Example #1
0
/* Used to give a 32k clock to EMW1062 wifi rf module */
OSStatus host_platform_init_wlan_powersave_clock( void )
{
#if defined ( MICO_USE_WIFI_32K_CLOCK_MCO ) && defined ( MICO_USE_WIFI_32K_PIN )
    platform_gpio_set_alternate_function( wifi_control_pins[WIFI_PIN_32K_CLK].port, wifi_control_pins[WIFI_PIN_32K_CLK].pin_number, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_MCO );

    /* enable LSE output on MCO1 */
    RCC_MCO1Config( RCC_MCO1Source_LSE, RCC_MCO1Div_1 );
    return kNoErr;
#elif defined ( MICO_USE_WIFI_32K_PIN )
    return host_platform_deinit_wlan_powersave_clock( );
#else
    return kNoErr;
#endif
}
Example #2
0
OSStatus platform_pwm_init( const platform_pwm_t* pwm, uint32_t frequency, float duty_cycle )
{
  TIM_TimeBaseInitTypeDef tim_time_base_structure;
  TIM_OCInitTypeDef       tim_oc_init_structure;
  RCC_ClocksTypeDef       rcc_clock_frequencies;
  uint16_t                period              = 0;
  float                   adjusted_duty_cycle = ( ( duty_cycle > 100.0f ) ? 100.0f : duty_cycle );
  OSStatus                err                 = kNoErr;
  
  require_action_quiet( pwm != NULL, exit, err = kParamErr);

  platform_mcu_powersave_disable();

  RCC_GetClocksFreq( &rcc_clock_frequencies );
  
  if ( pwm->tim == TIM1 || pwm->tim == TIM8 || pwm->tim == TIM9 || pwm->tim == TIM10 || pwm->tim == TIM11 )
  {
    RCC_APB2PeriphClockCmd( pwm->tim_peripheral_clock, ENABLE );
    period = (uint16_t)( rcc_clock_frequencies.PCLK2_Frequency / frequency - 1 ); /* Auto-reload value counts from 0; hence the minus 1 */
  }
  else
  {
    RCC_APB1PeriphClockCmd( pwm->tim_peripheral_clock, ENABLE );
    period = (uint16_t)( rcc_clock_frequencies.PCLK1_Frequency / frequency - 1 ); /* Auto-reload value counts from 0; hence the minus 1 */
  }
    
  /* Set alternate function */
  platform_gpio_set_alternate_function( pwm->pin->port, pwm->pin->pin_number, GPIO_OType_PP, GPIO_PuPd_UP, pwm->gpio_af );
  
  /* Time base configuration */
  tim_time_base_structure.TIM_Period            = (uint32_t) period;
  tim_time_base_structure.TIM_Prescaler         = (uint16_t) 1;  /* Divide clock by 1+1 to enable a count of high cycle + low cycle = 1 PWM cycle */
  tim_time_base_structure.TIM_ClockDivision     = 0;
  tim_time_base_structure.TIM_CounterMode       = TIM_CounterMode_Up;
  tim_time_base_structure.TIM_RepetitionCounter = 0;
  TIM_TimeBaseInit( pwm->tim, &tim_time_base_structure );
  
  /* PWM1 Mode configuration */
  tim_oc_init_structure.TIM_OCMode       = TIM_OCMode_PWM1;
  tim_oc_init_structure.TIM_OutputState  = TIM_OutputState_Enable;
  tim_oc_init_structure.TIM_OutputNState = TIM_OutputNState_Enable;
  tim_oc_init_structure.TIM_Pulse        = (uint16_t) ( adjusted_duty_cycle * (float) period / 100.0f );
  tim_oc_init_structure.TIM_OCPolarity   = TIM_OCPolarity_High;
  tim_oc_init_structure.TIM_OCNPolarity  = TIM_OCNPolarity_High;
  tim_oc_init_structure.TIM_OCIdleState  = TIM_OCIdleState_Reset;
  tim_oc_init_structure.TIM_OCNIdleState = TIM_OCIdleState_Set;
  
  switch ( pwm->channel )
  {
  case 1:
    {
      TIM_OC1Init( pwm->tim, &tim_oc_init_structure );
      TIM_OC1PreloadConfig( pwm->tim, TIM_OCPreload_Enable );
      break;
    }
  case 2:
    {
      TIM_OC2Init( pwm->tim, &tim_oc_init_structure );
      TIM_OC2PreloadConfig( pwm->tim, TIM_OCPreload_Enable );
      break;
    }
  case 3:
    {
      TIM_OC3Init( pwm->tim, &tim_oc_init_structure );
      TIM_OC3PreloadConfig( pwm->tim, TIM_OCPreload_Enable );
      break;
    }
  case 4:
    {
      TIM_OC4Init( pwm->tim, &tim_oc_init_structure );
      TIM_OC4PreloadConfig( pwm->tim, TIM_OCPreload_Enable );
      break;
    }
  default:
    {
      break;
    }
  }

