that
                 * we could skip this and use pixsc directly in
                 * pixWriteMixedToPS(); however, clearing these
                 * non-image regions to a white background will reduce
                 * the size of pixc (relative to pixsc), and hence
                 * reduce the size of the PS file that is generated.
                 * Use a copy so that we don't accidentally alter pixs.  */
            if (notext == FALSE) {
                pixmis = pixScale(pixm, imagescale, imagescale);
                pixmi = pixInvert(NULL, pixmis);
                val = (d == 8) ? 0xff : 0xffffff00;
                pixc = pixCopy(NULL, pixsc);
                pixSetMasked(pixc, pixmi, val);  /* clear non-image part */
                pixDestroy(&pixmis);
                pixDestroy(&pixmi);
            }
            else
                pixc = pixClone(pixsc);
            pixDestroy(&pixsc);
        }
        pixDestroy(&pixt);
    }

    ret = pixWriteMixedToPS(pixb, pixc, scaleratio, pageno, fileout);
    pixDestroy(&pixb);
    pixDestroy(&pixc);
    return ret;
}
Example #23
0
l_int32 main(int    argc,
             char **argv)
{
l_int32       irval, igval, ibval;
l_float32     rval, gval, bval, fract, fgfract;
L_BMF        *bmf;
BOX          *box;
BOXA         *boxa;
FPIX         *fpix;
PIX          *pixs, *pix1, *pix2, *pix3, *pix4, *pix5, *pix6, *pix7;
PIX          *pix8, *pix9, *pix10, *pix11, *pix12, *pix13, *pix14, *pix15;
PIXA         *pixa;
L_REGPARAMS  *rp;

    if (regTestSetup(argc, argv, &rp))
              return 1;

    pixa = pixaCreate(0);
    pixs = pixRead("breviar38.150.jpg");
/*    pixs = pixRead("breviar32.150.jpg"); */
    pixaAddPix(pixa, pixs, L_CLONE);
    regTestWritePixAndCheck(rp, pixs, IFF_JFIF_JPEG);  /* 0 */
    pixDisplayWithTitle(pixs, 0, 0, "Input image", rp->display);

        /* Extract the blue component, which is small in all the text
         * regions, including in the highlight color region */
    pix1 = pixGetRGBComponent(pixs, COLOR_BLUE);
    pixaAddPix(pixa, pix1, L_CLONE);
    regTestWritePixAndCheck(rp, pix1, IFF_JFIF_JPEG);  /* 1 */
    pixDisplayWithTitle(pix1, 200, 0, "Blue component", rp->display);

        /* Do a background normalization, with the background set to
         * approximately 200 */
    pix2 = pixBackgroundNormSimple(pix1, NULL, NULL);
    pixaAddPix(pixa, pix2, L_COPY);
    regTestWritePixAndCheck(rp, pix2, IFF_JFIF_JPEG);  /* 2 */
    pixDisplayWithTitle(pix2, 400, 0, "BG normalized to 200", rp->display);

        /* Do a linear transform on the gray pixels, with 50 going to
         * black and 160 going to white.  50 is sufficiently low to
         * make both the red and black print quite dark.  Quantize
         * to a few equally spaced gray levels.  This is the image
         * to which highlight color will be applied. */
    pixGammaTRC(pix2, pix2, 1.0, 50, 160);
    pix3 = pixThresholdOn8bpp(pix2, 7, 1);
    pixaAddPix(pixa, pix3, L_CLONE);
    regTestWritePixAndCheck(rp, pix3, IFF_JFIF_JPEG);  /* 3 */
    pixDisplayWithTitle(pix3, 600, 0, "Basic quantized with white bg",
                        rp->display);

        /* Identify the regions of red text.  First, make a mask
         * consisting of all pixels such that (R-B)/B is larger
         * than 2.0.  This will have all the red, plus a lot of
         * the dark pixels. */
    fpix = pixComponentFunction(pixs, 1.0, 0.0, -1.0, 0.0, 0.0, 1.0);
    pix4 = fpixThresholdToPix(fpix, 2.0);
    pixInvert(pix4, pix4);  /* red plus some dark text */
    pixaAddPix(pixa, pix4, L_CLONE);
    regTestWritePixAndCheck(rp, pix4, IFF_PNG);  /* 4 */
    pixDisplayWithTitle(pix4, 800, 0, "Red plus dark pixels", rp->display);

        /* Make a mask consisting of all the red and background pixels */
    pix5 = pixGetRGBComponent(pixs, COLOR_RED);
    pix6 = pixThresholdToBinary(pix5, 128);
    pixInvert(pix6, pix6);  /* red plus background (white) */

        /* Intersect the two masks to get a mask consisting of pixels
         * that are almost certainly red.  This is the seed. */
    pix7 = pixAnd(NULL, pix4, pix6);  /* red only (seed) */
    pixaAddPix(pixa, pix7, L_COPY);
    regTestWritePixAndCheck(rp, pix7, IFF_PNG);  /* 5 */
    pixDisplayWithTitle(pix7, 0, 600, "Seed for red color", rp->display);

        /* Make the clipping mask by thresholding the image with
         * the background cleaned to white. */
    pix8 =  pixThresholdToBinary(pix2, 230);  /* mask */
    pixaAddPix(pixa, pix8, L_CLONE);
    regTestWritePixAndCheck(rp, pix8, IFF_PNG);  /* 6 */
    pixDisplayWithTitle(pix8, 200, 600, "Clipping mask for red components",
                        rp->display);

        /* Fill into the mask from the seed */
    pixSeedfillBinary(pix7, pix7, pix8, 8);  /* filled: red plus touching */
    regTestWritePixAndCheck(rp, pix7, IFF_PNG);  /* 7 */
    pixDisplayWithTitle(pix7, 400, 600, "Red component mask filled",
                        rp->display);

        /* Remove long horizontal and vertical lines from the filled result */
    pix9 = pixMorphSequence(pix7, "o40.1", 0);
    pixSubtract(pix7, pix7, pix9);  /* remove long horizontal lines */
    pixDestroy(&pix9);
    pix9 = pixMorphSequence(pix7, "o1.40", 0);
    pixSubtract(pix7, pix7, pix9);  /* remove long vertical lines */

        /* Close the regions to be colored  */
    pix10 = pixMorphSequence(pix7, "c5.1", 0);
    pixaAddPix(pixa, pix10, L_CLONE);
    regTestWritePixAndCheck(rp, pix10, IFF_PNG);  /* 8 */
    pixDisplayWithTitle(pix10, 600, 600,
                        "Components defining regions allowing coloring",
                        rp->display);

        /* Sanity check on amount to be colored.  Only accept images
         * with less than 10% of all the pixels with highlight color */
    pixForegroundFraction(pix10, &fgfract);
    if (fgfract >= 0.10) {
        L_INFO("too much highlighting: fract = %6.3f; removing it\n",
               rp->testname, fgfract);
        pixClearAll(pix10);
        pixSetPixel(pix10, 0, 0, 1);
    }

        /* Get the bounding boxes of the regions to be colored */
    boxa = pixConnCompBB(pix10, 8);

        /* Get a color to paint that is representative of the
         * actual highlight color in the image.  Scale each
         * color component up from the average by an amount necessary
         * to saturate the red.  Then divide the green and
         * blue components by 2.0.  */
    pixGetAverageMaskedRGB(pixs, pix7, 0, 0, 1, L_MEAN_ABSVAL,
                           &rval, &gval, &bval);
    fract = 255.0 / rval;
    irval = lept_roundftoi(fract * rval);
    igval = lept_roundftoi(fract * gval / 2.0);
    ibval = lept_roundftoi(fract * bval / 2.0);
    fprintf(stderr, "(r,g,b) = (%d,%d,%d)\n", irval, igval, ibval);

        /* Color the quantized gray version in the selected regions */
    pix11 = pixColorGrayRegions(pix3, boxa, L_PAINT_DARK, 220, irval,
                                igval, ibval);
    pixaAddPix(pixa, pix11, L_CLONE);
    regTestWritePixAndCheck(rp, pix11, IFF_PNG);  /* 9 */
    pixDisplayWithTitle(pix11, 800, 600, "Final colored result", rp->display);
    pixaAddPix(pixa, pixs, L_CLONE);

        /* Test colorization on gray and cmapped gray */
    pix12 = pixColorGrayRegions(pix2, boxa, L_PAINT_DARK, 220, 0, 255, 0);
    pixaAddPix(pixa, pix12, L_CLONE);
    regTestWritePixAndCheck(rp, pix12, IFF_PNG);  /* 10 */
    pixDisplayWithTitle(pix12, 900, 600, "Colorizing boxa gray", rp->display);

    box = boxCreate(200, 200, 250, 350);
    pix13 = pixCopy(NULL, pix2);
    pixColorGray(pix13, box, L_PAINT_DARK, 220, 0, 0, 255);
    pixaAddPix(pixa, pix13, L_CLONE);
    regTestWritePixAndCheck(rp, pix13, IFF_PNG);  /* 11 */
    pixDisplayWithTitle(pix13, 1000, 600, "Colorizing box gray", rp->display);

    pix14 = pixThresholdTo4bpp(pix2, 6, 1);
    pix15 = pixColorGrayRegions(pix14, boxa, L_PAINT_DARK, 220, 0, 0, 255);
    pixaAddPix(pixa, pix15, L_CLONE);
    regTestWritePixAndCheck(rp, pix15, IFF_PNG);  /* 12 */
    pixDisplayWithTitle(pix15, 1100, 600, "Colorizing boxa cmap", rp->display);

    pixColorGrayCmap(pix14, box, L_PAINT_DARK, 0, 255, 255);
    pixaAddPix(pixa, pix14, L_CLONE);
    regTestWritePixAndCheck(rp, pix14, IFF_PNG);  /* 13 */
    pixDisplayWithTitle(pix14, 1200, 600, "Colorizing box cmap", rp->display);
    boxDestroy(&box);

        /* Generate a pdf of the intermediate results */
    lept_mkdir("lept");
    L_INFO("Writing to /tmp/lept/colorize.pdf\n", rp->testname);
    pixaConvertToPdf(pixa, 90, 1.0, 0, 0, "Colorizing highlighted text",
                     "/tmp/lept/colorize.pdf");


    pixaDestroy(&pixa);
    fpixDestroy(&fpix);
    boxDestroy(&box);
    boxaDestroy(&boxa);
    pixDestroy(&pixs);
    pixDestroy(&pix1);
    pixDestroy(&pix2);
    pixDestroy(&pix3);
    pixDestroy(&pix4);
    pixDestroy(&pix5);
    pixDestroy(&pix6);
    pixDestroy(&pix7);
    pixDestroy(&pix8);
    pixDestroy(&pix9);
    pixDestroy(&pix10);
    pixDestroy(&pix11);
    pixDestroy(&pix12);
    pixDestroy(&pix13);
    pixDestroy(&pix14);
    pixDestroy(&pix15);

        /* Test the color detector */
    pixa = pixaCreate(7);
    bmf = bmfCreate("./fonts", 4);
    pix1 = TestForRedColor(rp, "brev06.75.jpg", 1, bmf);  /* 14 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = TestForRedColor(rp, "brev10.75.jpg", 0, bmf);  /* 15 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = TestForRedColor(rp, "brev14.75.jpg", 1, bmf);  /* 16 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = TestForRedColor(rp, "brev20.75.jpg", 1, bmf);  /* 17 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = TestForRedColor(rp, "brev36.75.jpg", 0, bmf);  /* 18 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = TestForRedColor(rp, "brev53.75.jpg", 1, bmf);  /* 19 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = TestForRedColor(rp, "brev56.75.jpg", 1, bmf);  /* 20 */
    pixaAddPix(pixa, pix1, L_INSERT);

        /* Generate a pdf of the color detector results */
    L_INFO("Writing to /tmp/lept/colordetect.pdf\n", rp->testname);
    pixaConvertToPdf(pixa, 45, 1.0, 0, 0, "Color detection",
                     "/tmp/lept/colordetect.pdf");
    pixaDestroy(&pixa);
    bmfDestroy(&bmf);

    return regTestCleanup(rp);
}
Example #24
0
/*!
 *  pixOtsuAdaptiveThreshold()
 *
 *      Input:  pixs (8 bpp)
 *              sx, sy (desired tile dimensions; actual size may vary)
 *              smoothx, smoothy (half-width of convolution kernel applied to
 *                                threshold array: use 0 for no smoothing)
 *              scorefract (fraction of the max Otsu score; typ. 0.1;
 *                          use 0.0 for standard Otsu)
 *              &pixth (<optional return> array of threshold values
 *                      found for each tile)
 *              &pixd (<optional return> thresholded input pixs, based on
 *                     the threshold array)
 *      Return: 0 if OK, 1 on error
 *
 *  Notes:
 *      (1) The Otsu method finds a single global threshold for an image.
 *          This function allows a locally adapted threshold to be
 *          found for each tile into which the image is broken up.
 *      (2) The array of threshold values, one for each tile, constitutes
 *          a highly downscaled image.  This array is optionally
 *          smoothed using a convolution.  The full width and height of the
 *          convolution kernel are (2 * @smoothx + 1) and (2 * @smoothy + 1).
 *      (3) The minimum tile dimension allowed is 16.  If such small
 *          tiles are used, it is recommended to use smoothing, because
 *          without smoothing, each small tile determines the splitting
 *          threshold independently.  A tile that is entirely in the
 *          image bg will then hallucinate fg, resulting in a very noisy
 *          binarization.  The smoothing should be large enough that no
 *          tile is only influenced by one type (fg or bg) of pixels,
 *          because it will force a split of its pixels.
 *      (4) To get a single global threshold for the entire image, use
 *          input values of @sx and @sy that are larger than the image.
 *          For this situation, the smoothing parameters are ignored.
 *      (5) The threshold values partition the image pixels into two classes:
 *          one whose values are less than the threshold and another
 *          whose values are greater than or equal to the threshold.
 *          This is the same use of 'threshold' as in pixThresholdToBinary().
 *      (6) The scorefract is the fraction of the maximum Otsu score, which
 *          is used to determine the range over which the histogram minimum
 *          is searched.  See numaSplitDistribution() for details on the
 *          underlying method of choosing a threshold.
 *      (7) This uses enables a modified version of the Otsu criterion for
 *          splitting the distribution of pixels in each tile into a
 *          fg and bg part.  The modification consists of searching for
 *          a minimum in the histogram over a range of pixel values where
 *          the Otsu score is within a defined fraction, @scorefract,
 *          of the max score.  To get the original Otsu algorithm, set
 *          @scorefract == 0.
 */
l_int32
pixOtsuAdaptiveThreshold(PIX       *pixs,
                         l_int32    sx,
                         l_int32    sy,
                         l_int32    smoothx,
                         l_int32    smoothy,
                         l_float32  scorefract,
                         PIX      **ppixth,
                         PIX      **ppixd)
{
l_int32     w, h, nx, ny, i, j, thresh;
l_uint32    val;
PIX        *pixt, *pixb, *pixthresh, *pixth, *pixd;
PIXTILING  *pt;

    PROCNAME("pixOtsuAdaptiveThreshold");

    if (!ppixth && !ppixd){
        return ERROR_INT("neither &pixth nor &pixd defined", procName, 1);
	    LOGE("neither &pixth nor &pixd defined");
	}
    if (ppixth) *ppixth = NULL;
    if (ppixd) *ppixd = NULL;
    if (!pixs || pixGetDepth(pixs) != 8){
        return ERROR_INT("pixs not defined or not 8 bpp", procName, 1);
		LOGE("pixs not defined or not 8 bpp");
	}
    if (sx < 16 || sy < 16){
        return ERROR_INT("sx and sy must be >= 16", procName, 1);
		LOGE("sx and sy must be >= 16");
	}
        /* Compute the threshold array for the tiles */
    pixGetDimensions(pixs, &w, &h, NULL);
    nx = L_MAX(1, w / sx);
    ny = L_MAX(1, h / sy);

    smoothx = L_MIN(smoothx, (nx - 1) / 2);
    smoothy = L_MIN(smoothy, (ny - 1) / 2);

    pt = pixTilingCreate(pixs, nx, ny, 0, 0, 0, 0);
    pixthresh = pixCreate(nx, ny, 8);
    for (i = 0; i < ny; i++) {
        for (j = 0; j < nx; j++) {
            pixt = pixTilingGetTile(pt, i, j);
            pixSplitDistributionFgBg(pixt, scorefract, 1, &thresh,
                                     NULL, NULL, 0);
            pixSetPixel(pixthresh, j, i, thresh);  /* see note (4) */
            pixDestroy(&pixt);
        }
    }