exit:  
  platform_mcu_powersave_enable();
  return err;
}
Example #3
0
OSStatus platform_uart_init( platform_uart_driver_t* driver, const platform_uart_t* peripheral, const platform_uart_config_t* config, ring_buffer_t* optional_ring_buffer )
{
    DMA_InitTypeDef   dma_init_structure;
    USART_InitTypeDef uart_init_structure;
    uint32_t          uart_number;
    OSStatus          err = kNoErr;

    platform_mcu_powersave_disable();

    require_action_quiet( ( driver != NULL ) && ( peripheral != NULL ) && ( config != NULL ), exit, err = kParamErr);
    require_action_quiet( (optional_ring_buffer == NULL) || ((optional_ring_buffer->buffer != NULL ) && (optional_ring_buffer->size != 0)), exit, err = kParamErr);

    uart_number = platform_uart_get_port_number( peripheral->port );

    driver->rx_size              = 0;
    driver->tx_size              = 0;
    driver->last_transmit_result = kNoErr;
    driver->last_receive_result  = kNoErr;
    driver->peripheral           = (platform_uart_t*)peripheral;
#ifndef NO_MICO_RTOS
    mico_rtos_init_semaphore( &driver->tx_complete, 1 );
    mico_rtos_init_semaphore( &driver->rx_complete, 1 );
    mico_rtos_init_semaphore( &driver->sem_wakeup,  1 );
    mico_rtos_init_mutex    ( &driver->tx_mutex );
#else
    driver->tx_complete = false;
    driver->rx_complete = false;
#endif

    /* Configure TX and RX pin_mapping */
    platform_gpio_set_alternate_function( peripheral->pin_tx->port, peripheral->pin_tx->pin_number, GPIO_OType_PP, GPIO_PuPd_NOPULL, uart_alternate_functions[ uart_number ] );
    platform_gpio_set_alternate_function( peripheral->pin_rx->port, peripheral->pin_rx->pin_number, GPIO_OType_PP, GPIO_PuPd_NOPULL, uart_alternate_functions[ uart_number ] );

    if ( ( peripheral->pin_cts != NULL ) && ( config->flow_control == FLOW_CONTROL_CTS || config->flow_control == FLOW_CONTROL_CTS_RTS ) )
    {
        platform_gpio_set_alternate_function( peripheral->pin_cts->port, peripheral->pin_cts->pin_number, GPIO_OType_PP, GPIO_PuPd_NOPULL, uart_alternate_functions[ uart_number ] );
    }

    if ( ( peripheral->pin_rts != NULL ) && ( config->flow_control == FLOW_CONTROL_RTS || config->flow_control == FLOW_CONTROL_CTS_RTS ) )
    {
        platform_gpio_set_alternate_function( peripheral->pin_rts->port, peripheral->pin_rts->pin_number, GPIO_OType_PP, GPIO_PuPd_NOPULL, uart_alternate_functions[ uart_number ] );
    }

#ifndef NO_MICO_RTOS
    if(config->flags & UART_WAKEUP_ENABLE) {
        mico_rtos_init_semaphore( driver->sem_wakeup, 1 );
        mico_rtos_create_thread(NULL, MICO_APPLICATION_PRIORITY, "UART_WAKEUP", thread_wakeup, 0x100, driver);
    }
#endif

    /* Enable UART peripheral clock */
    uart_peripheral_clock_functions[ uart_number ]( uart_peripheral_clocks[ uart_number ], ENABLE );

    uart_init_structure.USART_Mode       = USART_Mode_Rx | USART_Mode_Tx;
    uart_init_structure.USART_BaudRate   = config->baud_rate;
    uart_init_structure.USART_WordLength = ( ( config->data_width == DATA_WIDTH_9BIT ) || ( ( config->data_width == DATA_WIDTH_8BIT ) && ( config->parity != NO_PARITY ) ) ) ? USART_WordLength_9b : USART_WordLength_8b;
    uart_init_structure.USART_StopBits   = ( config->stop_bits == STOP_BITS_1 ) ? USART_StopBits_1 : USART_StopBits_2;

    switch ( config->parity )
    {
    case NO_PARITY:
        uart_init_structure.USART_Parity = USART_Parity_No;
        break;

    case EVEN_PARITY:
        uart_init_structure.USART_Parity = USART_Parity_Even;
        break;

    case ODD_PARITY:
        uart_init_structure.USART_Parity = USART_Parity_Odd;
        break;

    default:
        err = kParamErr;
        goto exit;
    }

    switch ( config->flow_control )
    {
    case FLOW_CONTROL_DISABLED:
        uart_init_structure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
        break;

    case FLOW_CONTROL_CTS:
        uart_init_structure.USART_HardwareFlowControl = USART_HardwareFlowControl_CTS;
        break;

    case FLOW_CONTROL_RTS:
        uart_init_structure.USART_HardwareFlowControl = USART_HardwareFlowControl_RTS;
        break;

    case FLOW_CONTROL_CTS_RTS:
        uart_init_structure.USART_HardwareFlowControl = USART_HardwareFlowControl_RTS_CTS;
        break;

    default:
        err = kParamErr;
        goto exit;
    }


    /* Initialise USART peripheral */
    USART_DeInit( peripheral->port );
    USART_Init( peripheral->port, &uart_init_structure );

    /**************************************************************************
    * Initialise STM32 DMA registers
    * Note: If DMA is used, USART interrupt isn't enabled.
    **************************************************************************/
    /* Enable DMA peripheral clock */
    if ( peripheral->tx_dma_config.controller == DMA1 )
    {
        RCC->AHB1ENR |= RCC_AHB1Periph_DMA1;
    }
    else
    {
        RCC->AHB1ENR |= RCC_AHB1Periph_DMA2;
    }

    /* Fill init structure with common DMA settings */
    dma_init_structure.DMA_PeripheralInc   = DMA_PeripheralInc_Disable;
    dma_init_structure.DMA_MemoryInc       = DMA_MemoryInc_Enable;
    dma_init_structure.DMA_Priority        = DMA_Priority_VeryHigh;
    dma_init_structure.DMA_FIFOMode        = DMA_FIFOMode_Disable;
    dma_init_structure.DMA_FIFOThreshold   = DMA_FIFOThreshold_Full;
    dma_init_structure.DMA_MemoryBurst     = DMA_MemoryBurst_Single;
    dma_init_structure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;

    if ( config->data_width == DATA_WIDTH_9BIT )
    {
        dma_init_structure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
        dma_init_structure.DMA_MemoryDataSize     = DMA_MemoryDataSize_HalfWord;
    }
    else
    {
        dma_init_structure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
        dma_init_structure.DMA_MemoryDataSize     = DMA_MemoryDataSize_Byte;
    }

    /* Initialise TX DMA */
    DMA_DeInit( peripheral->tx_dma_config.stream );
    dma_init_structure.DMA_Channel            = peripheral->tx_dma_config.channel;
    dma_init_structure.DMA_PeripheralBaseAddr = (uint32_t) &peripheral->port->DR;
    dma_init_structure.DMA_Memory0BaseAddr    = (uint32_t) 0;
    dma_init_structure.DMA_DIR                = DMA_DIR_MemoryToPeripheral;
    dma_init_structure.DMA_BufferSize         = 0xFFFF;                     // This parameter will be configured during communication
    dma_init_structure.DMA_Mode               = DMA_Mode_Normal;
    DMA_Init( peripheral->tx_dma_config.stream, &dma_init_structure );

    /* Initialise RX DMA */
    DMA_DeInit( peripheral->rx_dma_config.stream );
    dma_init_structure.DMA_Channel            = peripheral->rx_dma_config.channel;
    dma_init_structure.DMA_PeripheralBaseAddr = (uint32_t) &peripheral->port->DR;
    dma_init_structure.DMA_Memory0BaseAddr    = (uint32_t) 0;
    dma_init_structure.DMA_DIR                = DMA_DIR_PeripheralToMemory;
    dma_init_structure.DMA_BufferSize         = 0xFFFF;                     // This parameter will be configured during communication
    dma_init_structure.DMA_Mode               = DMA_Mode_Normal;
    DMA_Init( peripheral->rx_dma_config.stream, &dma_init_structure );

    /**************************************************************************
    * Initialise STM32 DMA interrupts
    **************************************************************************/

    /* Configure TX DMA interrupt on Cortex-M3 */
    NVIC_EnableIRQ( peripheral->tx_dma_config.irq_vector );

    /* Enable TC (transfer complete) and TE (transfer error) interrupts on source */
    clear_dma_interrupts( peripheral->tx_dma_config.stream, peripheral->tx_dma_config.complete_flags | peripheral->tx_dma_config.error_flags );
    DMA_ITConfig( peripheral->tx_dma_config.stream, DMA_INTERRUPT_FLAGS, ENABLE );

    /* Enable USART interrupt vector in Cortex-M3 */
    NVIC_EnableIRQ( uart_irq_vectors[uart_number] );
    USART_DMACmd( driver->peripheral->port, USART_DMAReq_Tx, DISABLE );

    /* Enable USART */
    USART_Cmd( peripheral->port, ENABLE );

    /* Enable both transmit and receive */
    peripheral->port->CR1 |= USART_CR1_TE;
    peripheral->port->CR1 |= USART_CR1_RE;