        /* Optionally smooth the threshold array */
    if (smoothx > 0 || smoothy > 0)
        pixth = pixBlockconv(pixthresh, smoothx, smoothy);
    else
        pixth = pixClone(pixthresh);
    pixDestroy(&pixthresh);

        /* Optionally apply the threshold array to binarize pixs */
    if (ppixd) {
        pixd = pixCreate(w, h, 1);
        for (i = 0; i < ny; i++) {
            for (j = 0; j < nx; j++) {
                pixt = pixTilingGetTile(pt, i, j);
                pixGetPixel(pixth, j, i, &val);
                pixb = pixThresholdToBinary(pixt, val);
                pixTilingPaintTile(pixd, i, j, pixb, pt);
                pixDestroy(&pixt);
                pixDestroy(&pixb);
            }
        }
        *ppixd = pixd;
    }

    if (ppixth)
        *ppixth = pixth;
    else
        pixDestroy(&pixth);

    pixTilingDestroy(&pt);

    return 0;
}
Example #25
0
int main(int    argc,
         char **argv)
{
char          dilateseq[512], erodeseq[512];
char          openseq[512], closeseq[512];
char          wtophatseq[512], btophatseq[512];
l_int32       w, h;
PIX          *pixs, *pix1, *pix2, *pix3, *pix4, *pix5;
PIXA         *pixa;
PIXACC       *pacc;
PIXCMAP      *cmap;
L_REGPARAMS  *rp;

    if (regTestSetup(argc, argv, &rp))
        return 1;

    pixs = pixRead("aneurisms8.jpg");
    pixa = pixaCreate(0);

    /* =========================================================== */

    /* -------- Test gray morph, including interpreter ------------ */
    pix1 = pixDilateGray(pixs, WSIZE, HSIZE);
    sprintf(dilateseq, "D%d.%d", WSIZE, HSIZE);
    pix2 = pixGrayMorphSequence(pixs, dilateseq, 0, 0);
    regTestWritePixAndCheck(rp, pix1, IFF_PNG);  /* 0 */
    regTestComparePix(rp, pix1, pix2);  /* 1 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pixDestroy(&pix2);

    pix1 = pixErodeGray(pixs, WSIZE, HSIZE);
    sprintf(erodeseq, "E%d.%d", WSIZE, HSIZE);
    pix2 = pixGrayMorphSequence(pixs, erodeseq, 0, 100);
    regTestWritePixAndCheck(rp, pix1, IFF_PNG);  /* 2 */
    regTestComparePix(rp, pix1, pix2);  /* 3 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pixDestroy(&pix2);

    pix1 = pixOpenGray(pixs, WSIZE, HSIZE);
    sprintf(openseq, "O%d.%d", WSIZE, HSIZE);
    pix2 = pixGrayMorphSequence(pixs, openseq, 0, 200);
    regTestWritePixAndCheck(rp, pix1, IFF_PNG);  /* 4 */
    regTestComparePix(rp, pix1, pix2);  /* 5 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pixDestroy(&pix2);

    pix1 = pixCloseGray(pixs, WSIZE, HSIZE);
    sprintf(closeseq, "C%d.%d", WSIZE, HSIZE);
    pix2 = pixGrayMorphSequence(pixs, closeseq, 0, 300);
    regTestWritePixAndCheck(rp, pix1, IFF_PNG);  /* 6 */
    regTestComparePix(rp, pix1, pix2);  /* 7 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pixDestroy(&pix2);

    pix1 = pixTophat(pixs, WSIZE, HSIZE, L_TOPHAT_WHITE);
    sprintf(wtophatseq, "Tw%d.%d", WSIZE, HSIZE);
    pix2 = pixGrayMorphSequence(pixs, wtophatseq, 0, 400);
    regTestWritePixAndCheck(rp, pix1, IFF_PNG);  /* 8 */
    regTestComparePix(rp, pix1, pix2);  /* 9 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pixDestroy(&pix2);

    pix1 = pixTophat(pixs, WSIZE, HSIZE, L_TOPHAT_BLACK);
    sprintf(btophatseq, "Tb%d.%d", WSIZE, HSIZE);
    pix2 = pixGrayMorphSequence(pixs, btophatseq, 0, 500);
    regTestWritePixAndCheck(rp, pix1, IFF_PNG);  /* 10 */
    regTestComparePix(rp, pix1, pix2);  /* 11 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pixDestroy(&pix2);

    /* ------------- Test erode/dilate duality -------------- */
    pix1 = pixDilateGray(pixs, WSIZE, HSIZE);
    pix2 = pixInvert(NULL, pixs);
    pix3 = pixErodeGray(pix2, WSIZE, HSIZE);
    pixInvert(pix3, pix3);
    regTestWritePixAndCheck(rp, pix1, IFF_PNG);  /* 12 */
    regTestComparePix(rp, pix1, pix3);  /* 13 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pixDestroy(&pix2);
    pixDestroy(&pix3);

    /* ------------- Test open/close duality -------------- */
    pix1 = pixOpenGray(pixs, WSIZE, HSIZE);
    pix2 = pixInvert(NULL, pixs);
    pix3 = pixCloseGray(pix2, WSIZE, HSIZE);
    pixInvert(pix3, pix3);
    regTestWritePixAndCheck(rp, pix1, IFF_PNG);  /* 14 */
    regTestComparePix(rp, pix1, pix3);  /* 15 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pixDestroy(&pix2);
    pixDestroy(&pix3);

    /* ------------- Test tophat duality -------------- */
    pix1 = pixTophat(pixs, WSIZE, HSIZE, L_TOPHAT_WHITE);
    pix2 = pixInvert(NULL, pixs);
    pix3 = pixTophat(pix2, WSIZE, HSIZE, L_TOPHAT_BLACK);
    regTestWritePixAndCheck(rp, pix1, IFF_PNG);  /* 16 */
    regTestComparePix(rp, pix1, pix3);  /* 17 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pixDestroy(&pix2);
    pixDestroy(&pix3);

    pix1 = pixGrayMorphSequence(pixs, "Tw9.5", 0, 100);
    pix2 = pixInvert(NULL, pixs);
    pix3 = pixGrayMorphSequence(pix2, "Tb9.5", 0, 300);
    regTestWritePixAndCheck(rp, pix1, IFF_PNG);  /* 18 */
    regTestComparePix(rp, pix1, pix3);  /* 19 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pixDestroy(&pix2);
    pixDestroy(&pix3);


    /* ------------- Test opening/closing for large sels -------------- */
    pix1 = pixGrayMorphSequence(pixs,
            "C9.9 + C19.19 + C29.29 + C39.39 + C49.49", 0, 100);
    regTestWritePixAndCheck(rp, pix1, IFF_PNG);  /* 20 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = pixGrayMorphSequence(pixs,
            "O9.9 + O19.19 + O29.29 + O39.39 + O49.49", 0, 400);
    regTestWritePixAndCheck(rp, pix1, IFF_PNG);  /* 21 */
    pixaAddPix(pixa, pix1, L_INSERT);

    pix1 = pixaDisplayTiledInColumns(pixa, 4, 1.0, 20, 2);
    regTestWritePixAndCheck(rp, pix1, IFF_PNG);  /* 22 */
    pixDisplayWithTitle(pix1, 0, 0, NULL, rp->display);
    pixaDestroy(&pixa);
    pixDestroy(&pix1);