    /* Setup ring buffer */
    if ( optional_ring_buffer != NULL )
    {
        /* Note that the ring_buffer should've been initialised first */
        driver->rx_buffer = optional_ring_buffer;
        driver->rx_size   = 0;
        receive_bytes( driver, optional_ring_buffer->buffer, optional_ring_buffer->size, 0 );
    }
    else
    {
        /* Not using ring buffer. Configure RX DMA interrupt on Cortex-M3 */
        NVIC_EnableIRQ( peripheral->rx_dma_config.irq_vector );

        /* Enable TC (transfer complete) and TE (transfer error) interrupts on source */
        clear_dma_interrupts( peripheral->rx_dma_config.stream, peripheral->rx_dma_config.complete_flags | peripheral->rx_dma_config.error_flags );
        DMA_ITConfig( peripheral->rx_dma_config.stream, DMA_INTERRUPT_FLAGS, ENABLE );
    }

exit:
    MicoMcuPowerSaveConfig(true);
    return err;
}
Example #4
0
platform_result_t platform_spi_init( const platform_spi_t* spi, const platform_spi_config_t* config )
{
    SPI_InitTypeDef   spi_init;
    platform_result_t result;
    uint8_t           spi_number;

    wiced_assert( "bad argument", ( spi != NULL ) && ( config != NULL ) );

    platform_mcu_powersave_disable();

    spi_number = platform_spi_get_port_number( spi->port );

    /* Init SPI GPIOs */
    platform_gpio_set_alternate_function( spi->pin_clock->port, spi->pin_clock->pin_number, GPIO_OType_PP, GPIO_PuPd_NOPULL, spi->gpio_af );
    platform_gpio_set_alternate_function( spi->pin_mosi->port,  spi->pin_mosi->pin_number,  GPIO_OType_PP, GPIO_PuPd_NOPULL, spi->gpio_af );
    platform_gpio_set_alternate_function( spi->pin_miso->port,  spi->pin_miso->pin_number,  GPIO_OType_PP, GPIO_PuPd_NOPULL, spi->gpio_af );

    /* Init the chip select GPIO */
    platform_gpio_init( config->chip_select, OUTPUT_PUSH_PULL );
    platform_gpio_output_high( config->chip_select );

    /* Calculate prescaler */
    result = calculate_prescaler( config->speed, &spi_init.SPI_BaudRatePrescaler );
    if ( result != PLATFORM_SUCCESS )
    {
        platform_mcu_powersave_enable();
        return result;
    }

    /* Configure data-width */
    if ( config->bits == 8 )
    {
        spi_init.SPI_DataSize = SPI_DataSize_8b;
    }
    else if ( config->bits == 16 )
    {
        if ( config->mode & SPI_USE_DMA )
        {
            platform_mcu_powersave_enable();

            /* 16 bit mode is not supported for a DMA */
            return PLATFORM_UNSUPPORTED;
        }

        spi_init.SPI_DataSize = SPI_DataSize_16b;
    }
    else
    {
        platform_mcu_powersave_enable();

        /* Requested mode is not supported */
        return PLATFORM_UNSUPPORTED;
    }

    /* Configure MSB or LSB */
    if ( config->mode & SPI_MSB_FIRST )
    {
        spi_init.SPI_FirstBit = SPI_FirstBit_MSB;
    }
    else
    {
        spi_init.SPI_FirstBit = SPI_FirstBit_LSB;
    }

    /* Configure mode CPHA and CPOL */
    if ( config->mode & SPI_CLOCK_IDLE_HIGH )
    {
        spi_init.SPI_CPOL = SPI_CPOL_High;
    }
    else
    {
        spi_init.SPI_CPOL = SPI_CPOL_Low;
    }

    if ( config->mode & SPI_CLOCK_RISING_EDGE )
    {
        spi_init.SPI_CPHA = ( config->mode & SPI_CLOCK_IDLE_HIGH ) ? SPI_CPHA_2Edge : SPI_CPHA_1Edge;
    }
    else
    {
        spi_init.SPI_CPHA = ( config->mode & SPI_CLOCK_IDLE_HIGH ) ? SPI_CPHA_1Edge : SPI_CPHA_2Edge;
    }

    /* Enable SPI peripheral clock */
    spi_peripheral_clock_functions[ spi_number ]( spi_peripheral_clocks[ spi_number ], ENABLE );

    spi_init.SPI_Direction = SPI_Direction_2Lines_FullDuplex;
    spi_init.SPI_Mode      = SPI_Mode_Master;
    spi_init.SPI_NSS       = SPI_NSS_Soft;
    spi_init.SPI_CRCPolynomial = 0x7; /* reset value */
    SPI_CalculateCRC( spi->port, DISABLE );

    /* Init and enable SPI */
    SPI_Init( spi->port, &spi_init );
    SPI_Cmd ( spi->port, ENABLE );

    platform_mcu_powersave_enable();

    return WICED_SUCCESS;
}
OSStatus host_platform_bus_init( void )
{
    SPI_InitTypeDef  spi_init;
    DMA_InitTypeDef  dma_init_structure;
    uint32_t         a;

    platform_mcu_powersave_disable();

    mico_rtos_init_semaphore(&spi_transfer_finished_semaphore, 1);