    /* =========================================================== */

    pixa = pixaCreate(0);
    /* ---------- Closing plus white tophat result ------------ *
     *            Parameters: wsize, hsize = 9, 29             *
     * ---------------------------------------------------------*/
    pix1 = pixCloseGray(pixs, 9, 9);
    pix2 = pixTophat(pix1, 9, 9, L_TOPHAT_WHITE);
    pix3 = pixGrayMorphSequence(pixs, "C9.9 + TW9.9", 0, 0);
    regTestWritePixAndCheck(rp, pix1, IFF_PNG);  /* 23 */
    regTestComparePix(rp, pix2, pix3);  /* 24 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = pixMaxDynamicRange(pix2, L_LINEAR_SCALE);
    regTestWritePixAndCheck(rp, pix1, IFF_PNG);  /* 25 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pixDestroy(&pix2);
    pixDestroy(&pix3);

    pix1 = pixCloseGray(pixs, 29, 29);
    pix2 = pixTophat(pix1, 29, 29, L_TOPHAT_WHITE);
    pix3 = pixGrayMorphSequence(pixs, "C29.29 + Tw29.29", 0, 0);
    regTestWritePixAndCheck(rp, pix1, IFF_PNG);  /* 26 */
    regTestComparePix(rp, pix2, pix3);  /* 27 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = pixMaxDynamicRange(pix2, L_LINEAR_SCALE);
    regTestWritePixAndCheck(rp, pix1, IFF_PNG);  /* 28 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pixDestroy(&pix2);
    pixDestroy(&pix3);

    /* --------- hdome with parameter height = 100 ------------*/
    pix1 = pixHDome(pixs, 100, 4);
    pix2 = pixMaxDynamicRange(pix1, L_LINEAR_SCALE);
    regTestWritePixAndCheck(rp, pix1, IFF_PNG);  /* 29 */
    regTestWritePixAndCheck(rp, pix2, IFF_PNG);  /* 30 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pixaAddPix(pixa, pix2, L_INSERT);

    /* ----- Contrast enhancement with morph parameters 9, 9 -------*/
    pixGetDimensions(pixs, &w, &h, NULL);
    pix1 = pixInitAccumulate(w, h, 0x8000);
    pixAccumulate(pix1, pixs, L_ARITH_ADD);
    pixMultConstAccumulate(pix1, 3., 0x8000);
    pix2 = pixOpenGray(pixs, 9, 9);
    regTestWritePixAndCheck(rp, pix2, IFF_PNG);  /* 31 */
    pixaAddPix(pixa, pix2, L_INSERT);
    pixAccumulate(pix1, pix2, L_ARITH_SUBTRACT);

    pix2 = pixCloseGray(pixs, 9, 9);
    regTestWritePixAndCheck(rp, pix2, IFF_PNG);  /* 32 */
    pixaAddPix(pixa, pix2, L_INSERT);
    pixAccumulate(pix1, pix2, L_ARITH_SUBTRACT);
    pix2 = pixFinalAccumulate(pix1, 0x8000, 8);
    regTestWritePixAndCheck(rp, pix2, IFF_PNG);  /* 33 */
    pixaAddPix(pixa, pix2, L_INSERT);
    pixDestroy(&pix1);

        /* Do the same thing with the Pixacc */
    pacc = pixaccCreate(w, h, 1);
    pixaccAdd(pacc, pixs);
    pixaccMultConst(pacc, 3.);
    pix1 = pixOpenGray(pixs, 9, 9);
    pixaccSubtract(pacc, pix1);
    pixDestroy(&pix1);
    pix1 = pixCloseGray(pixs, 9, 9);
    pixaccSubtract(pacc, pix1);
    pixDestroy(&pix1);
    pix1 = pixaccFinal(pacc, 8);
    pixaccDestroy(&pacc);
    regTestWritePixAndCheck(rp, pix1, IFF_PNG);  /* 34 */
    pixaAddPix(pixa, pix1, L_INSERT);
    regTestComparePix(rp, pix1, pix2);  /* 35 */

    pix1 = pixaDisplayTiledInColumns(pixa, 4, 1.0, 20, 2);
    regTestWritePixAndCheck(rp, pix1, IFF_PNG);  /* 36 */
    pixDisplayWithTitle(pix1, 1100, 0, NULL, rp->display);
    pixaDestroy(&pixa);
    pixDestroy(&pix1);
    pixDestroy(&pixs);

    /* =========================================================== */

    pixa = pixaCreate(0);

    /* ----  Tophat result on feynman stamp, to extract diagrams ----- */
    pixs = pixRead("feynman-stamp.jpg");
    pixGetDimensions(pixs, &w, &h, NULL);

        /* Make output image to hold five intermediate images */
    pix1 = pixCreate(5 * w + 18, h + 6, 32);  /* composite output image */
    pixSetAllArbitrary(pix1, 0x0000ff00);  /* set to blue */

        /* Paste in the input image */
    pix2 = pixRemoveColormap(pixs, REMOVE_CMAP_TO_FULL_COLOR);
    pixRasterop(pix1, 3, 3, w, h, PIX_SRC, pix2, 0, 0);  /* 1st one */
    regTestWritePixAndCheck(rp, pix2, IFF_PNG);  /* 37 */
    pixaAddPix(pixa, pix2, L_INSERT);

        /* Paste in the grayscale version */
    cmap = pixGetColormap(pixs);
    if (cmap)
        pix2 = pixRemoveColormap(pixs, REMOVE_CMAP_TO_GRAYSCALE);
    else
        pix2 = pixConvertRGBToGray(pixs, 0.33, 0.34, 0.33);
    pix3 = pixConvertTo32(pix2);  /* 8 --> 32 bpp */
    pixRasterop(pix1, w + 6, 3, w, h, PIX_SRC, pix3, 0, 0);  /* 2nd one */
    regTestWritePixAndCheck(rp, pix3, IFF_PNG);  /* 38 */
    pixaAddPix(pixa, pix3, L_INSERT);

         /* Paste in a log dynamic range scaled version of the white tophat */
    pix3 = pixTophat(pix2, 3, 3, L_TOPHAT_WHITE);
    pix4 = pixMaxDynamicRange(pix3, L_LOG_SCALE);
    pix5 = pixConvertTo32(pix4);
    pixRasterop(pix1, 2 * w + 9, 3, w, h, PIX_SRC, pix5, 0, 0);  /* 3rd */
    regTestWritePixAndCheck(rp, pix5, IFF_PNG);  /* 39 */
    pixaAddPix(pixa, pix5, L_INSERT);
    pixDestroy(&pix2);
    pixDestroy(&pix4);

        /* Stretch the range and threshold to binary; paste it in */
    pix2 = pixGammaTRC(NULL, pix3, 1.0, 0, 80);
    pix4 = pixThresholdToBinary(pix2, 70);
    pix5 = pixConvertTo32(pix4);
    pixRasterop(pix1, 3 * w + 12, 3, w, h, PIX_SRC, pix5, 0, 0);  /* 4th */
    regTestWritePixAndCheck(rp, pix5, IFF_PNG);  /* 40 */
    pixaAddPix(pixa, pix5, L_INSERT);
    pixDestroy(&pix2);
    pixDestroy(&pix3);

        /* Invert; this is the final result */
    pixInvert(pix4, pix4);
    pix5 = pixConvertTo32(pix4);
    pixRasterop(pix1, 4 * w + 15, 3, w, h, PIX_SRC, pix5, 0, 0);  /* 5th */
    regTestWritePixAndCheck(rp, pix5, IFF_PNG);  /* 41 */
    pixaAddPix(pixa, pix5, L_INSERT);
    pixDestroy(&pix1);
    pixDestroy(&pix4);

    pix1 = pixaDisplayTiledInRows(pixa, 32, 1700, 1.0, 0, 20, 2);
    regTestWritePixAndCheck(rp, pix1, IFF_PNG);  /* 42 */
    pixDisplayWithTitle(pix1, 0, 800, NULL, rp->display);
    pixaDestroy(&pixa);
    pixDestroy(&pix1);
    pixDestroy(&pixs);

    return regTestCleanup(rp);
}
Example #26
0
/*!
 *  pixMaskedThreshOnBackgroundNorm()
 *
 *      Input:  pixs (8 bpp grayscale; not colormapped)
 *              pixim (<optional> 1 bpp 'image' mask; can be null)
 *              sx, sy (tile size in pixels)
 *              thresh (threshold for determining foreground)
 *              mincount (min threshold on counts in a tile)
 *              smoothx (half-width of block convolution kernel width)
 *              smoothy (half-width of block convolution kernel height)
 *              scorefract (fraction of the max Otsu score; typ. ~ 0.1)
 *              &thresh (<optional return> threshold value that was
 *                       used on the normalized image)
 *      Return: pixd (1 bpp thresholded image), or null on error
 *
 *  Notes:
 *      (1) This begins with a standard background normalization.
 *          Additionally, there is a flexible background norm, that
 *          will adapt to a rapidly varying background, and this
 *          puts white pixels in the background near regions with
 *          significant foreground.  The white pixels are turned into
 *          a 1 bpp selection mask by binarization followed by dilation.
 *          Otsu thresholding is performed on the input image to get an
 *          estimate of the threshold in the non-mask regions.
 *          The background normalized image is thresholded with two
 *          different values, and the result is combined using
 *          the selection mask.
 *      (2) Note that the numbers 255 (for bgval target) and 190 (for
 *          thresholding on pixn) are tied together, and explicitly
 *          defined in this function.
 *      (3) See pixBackgroundNorm() for meaning and typical values
 *          of input parameters.  For a start, you can try:
 *            sx, sy = 10, 15
 *            thresh = 100
 *            mincount = 50
 *            smoothx, smoothy = 2
 */
PIX *
pixMaskedThreshOnBackgroundNorm(PIX       *pixs,
                                PIX       *pixim,
                                l_int32    sx,
                                l_int32    sy,
                                l_int32    thresh,
                                l_int32    mincount,
                                l_int32    smoothx,
                                l_int32    smoothy,
                                l_float32  scorefract,
                                l_int32   *pthresh)
{
l_int32   w, h;
l_uint32  val;
PIX      *pixn, *pixm, *pixd, *pixt1, *pixt2, *pixt3, *pixt4;

    PROCNAME("pixMaskedThreshOnBackgroundNorm");

    if (pthresh) *pthresh = 0;
    if (!pixs || pixGetDepth(pixs) != 8)
        return (PIX *)ERROR_PTR("pixs undefined or not 8 bpp", procName, NULL);
    if (pixGetColormap(pixs))
        return (PIX *)ERROR_PTR("pixs is colormapped", procName, NULL);
    if (sx < 4 || sy < 4)
        return (PIX *)ERROR_PTR("sx and sy must be >= 4", procName, NULL);
    if (mincount > sx * sy) {
        L_WARNING("mincount too large for tile size\n", procName);
        mincount = (sx * sy) / 3;
    }

        /* Standard background normalization */
    pixn = pixBackgroundNorm(pixs, pixim, NULL, sx, sy, thresh,
                             mincount, 255, smoothx, smoothy);
    if (!pixn)
        return (PIX *)ERROR_PTR("pixn not made", procName, NULL);

        /* Special background normalization for adaptation to quickly
         * varying background.  Threshold on the very light parts,
         * which tend to be near significant edges, and dilate to
         * form a mask over regions that are typically text.  The
         * dilation size is chosen to cover the text completely,
         * except for very thick fonts. */
    pixt1 = pixBackgroundNormFlex(pixs, 7, 7, 1, 1, 20);
    pixt2 = pixThresholdToBinary(pixt1, 240);
    pixInvert(pixt2, pixt2);
    pixm = pixMorphSequence(pixt2, "d21.21", 0);
    pixDestroy(&pixt1);
    pixDestroy(&pixt2);

        /* Use Otsu to get a global threshold estimate for the image,
         * which is stored as a single pixel in pixt3. */
    pixGetDimensions(pixs, &w, &h, NULL);
    pixOtsuAdaptiveThreshold(pixs, w, h, 0, 0, scorefract, &pixt3, NULL);
    if (pixt3 && pthresh) {
        pixGetPixel(pixt3, 0, 0, &val);
        *pthresh = val;
    }
    pixDestroy(&pixt3);

        /* Threshold the background normalized images differentially,
         * using a high value correlated with the background normalization
         * for the part of the image under the mask (i.e., near the
         * darker, thicker foreground), and a value that depends on the Otsu
         * threshold for the rest of the image.  This gives a solid
         * (high) thresholding for the foreground parts of the image,
         * while allowing the background and light foreground to be
         * reasonably well cleaned using a threshold adapted to the
         * input image. */
    pixd = pixThresholdToBinary(pixn, val + 30);  /* for bg and light fg */
    pixt4 = pixThresholdToBinary(pixn, 190);  /* for heavier fg */
    pixCombineMasked(pixd, pixt4, pixm);
    pixDestroy(&pixt4);
    pixDestroy(&pixm);
    pixDestroy(&pixn);

    if (!pixd)
        return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
    else
        return pixd;
}
Example #27
0
/*!
 *  convertFilesTo1bpp()
 *
 *      Input:  dirin
 *              substr (<optional> substring filter on filenames; can be NULL)
 *              upscaling (1, 2 or 4; only for input color or grayscale)
 *              thresh  (global threshold for binarization; use 0 for default)
 *              firstpage
 *              npages (use 0 to do all from @firstpage to the end)
 *              dirout
 *              outformat (IFF_PNG, IFF_TIFF_G4)
 *      Return: 0 if OK, 1 on error
 *
 *  Notes:
 *      (1) Images are sorted lexicographically, and the names in the
 *          output directory are retained except for the extension.
 */
l_int32
convertFilesTo1bpp(const char *dirin,
                   const char *substr,
                   l_int32 upscaling,
                   l_int32 thresh,
                   l_int32 firstpage,
                   l_int32 npages,
                   const char *dirout,
                   l_int32 outformat) {
    l_int32 i, nfiles;
    char buf[512];
    char *fname, *tail, *basename;
    PIX *pixs, *pixg1, *pixg2, *pixb;
    SARRAY *safiles;

    PROCNAME("convertFilesTo1bpp");

    if (!dirin)
        return ERROR_INT("dirin", procName, 1);
    if (!dirout)
        return ERROR_INT("dirout", procName, 1);
    if (upscaling != 1 && upscaling != 2 && upscaling != 4)
        return ERROR_INT("invalid upscaling factor", procName, 1);
    if (thresh <= 0) thresh = 180;
    if (firstpage < 0) firstpage = 0;
    if (npages < 0) npages = 0;
    if (outformat != IFF_TIFF_G4)
        outformat = IFF_PNG;

    safiles = getSortedPathnamesInDirectory(dirin, substr, firstpage, npages);
    if (!safiles)
        return ERROR_INT("safiles not made", procName, 1);
    if ((nfiles = sarrayGetCount(safiles)) == 0) {
        sarrayDestroy(&safiles);
        return ERROR_INT("no matching files in the directory", procName, 1);
    }

    for (i = 0; i < nfiles; i++) {
        fname = sarrayGetString(safiles, i, L_NOCOPY);
        if ((pixs = pixRead(fname)) == NULL) {
            L_WARNING("Couldn't read file %s\n", procName, fname);
            continue;
        }
        if (pixGetDepth(pixs) == 32)
            pixg1 = pixConvertRGBToLuminance(pixs);
        else
            pixg1 = pixClone(pixs);
        pixg2 = pixRemoveColormap(pixg1, REMOVE_CMAP_TO_GRAYSCALE);
        if (pixGetDepth(pixg2) == 1) {
            pixb = pixClone(pixg2);
        } else {
            if (upscaling == 1)
                pixb = pixThresholdToBinary(pixg2, thresh);
            else if (upscaling == 2)
                pixb = pixScaleGray2xLIThresh(pixg2, thresh);
            else  /* upscaling == 4 */
                pixb = pixScaleGray4xLIThresh(pixg2, thresh);
        }
        pixDestroy(&pixs);
        pixDestroy(&pixg1);
        pixDestroy(&pixg2);