    /* Enable SPI_SLAVE DMA clock */
    if ( wifi_spi.tx_dma.controller == DMA1 )
    {
        RCC->AHB1ENR |= RCC_AHB1Periph_DMA1;
    }
    else
    {
        RCC->AHB1ENR |= RCC_AHB1Periph_DMA2;
    }


    if ( wifi_spi.rx_dma.controller == DMA1 )
    {
        RCC->AHB1ENR |= RCC_AHB1Periph_DMA1;
    }
    else
    {
        RCC->AHB1ENR |= RCC_AHB1Periph_DMA2;
    }


    /* Enable SPI_SLAVE Periph clock */
    (wifi_spi.peripheral_clock_func)( wifi_spi.peripheral_clock_reg, ENABLE );

    /* Enable SYSCFG. Needed for selecting EXTI interrupt line */
    RCC_APB2PeriphClockCmd( RCC_APB2Periph_SYSCFG, ENABLE );


    /* Setup the interrupt input for WLAN_IRQ */
    platform_gpio_init( &wifi_spi_pins[WIFI_PIN_SPI_IRQ], INPUT_HIGH_IMPEDANCE );
    platform_gpio_irq_enable( &wifi_spi_pins[WIFI_PIN_SPI_IRQ], IRQ_TRIGGER_RISING_EDGE, spi_irq_handler, 0 );

    /* Setup SPI slave select GPIOs */
    platform_gpio_init( &wifi_spi_pins[WIFI_PIN_SPI_CS], OUTPUT_PUSH_PULL );
    platform_gpio_output_high( &wifi_spi_pins[WIFI_PIN_SPI_CS] );

    /* Setup the SPI lines */
    for ( a = WIFI_PIN_SPI_CLK; a < WIFI_PIN_SPI_MAX; a++ )
    {
        platform_gpio_set_alternate_function( wifi_spi_pins[ a ].port, wifi_spi_pins[ a ].pin_number, GPIO_OType_PP, GPIO_PuPd_NOPULL, wifi_spi.gpio_af );
    }

#if defined ( MICO_WIFI_USE_GPIO_FOR_BOOTSTRAP )
    /* Set GPIO_B[1:0] to 01 to put WLAN module into gSPI mode */
    platform_gpio_init( &wifi_control_pins[WIFI_PIN_BOOTSTRAP_0], OUTPUT_PUSH_PULL );
    platform_gpio_output_high( &wifi_control_pins[WIFI_PIN_BOOTSTRAP_0] );
    platform_gpio_init( &wifi_control_pins[WIFI_PIN_BOOTSTRAP_1], OUTPUT_PUSH_PULL );
    platform_gpio_output_low( &wifi_control_pins[WIFI_PIN_BOOTSTRAP_1] );
#endif

    /* Setup DMA for SPIX RX */
    DMA_DeInit( wifi_spi.rx_dma.stream );
    dma_init_structure.DMA_Channel = wifi_spi.rx_dma.channel;
    dma_init_structure.DMA_PeripheralBaseAddr = (uint32_t) &(wifi_spi.port->DR);
    dma_init_structure.DMA_Memory0BaseAddr = 0;
    dma_init_structure.DMA_DIR = DMA_DIR_PeripheralToMemory;
    dma_init_structure.DMA_BufferSize = 0;
    dma_init_structure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
    dma_init_structure.DMA_MemoryInc = DMA_MemoryInc_Enable;
    dma_init_structure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
    dma_init_structure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
    dma_init_structure.DMA_Mode = DMA_Mode_Normal;
    dma_init_structure.DMA_Priority = DMA_Priority_VeryHigh;
    dma_init_structure.DMA_FIFOMode = DMA_FIFOMode_Disable;
    dma_init_structure.DMA_FIFOThreshold = DMA_FIFOThreshold_Full;
    dma_init_structure.DMA_MemoryBurst = DMA_MemoryBurst_Single;
    dma_init_structure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;
    DMA_Init( wifi_spi.rx_dma.stream, &dma_init_structure );

    /* Setup DMA for SPIX TX */
    DMA_DeInit( wifi_spi.tx_dma.stream );
    dma_init_structure.DMA_Channel =  wifi_spi.tx_dma.channel;
    dma_init_structure.DMA_PeripheralBaseAddr = (uint32_t) &(wifi_spi.port->DR);
    dma_init_structure.DMA_Memory0BaseAddr = 0;
    dma_init_structure.DMA_DIR = DMA_DIR_MemoryToPeripheral;
    dma_init_structure.DMA_BufferSize = 0;
    dma_init_structure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
    dma_init_structure.DMA_MemoryInc = DMA_MemoryInc_Enable;
    dma_init_structure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
    dma_init_structure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
    dma_init_structure.DMA_Mode = DMA_Mode_Normal;
    dma_init_structure.DMA_Priority = DMA_Priority_VeryHigh;
    dma_init_structure.DMA_FIFOMode = DMA_FIFOMode_Disable;
    dma_init_structure.DMA_FIFOThreshold = DMA_FIFOThreshold_Full;
    dma_init_structure.DMA_MemoryBurst = DMA_MemoryBurst_Single;
    dma_init_structure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;
    DMA_Init( wifi_spi.tx_dma.stream, &dma_init_structure );