        splitPathAtDirectory(fname, NULL, &tail);
        splitPathAtExtension(tail, &basename, NULL);
        if (outformat == IFF_TIFF_G4) {
            snprintf(buf, sizeof(buf), "%s/%s.tif", dirout, basename);
            pixWrite(buf, pixb, IFF_TIFF_G4);
        } else {
            snprintf(buf, sizeof(buf), "%s/%s.png", dirout, basename);
            pixWrite(buf, pixb, IFF_PNG);
        }
        pixDestroy(&pixb);
        FREE(tail);
        FREE(basename);
    }

    sarrayDestroy(&safiles);
    return 0;
}
Example #28
0
char *_process_frame_color_basic(struct lib_hardsubx_ctx *ctx, AVFrame *frame, int width, int height, int index)
{
	char *subtitle_text=NULL;
	PIX *im;
	im = pixCreate(width,height,32);
	PIX *hue_im = pixCreate(width,height,32);

	int i,j;
	for(i=0;i<height;i++)
	{
		for(j=0;j<width;j++)
		{
			int p=j*3+i*frame->linesize[0];
			int r=frame->data[0][p];
			int g=frame->data[0][p+1];
			int b=frame->data[0][p+2];
			pixSetRGBPixel(im,j,i,r,g,b);
			float H,S,V;
			rgb_to_hsv((float)r,(float)g,(float)b,&H,&S,&V);
			if(abs(H-ctx->hue)<20)
			{
				pixSetRGBPixel(hue_im,j,i,r,g,b);
			}
		}
	}

	PIX *edge_im = pixCreate(width,height,8),*edge_im_2 = pixCreate(width,height,8);
	edge_im = pixConvertRGBToGray(im,0.0,0.0,0.0);
	edge_im = pixSobelEdgeFilter(edge_im, L_VERTICAL_EDGES);
	edge_im = pixDilateGray(edge_im, 21, 1);
	edge_im = pixThresholdToBinary(edge_im,50);
	PIX *pixd = pixCreate(width,height,1);
	pixSauvolaBinarize(pixConvertRGBToGray(hue_im,0.0,0.0,0.0), 15, 0.3, 1, NULL, NULL, NULL, &pixd);

	edge_im_2 = pixConvertRGBToGray(hue_im,0.0,0.0,0.0);
	edge_im_2 = pixDilateGray(edge_im_2, 5, 5);

	PIX *feat_im = pixCreate(width,height,32);
	for(i=3*(height/4);i<height;i++)
	{
		for(j=0;j<width;j++)
		{
			unsigned int p1,p2,p3,p4;
			pixGetPixel(edge_im,j,i,&p1);
			pixGetPixel(pixd,j,i,&p2);
			// pixGetPixel(hue_im,j,i,&p3);
			pixGetPixel(edge_im_2,j,i,&p4);
			if(p1==0&&p2==0&&p4>0)//if(p4>0&&p1==0)//if(p2==0&&p1==0&&p3>0)
			{
				pixSetRGBPixel(feat_im,j,i,255,255,255);
			}
		}
	}


	if(ctx->detect_italics)
	{
		ctx->ocr_mode = HARDSUBX_OCRMODE_WORD;
	}

	// TESSERACT OCR FOR THE FRAME HERE
	switch(ctx->ocr_mode)
	{
		case HARDSUBX_OCRMODE_WORD:
			if(ctx->conf_thresh > 0)
				subtitle_text = get_ocr_text_wordwise_threshold(ctx, feat_im, ctx->conf_thresh);
			else
				subtitle_text = get_ocr_text_wordwise(ctx, feat_im);
			break;
		case HARDSUBX_OCRMODE_LETTER:
			if(ctx->conf_thresh > 0)
				subtitle_text = get_ocr_text_letterwise_threshold(ctx, feat_im, ctx->conf_thresh);
			else
				subtitle_text = get_ocr_text_letterwise(ctx, feat_im);
			break;
		case HARDSUBX_OCRMODE_FRAME:
			if(ctx->conf_thresh > 0)
				subtitle_text = get_ocr_text_simple_threshold(ctx, feat_im, ctx->conf_thresh);
			else
				subtitle_text = get_ocr_text_simple(ctx, feat_im);
			break;
		default:
			fatal(EXIT_MALFORMED_PARAMETER,"Invalid OCR Mode");
	}

	pixDestroy(&feat_im);
	pixDestroy(&im);
	pixDestroy(&edge_im);
	pixDestroy(&hue_im);

	return subtitle_text;
}
Example #29
0
int main(int argc,
         char **argv) {
    char dilateseq[BUF_SIZE], erodeseq[BUF_SIZE];
    char openseq[BUF_SIZE], closeseq[BUF_SIZE];
    char wtophatseq[BUF_SIZE], btophatseq[BUF_SIZE];
    char *filein;
    l_int32 w, h, d;
    PIX *pixs, *pixt, *pixt2, *pixt3, *pixt3a, *pixt4;
    PIX *pixg, *pixd, *pixd1, *pixd2, *pixd3;
    PIXACC *pacc;
    PIXCMAP *cmap;
    static char mainName[] = "graymorph1_reg";

    if (argc != 2)
        return ERROR_INT(" Syntax:  graymorph1_reg filein", mainName, 1);

    filein = argv[1];
    if ((pixs = pixRead(filein)) == NULL)
        return ERROR_INT("pixs not made", mainName, 1);
    pixGetDimensions(pixs, &w, &h, &d);
    if (d != 8)
        return ERROR_INT("pixs not 8 bpp", mainName, 1);

    /* -------- Test gray morph, including interpreter ------------ */
    pixd = pixDilateGray(pixs, WSIZE, HSIZE);
    sprintf(dilateseq, "D%d.%d", WSIZE, HSIZE);
    pixg = pixGrayMorphSequence(pixs, dilateseq, HORIZ_SEP, 0);
    pixCompare(pixd, pixg, "results are the same", "results are different");
    pixDestroy(&pixg);
    pixDestroy(&pixd);

    pixd = pixErodeGray(pixs, WSIZE, HSIZE);
    sprintf(erodeseq, "E%d.%d", WSIZE, HSIZE);
    pixg = pixGrayMorphSequence(pixs, erodeseq, HORIZ_SEP, 100);
    pixCompare(pixd, pixg, "results are the same", "results are different");
    pixDestroy(&pixg);
    pixDestroy(&pixd);

    pixd = pixOpenGray(pixs, WSIZE, HSIZE);
    sprintf(openseq, "O%d.%d", WSIZE, HSIZE);
    pixg = pixGrayMorphSequence(pixs, openseq, HORIZ_SEP, 200);
    pixCompare(pixd, pixg, "results are the same", "results are different");
    pixDestroy(&pixg);
    pixDestroy(&pixd);

    pixd = pixCloseGray(pixs, WSIZE, HSIZE);
    sprintf(closeseq, "C%d.%d", WSIZE, HSIZE);
    pixg = pixGrayMorphSequence(pixs, closeseq, HORIZ_SEP, 300);
    pixCompare(pixd, pixg, "results are the same", "results are different");
    pixDestroy(&pixg);
    pixDestroy(&pixd);

    pixd = pixTophat(pixs, WSIZE, HSIZE, L_TOPHAT_WHITE);
    sprintf(wtophatseq, "Tw%d.%d", WSIZE, HSIZE);
    pixg = pixGrayMorphSequence(pixs, wtophatseq, HORIZ_SEP, 400);
    pixCompare(pixd, pixg, "results are the same", "results are different");
    pixDestroy(&pixg);
    pixDestroy(&pixd);

    pixd = pixTophat(pixs, WSIZE, HSIZE, L_TOPHAT_BLACK);
    sprintf(btophatseq, "Tb%d.%d", WSIZE, HSIZE);
    pixg = pixGrayMorphSequence(pixs, btophatseq, HORIZ_SEP, 500);
    pixCompare(pixd, pixg, "results are the same", "results are different");
    pixDestroy(&pixg);

    /* ------------- Test erode/dilate duality -------------- */
    pixd = pixDilateGray(pixs, WSIZE, HSIZE);
    pixInvert(pixs, pixs);
    pixd2 = pixErodeGray(pixs, WSIZE, HSIZE);
    pixInvert(pixd2, pixd2);
    pixCompare(pixd, pixd2, "results are the same", "results are different");
    pixDestroy(&pixd);
    pixDestroy(&pixd2);

    /* ------------- Test open/close duality -------------- */
    pixd = pixOpenGray(pixs, WSIZE, HSIZE);
    pixInvert(pixs, pixs);
    pixd2 = pixCloseGray(pixs, WSIZE, HSIZE);
    pixInvert(pixd2, pixd2);
    pixCompare(pixd, pixd2, "results are the same", "results are different");
    pixDestroy(&pixd);
    pixDestroy(&pixd2);

    /* ------------- Test tophat duality -------------- */
    pixd = pixTophat(pixs, WSIZE, HSIZE, L_TOPHAT_WHITE);
    pixInvert(pixs, pixs);
    pixd2 = pixTophat(pixs, WSIZE, HSIZE, L_TOPHAT_BLACK);
    pixCompare(pixd, pixd2, "Correct: images are duals",
               "Error: images are not duals");
    pixDestroy(&pixd);
    pixDestroy(&pixd2);
    pixInvert(pixs, pixs);

    pixd = pixGrayMorphSequence(pixs, "Tw9.5", HORIZ_SEP, 100);
    pixInvert(pixs, pixs);
    pixd2 = pixGrayMorphSequence(pixs, "Tb9.5", HORIZ_SEP, 300);
    pixCompare(pixd, pixd2, "Correct: images are duals",
               "Error: images are not duals");
    pixDestroy(&pixd);
    pixDestroy(&pixd2);

    /* ------------- Test opening/closing for large sels -------------- */
    pixd = pixGrayMorphSequence(pixs,
                                "C9.9 + C19.19 + C29.29 + C39.39 + C49.49", HORIZ_SEP, 100);
    pixDestroy(&pixd);
    pixd = pixGrayMorphSequence(pixs,
                                "O9.9 + O19.19 + O29.29 + O39.39 + O49.49", HORIZ_SEP, 400);
    pixDestroy(&pixd);

    /* ---------- Closing plus white tophat result ------------ *
     *            Parameters: wsize, hsize = 9, 29             *
     * ---------------------------------------------------------*/
    pixd = pixCloseGray(pixs, 9, 9);
    pixd1 = pixTophat(pixd, 9, 9, L_TOPHAT_WHITE);
    pixd2 = pixGrayMorphSequence(pixs, "C9.9 + TW9.9", HORIZ_SEP, 0);
    pixCompare(pixd1, pixd2, "correct: same", "wrong: different");
    pixd3 = pixMaxDynamicRange(pixd1, L_LINEAR_SCALE);
    pixDisplayWrite(pixd3, 1);
    pixDestroy(&pixd);
    pixDestroy(&pixd1);
    pixDestroy(&pixd2);
    pixDestroy(&pixd3);
    pixd = pixCloseGray(pixs, 29, 29);
    pixd1 = pixTophat(pixd, 29, 29, L_TOPHAT_WHITE);
    pixd2 = pixGrayMorphSequence(pixs, "C29.29 + Tw29.29", HORIZ_SEP, 0);
    pixCompare(pixd1, pixd2, "correct: same", "wrong: different");
    pixd3 = pixMaxDynamicRange(pixd1, L_LINEAR_SCALE);
    pixDisplayWrite(pixd3, 1);
    pixDestroy(&pixd);
    pixDestroy(&pixd1);
    pixDestroy(&pixd2);
    pixDestroy(&pixd3);

    /* --------- hdome with parameter height = 100 ------------*/
    pixd = pixHDome(pixs, 100, 4);
    pixd2 = pixMaxDynamicRange(pixd, L_LINEAR_SCALE);
    pixDisplayWrite(pixd2, 1);
    pixDestroy(&pixd2);

    /* ----- Contrast enhancement with morph parameters 9, 9 -------*/
    pixd1 = pixInitAccumulate(w, h, 0x8000);
    pixAccumulate(pixd1, pixs, L_ARITH_ADD);
    pixMultConstAccumulate(pixd1, 3., 0x8000);
    pixd2 = pixOpenGray(pixs, 9, 9);
    pixAccumulate(pixd1, pixd2, L_ARITH_SUBTRACT);
    pixDestroy(&pixd2);
    pixd2 = pixCloseGray(pixs, 9, 9);
    pixAccumulate(pixd1, pixd2, L_ARITH_SUBTRACT);
    pixDestroy(&pixd2);
    pixd = pixFinalAccumulate(pixd1, 0x8000, 8);
    pixDisplayWrite(pixd, 1);
    pixDestroy(&pixd1);

    /* Do the same thing with the Pixacc */
    pacc = pixaccCreate(w, h, 1);
    pixaccAdd(pacc, pixs);
    pixaccMultConst(pacc, 3.);
    pixd1 = pixOpenGray(pixs, 9, 9);
    pixaccSubtract(pacc, pixd1);
    pixDestroy(&pixd1);
    pixd1 = pixCloseGray(pixs, 9, 9);
    pixaccSubtract(pacc, pixd1);
    pixDestroy(&pixd1);
    pixd2 = pixaccFinal(pacc, 8);
    pixaccDestroy(&pacc);
    pixDisplayWrite(pixd2, 1);

    pixCompare(pixd, pixd2, "Correct: same", "Wrong: different");
    pixDestroy(&pixd);
    pixDestroy(&pixd2);


    /* ----  Tophat result on feynman stamp, to extract diagrams ----- */
    pixDestroy(&pixs);
    pixs = pixRead("feynman-stamp.jpg");

    /* Make output image to hold five intermediate images */
    w = pixGetWidth(pixs);
    h = pixGetHeight(pixs);
    pixd = pixCreate(5 * w + 18, h + 6, 32);  /* composite output image */
    pixSetAllArbitrary(pixd, 0x0000ff00);  /* set to blue */

    /* Paste in the input image */
    pixt = pixRemoveColormap(pixs, REMOVE_CMAP_TO_FULL_COLOR);
    pixRasterop(pixd, 3, 3, w, h, PIX_SRC, pixt, 0, 0);  /* 1st one */
/*    pixWrite("/tmp/junkgray.jpg", pixt, IFF_JFIF_JPEG); */
    pixDestroy(&pixt);

    /* Paste in the grayscale version */
    cmap = pixGetColormap(pixs);
    if (cmap)
        pixt = pixRemoveColormap(pixs, REMOVE_CMAP_TO_GRAYSCALE);
    else
        pixt = pixConvertRGBToGray(pixs, 0.33, 0.34, 0.33);
    pixt2 = pixConvertTo32(pixt);  /* 8 --> 32 bpp */
    pixRasterop(pixd, w + 6, 3, w, h, PIX_SRC, pixt2, 0, 0);  /* 2nd one */
    pixDestroy(&pixt2);

    /* Paste in a log dynamic range scaled version of the white tophat */
    pixt2 = pixTophat(pixt, 3, 3, L_TOPHAT_WHITE);
    pixt3a = pixMaxDynamicRange(pixt2, L_LOG_SCALE);
    pixt3 = pixConvertTo32(pixt3a);
    pixRasterop(pixd, 2 * w + 9, 3, w, h, PIX_SRC, pixt3, 0, 0);  /* 3rd */
/*    pixWrite("/tmp/junktophat.jpg", pixt2, IFF_JFIF_JPEG); */
    pixDestroy(&pixt3);
    pixDestroy(&pixt3a);
    pixDestroy(&pixt);

    /* Stretch the range and threshold to binary; paste it in */
    pixt3a = pixGammaTRC(NULL, pixt2, 1.0, 0, 80);
    pixt3 = pixThresholdToBinary(pixt3a, 70);
    pixt4 = pixConvertTo32(pixt3);
    pixRasterop(pixd, 3 * w + 12, 3, w, h, PIX_SRC, pixt4, 0, 0);  /* 4th */
/*    pixWrite("/tmp/junkbin.png", pixt3, IFF_PNG); */
    pixDestroy(&pixt2);
    pixDestroy(&pixt3a);
    pixDestroy(&pixt4);