    /* Must be lower priority than the value of configMAX_SYSCALL_INTERRUPT_PRIORITY */
    /* otherwise FreeRTOS will not be able to mask the interrupt */
    /* keep in mind that ARMCM3 interrupt priority logic is inverted, the highest value */
    /* is the lowest priority */
    NVIC_EnableIRQ( wifi_spi.rx_dma.irq_vector );

    /* Enable DMA for TX */
    SPI_I2S_DMACmd( wifi_spi.port, SPI_I2S_DMAReq_Tx | SPI_I2S_DMAReq_Rx, ENABLE );

    /* Setup SPI */
    spi_init.SPI_Direction         = SPI_Direction_2Lines_FullDuplex;
    spi_init.SPI_Mode              = SPI_Mode_Master;
    spi_init.SPI_DataSize          = SPI_DataSize_8b;
    spi_init.SPI_CPOL              = SPI_CPOL_High;
    spi_init.SPI_CPHA              = SPI_CPHA_2Edge;
    spi_init.SPI_NSS               = SPI_NSS_Soft;
    spi_init.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_2;
    spi_init.SPI_FirstBit          = SPI_FirstBit_MSB;
    spi_init.SPI_CRCPolynomial     = (uint16_t) 7;

    /* Init SPI and enable it */
    SPI_Init( wifi_spi.port, &spi_init );
    SPI_Cmd( wifi_spi.port, ENABLE );

    platform_mcu_powersave_enable();

    return kNoErr;
}
Example #6
0
platform_result_t platform_uart_init( platform_uart_driver_t* driver, const platform_uart_t* interface, const platform_uart_config_t* config, wiced_ring_buffer_t* optional_ring_buffer )
{
    uint32_t           uart_number;
    UART_FIFO_CFG_T    UARTFIFOConfigStruct;
    config_uart_data_t config_uart_data;

    wiced_assert( "bad argument", ( driver != NULL ) && ( interface != NULL ) && ( config != NULL ) );
    Chip_Clock_EnablePeriphClock( SYSCTL_CLOCK_UART0 );

    uart_number = platform_uart_get_port_number(interface->uart_base);
    driver->rx_size              = 0;
    driver->tx_size              = 0;
    driver->last_transmit_result = PLATFORM_SUCCESS;
    driver->last_receive_result  = PLATFORM_SUCCESS;
    driver->interface            = (platform_uart_t*)interface;
    host_rtos_init_semaphore( &driver->tx_complete );
    host_rtos_init_semaphore( &driver->rx_complete );

    platform_gpio_set_alternate_function( &driver->interface->tx_pin);
    platform_gpio_set_alternate_function( &driver->interface->rx_pin);

    /* Initialise USART peripheral */
    Chip_UART_FIFOConfigStructInit( driver->interface->uart_base, &UARTFIFOConfigStruct );
    Chip_UART_Init( driver->interface->uart_base );
    Chip_UART_SetBaud( driver->interface->uart_base, config->baud_rate );
    config_uart_data.databits = ( ( config->data_width == DATA_WIDTH_8BIT ) || ( ( config->data_width == DATA_WIDTH_7BIT ) && ( config->parity != NO_PARITY ) ) ) ? UART_DATABIT_8 : UART_DATABIT_7;
    config_uart_data.stopbits = ( config->stop_bits == STOP_BITS_1 ) ? UART_STOPBIT_1 : UART_STOPBIT_2;
    switch ( config->parity )
    {
        case NO_PARITY:
            config_uart_data.parity = UART_PARITY_NONE;
            break;

        case EVEN_PARITY:
            config_uart_data.parity = UART_PARITY_EVEN;
            break;

        case ODD_PARITY:
            config_uart_data.parity = UART_PARITY_ODD;
            break;

        default:
            return WICED_BADARG;
    }

    Chip_UART_ConfigData( driver->interface->uart_base, config_uart_data.databits, config_uart_data.parity, config_uart_data.stopbits );
    Chip_UART_TxCmd( driver->interface->uart_base, ENABLE );
    /* Enable receive data and line status interrupt */
    /* Initialize FIFO for UART0 peripheral */
    Chip_UART_FIFOConfig( driver->interface->uart_base, &UARTFIFOConfigStruct );
    /* Enable UART Rx interrupt */
    Chip_UART_IntConfig( driver->interface->uart_base, UART_INTCFG_RBR, ENABLE );
    /* Enable UART line status interrupt */
    Chip_UART_IntConfig( driver->interface->uart_base, UART_INTCFG_RLS, ENABLE );