    /* Invert; this is the final result */
    pixInvert(pixt3, pixt3);
    pixt4 = pixConvertTo32(pixt3);
    pixRasterop(pixd, 4 * w + 15, 3, w, h, PIX_SRC, pixt4, 0, 0);  /* 5th */
    pixWrite("/tmp/junkbininvert.png", pixt3, IFF_PNG);
    pixDisplayWrite(pixd, 1);
/*    pixWrite("/tmp/junkall.jpg", pixd, IFF_JFIF_JPEG); */
    pixDestroy(&pixt3);
    pixDestroy(&pixt4);
    pixDestroy(&pixd);

    pixDisplayMultiple("/tmp/display/file*");
    pixDestroy(&pixs);
    return 0;
}
Example #30
0
main(int    argc,
     char **argv)
{
char        *filein, *fileout;
l_int32      w, h, d, w2, h2, i, ncols;
l_float32    angle, conf;
BOX         *box;
BOXA        *boxa, *boxas, *boxad, *boxa2;
NUMA        *numa;
PIX         *pixs, *pixt, *pixb, *pixb2, *pixd;
PIX         *pixtlm, *pixvws;
PIX         *pixt1, *pixt2, *pixt3, *pixt4, *pixt5, *pixt6;
PIXA        *pixam, *pixac, *pixad, *pixat;
PIXAA       *pixaa, *pixaa2;
PTA         *pta;
SEL         *selsplit;
static char  mainName[] = "textlinemask";

    if (argc != 3)
        exit(ERROR_INT(" Syntax:  textlinemask filein fileout", mainName, 1));

    filein = argv[1];
    fileout = argv[2];

    pixDisplayWrite(NULL, -1);  /* init debug output */

    if ((pixs = pixRead(filein)) == NULL)
        return ERROR_INT("pixs not made", mainName, 1);
    pixGetDimensions(pixs, &w, &h, &d);

        /* Binarize input */
    if (d == 8)
        pixt = pixThresholdToBinary(pixs, 128);
    else if (d == 1)
        pixt = pixClone(pixs);
    else {
        fprintf(stderr, "depth is %d\n", d);
        exit(1);
    }

        /* Deskew */
    pixb = pixFindSkewAndDeskew(pixt, 1, &angle, &conf);
    pixDestroy(&pixt);
    fprintf(stderr, "Skew angle: %7.2f degrees; %6.2f conf\n", angle, conf);
    pixDisplayWrite(pixb, DEBUG_OUTPUT);

#if 1
        /* Use full image morphology to find columns, at 2x reduction.
         * This only works for very simple layouts where each column
         * of text extends the full height of the input image. 
         * pixam has a pix component over each column.  */
    pixb2 = pixReduceRankBinary2(pixb, 2, NULL);
    pixt1 = pixMorphCompSequence(pixb2, "c5.500", 0);
    boxa = pixConnComp(pixt1, &pixam, 8);
    ncols = boxaGetCount(boxa);
    fprintf(stderr, "Num columns: %d\n", ncols);
    pixDisplayWrite(pixt1, DEBUG_OUTPUT);

        /* Use selective region-based morphology to get the textline mask. */
    pixad = pixaMorphSequenceByRegion(pixb2, pixam, "c100.3", 0, 0);
    pixGetDimensions(pixb2, &w2, &h2, NULL);
    if (DEBUG_OUTPUT) {
        pixt2 = pixaDisplay(pixad, w2, h2);
        pixDisplayWrite(pixt2, DEBUG_OUTPUT);
        pixDestroy(&pixt2);
    }

        /* Some of the lines may be touching, so use a HMT to split the
         * lines in each column, and use a pixaa to save the results. */
    selsplit = selCreateFromString(seltext, 17, 7, "selsplit");
    pixaa = pixaaCreate(ncols);
    for (i = 0; i < ncols; i++) {
        pixt3 = pixaGetPix(pixad, i, L_CLONE);
        box = pixaGetBox(pixad, i, L_COPY);
        pixt4 = pixHMT(NULL, pixt3, selsplit);
        pixXor(pixt4, pixt4, pixt3);
        boxa2 = pixConnComp(pixt4, &pixac, 8);
        pixaaAddPixa(pixaa, pixac, L_INSERT);
        pixaaAddBox(pixaa, box, L_INSERT);
        if (DEBUG_OUTPUT) {
            pixt5 = pixaDisplayRandomCmap(pixac, 0, 0);
            pixDisplayWrite(pixt5, DEBUG_OUTPUT);
            fprintf(stderr, "Num textlines in col %d: %d\n", i,
                    boxaGetCount(boxa2));
            pixDestroy(&pixt5);
        }
        pixDestroy(&pixt3);
        pixDestroy(&pixt4);
        boxaDestroy(&boxa2);
    }

        /* Visual output */
    if (DEBUG_OUTPUT) {
        pixDisplayMultiple("/tmp/junk_write_display*");
        pixat = pixaReadFiles("/tmp", "junk_write_display");
        pixt5 = selDisplayInPix(selsplit, 31, 2);
        pixaAddPix(pixat, pixt5, L_INSERT);
        pixt6 = pixaDisplayTiledAndScaled(pixat, 32, 400, 3, 0, 35, 3);
        pixWrite(fileout, pixt6, IFF_PNG);
        pixaDestroy(&pixat);
        pixDestroy(&pixt6);
    }

        /* Test pixaa I/O */
    pixaaWrite("/tmp/junkpixaa", pixaa);
    pixaa2 = pixaaRead("/tmp/junkpixaa");
    pixaaWrite("/tmp/junkpixaa2", pixaa2);

        /* Test pixaa display */
    pixd = pixaaDisplay(pixaa, w2, h2);
    pixWrite("/tmp/junkdisplay", pixd, IFF_PNG);
    pixDestroy(&pixd);

        /* Cleanup */
    pixDestroy(&pixb2);
    pixDestroy(&pixt1);
    pixaDestroy(&pixam);
    pixaDestroy(&pixad);
    pixaaDestroy(&pixaa);
    pixaaDestroy(&pixaa2);
    boxaDestroy(&boxa);
    selDestroy(&selsplit);
#endif

#if 0
        /*  Use the baseline finder; not really what is needed */
    numa = pixFindBaselines(pixb, &pta, 1);
#endif

#if 0
        /* Use the textline mask function; parameters are not quite right */
    pixb2 = pixReduceRankBinary2(pixb, 2, NULL);
    pixtlm = pixGenTextlineMask(pixb2, &pixvws, NULL, 1);
    pixDisplay(pixtlm, 0, 100);
    pixDisplay(pixvws, 500, 100);
    pixDestroy(&pixb2);
    pixDestroy(&pixtlm);
    pixDestroy(&pixvws);
#endif

#if 0
        /* Use the Breuel whitespace partition method; slow and we would
         * still need to work to extract the fg regions. */
    pixb2 = pixReduceRankBinary2(pixb, 2, NULL);
    boxas = pixConnComp(pixb2, NULL, 8);
    boxad = boxaGetWhiteblocks(boxas, NULL, L_SORT_BY_HEIGHT,
                              3, 0.1, 200, 0.2, 0);
    pixd = pixDrawBoxa(pixb2, boxad, 7, 0xe0708000);
    pixDisplay(pixd, 100, 500);
    pixDestroy(&pixb2);
    pixDestroy(&pixd);
    boxaDestroy(&boxas);
    boxaDestroy(&boxad);
#endif


#if 0
        /* Use morphology to find columns and then selective
         * region-based morphology to get the textline mask.
         * This is for display; we really want to get a pixa of the
         * specific textline masks.   */
    startTimer();
    pixb2 = pixReduceRankBinary2(pixb, 2, NULL);
    pixt1 = pixMorphCompSequence(pixb2, "c5.500", 0);  /* column mask */
    pixt2 = pixMorphSequenceByRegion(pixb2, pixt1, "c100.3", 8, 0, 0, &boxa);
    fprintf(stderr, "time = %7.3f sec\n", stopTimer());
    pixDisplay(pixt1, 100, 500);
    pixDisplay(pixt2, 800, 500);
    pixDestroy(&pixb2);
    pixDestroy(&pixt1);
    pixDestroy(&pixt2);
    boxaDestroy(&boxa);
#endif

    pixDestroy(&pixs);
    pixDestroy(&pixb);

    exit(0);
}