    /* Enable Interrupt for UART channel */
    NVIC_DisableIRQ( uart_irq_vectors[ uart_number ] );
    NVIC_ClearPendingIRQ( uart_irq_vectors[ uart_number ] );
    /*Note the LPC uses 5 bits for interrupt priority levels*/
    NVIC_EnableIRQ( uart_irq_vectors[ uart_number ] );
    if ( optional_ring_buffer != NULL )
    {
        /* Note that the ring_buffer should've been initialised first */
        driver->rx_buffer = optional_ring_buffer;
        driver->rx_size = 0;
    }

    return PLATFORM_SUCCESS;
}
Example #7
0
OSStatus host_platform_bus_init( void )
{
    SDIO_InitTypeDef sdio_init_structure;
    OSStatus         result;
    uint8_t          a;

    platform_mcu_powersave_disable();

    result = mico_rtos_init_semaphore( &sdio_transfer_finished_semaphore, 1 );
    if ( result != kNoErr )
    {
        return result;
    }

    /* Turn on SDIO IRQ */
    SDIO->ICR = (uint32_t) 0xffffffff;

    /* Must be lower priority than the value of configMAX_SYSCALL_INTERRUPT_PRIORITY */
    /* otherwise FreeRTOS will not be able to mask the interrupt */
    /* keep in mind that ARMCM3 interrupt priority logic is inverted, the highest value */
    /* is the lowest priority */
    NVIC_EnableIRQ( SDIO_IRQ_CHANNEL );
    NVIC_EnableIRQ( DMA2_3_IRQ_CHANNEL );
    
    /* Set GPIO_B[1:0] to 00 to put WLAN module into SDIO mode */
#if defined ( MICO_WIFI_USE_GPIO_FOR_BOOTSTRAP )
    platform_gpio_init( &wifi_control_pins[WIFI_PIN_BOOTSTRAP_0], OUTPUT_PUSH_PULL );
    platform_gpio_output_low( &wifi_control_pins[WIFI_PIN_BOOTSTRAP_0] );
    platform_gpio_init( &wifi_control_pins[WIFI_PIN_BOOTSTRAP_1], OUTPUT_PUSH_PULL );
    platform_gpio_output_low( &wifi_control_pins[WIFI_PIN_BOOTSTRAP_1] );
#endif

    /* Setup GPIO pins for SDIO data & clock */
    for ( a = WIFI_PIN_SDIO_CLK; a < WIFI_PIN_SDIO_MAX; a++ )
    {
        platform_gpio_set_alternate_function( wifi_sdio_pins[ a ].port, wifi_sdio_pins[ a ].pin_number, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SDIO );
    }

#ifdef SDIO_1_BIT
    platform_gpio_init( &wifi_sdio_pins[WIFI_PIN_SDIO_IRQ], INPUT_PULL_UP );
    platform_gpio_irq_enable( &wifi_sdio_pins[WIFI_PIN_SDIO_IRQ], IRQ_TRIGGER_FALLING_EDGE, sdio_int_pin_irq_handler, 0 );
#endif

    /*!< Enable the SDIO AHB Clock and the DMA2 Clock */
    RCC_AHB1PeriphClockCmd( RCC_AHB1Periph_DMA2, ENABLE );
    RCC_APB2PeriphClockCmd( RCC_APB2Periph_SDIO, ENABLE );

    SDIO_DeInit( );
    sdio_init_structure.SDIO_ClockDiv            = (uint8_t) 120; /* 0x78, clock is taken from the high speed APB bus ; */ /* About 400KHz */
    sdio_init_structure.SDIO_ClockEdge           = SDIO_ClockEdge_Rising;
    sdio_init_structure.SDIO_ClockBypass         = SDIO_ClockBypass_Disable;
    sdio_init_structure.SDIO_ClockPowerSave      = SDIO_ClockPowerSave_Enable;
    sdio_init_structure.SDIO_BusWide             = SDIO_BusWide_1b;
    sdio_init_structure.SDIO_HardwareFlowControl = SDIO_HardwareFlowControl_Disable;
    SDIO_Init( &sdio_init_structure );
    SDIO_SetPowerState( SDIO_PowerState_ON );
    SDIO_SetSDIOReadWaitMode( SDIO_ReadWaitMode_CLK );
    SDIO_ClockCmd( ENABLE );

    platform_mcu_powersave_enable();

    return kNoErr;
}
Example #8
0
OSStatus platform_spi_init( platform_spi_driver_t* driver, const platform_spi_t* peripheral, const platform_spi_config_t* config )
{
  SPI_InitTypeDef   spi_init;
  OSStatus          err;
  
  platform_mcu_powersave_disable();
  
  require_action_quiet( ( driver != NULL ) && ( peripheral != NULL ) && ( config != NULL ), exit, err = kParamErr);

/* Calculate prescaler */
  err = calculate_prescaler( config->speed, &spi_init.SPI_BaudRatePrescaler );
  require_noerr(err, exit);
      
  /* Configure data-width */
  if ( config->bits == 8 )
  {
    spi_init.SPI_DataSize = SPI_DataSize_8b;
  }
  else if ( config->bits == 16 )
  {
    require_action( !(config->mode & SPI_USE_DMA), exit, err = kUnsupportedErr);
    spi_init.SPI_DataSize = SPI_DataSize_16b;
  }
  else
  {
    err = kUnsupportedErr;
    goto exit;
  }
  
  /* Configure MSB or LSB */
  if ( config->mode & SPI_MSB_FIRST )
  {
    spi_init.SPI_FirstBit = SPI_FirstBit_MSB;
  }
  else
  {
    spi_init.SPI_FirstBit = SPI_FirstBit_LSB;
  }
  
  /* Configure mode CPHA and CPOL */
  if ( config->mode & SPI_CLOCK_IDLE_HIGH )
  {
    spi_init.SPI_CPOL = SPI_CPOL_High;
  }
  else
  {
    spi_init.SPI_CPOL = SPI_CPOL_Low;
  }
  
  if ( config->mode & SPI_CLOCK_RISING_EDGE )
  {
    spi_init.SPI_CPHA = ( config->mode & SPI_CLOCK_IDLE_HIGH ) ? SPI_CPHA_2Edge : SPI_CPHA_1Edge;
  }
  else
  {
    spi_init.SPI_CPHA = ( config->mode & SPI_CLOCK_IDLE_HIGH ) ? SPI_CPHA_1Edge : SPI_CPHA_2Edge;
  }

  driver->peripheral = (platform_spi_t *)peripheral;
    
  /* Init SPI GPIOs */
  platform_gpio_set_alternate_function( peripheral->pin_clock->port, peripheral->pin_clock->pin_number, GPIO_OType_PP, GPIO_PuPd_NOPULL, peripheral->gpio_af );
  platform_gpio_set_alternate_function( peripheral->pin_mosi->port,  peripheral->pin_mosi->pin_number,  GPIO_OType_PP, GPIO_PuPd_NOPULL, peripheral->gpio_af );
  platform_gpio_set_alternate_function( peripheral->pin_miso->port,  peripheral->pin_miso->pin_number,  GPIO_OType_PP, GPIO_PuPd_UP, peripheral->gpio_af );
  
  /* Init the chip select GPIO */
  platform_gpio_init( config->chip_select, OUTPUT_PUSH_PULL );
  platform_gpio_output_high( config->chip_select );
  
  
  /* Enable SPI peripheral clock */
  (peripheral->peripheral_clock_func)( peripheral->peripheral_clock_reg, ENABLE );
  (peripheral->peripheral_clock_func)( peripheral->peripheral_clock_reg, ENABLE );
  
  SPI_I2S_DeInit( peripheral->port );
  
  spi_init.SPI_Direction = SPI_Direction_2Lines_FullDuplex;
  spi_init.SPI_Mode      = SPI_Mode_Master;
  spi_init.SPI_NSS       = SPI_NSS_Soft;
  spi_init.SPI_CRCPolynomial = 0x7; /* reset value */
  SPI_CalculateCRC( peripheral->port, DISABLE );
  
  /* Init and enable SPI */
  SPI_Init( peripheral->port, &spi_init );
  
  SPI_I2S_DMACmd( peripheral->port, SPI_I2S_DMAReq_Rx, DISABLE );
  SPI_I2S_DMACmd( peripheral->port, SPI_I2S_DMAReq_Tx, DISABLE );
  
  SPI_Cmd ( peripheral->port, ENABLE );
  
  if ( config->mode & SPI_USE_DMA ){
    DMA_DeInit( peripheral->rx_dma.stream );
    DMA_DeInit( peripheral->tx_dma.stream );
    
    if ( peripheral->tx_dma.controller == DMA1 )
    {
      RCC->AHB1ENR |= RCC_AHB1Periph_DMA1;
    }
    else
    {
      RCC->AHB1ENR |= RCC_AHB1Periph_DMA2;
    }
    
     if ( peripheral->rx_dma.controller == DMA1 )
    {
      RCC->AHB1ENR |= RCC_AHB1Periph_DMA1;
    }
    else
    {
      RCC->AHB1ENR |= RCC_AHB1Periph_DMA2;
    }
    SPI_I2S_DMACmd( peripheral->port, SPI_I2S_DMAReq_Rx, ENABLE );
    SPI_I2S_DMACmd( peripheral->port, SPI_I2S_DMAReq_Tx, ENABLE );
  }

exit:
  platform_mcu_powersave_enable();
  return err;
}