void GrConfigConversionEffect::TestForPreservingPMConversions(GrContext* context, PMConversion* pmToUPMRule, PMConversion* upmToPMRule) { *pmToUPMRule = kNone_PMConversion; *upmToPMRule = kNone_PMConversion; SkAutoTMalloc<uint32_t> data(256 * 256 * 3); uint32_t* srcData = data.get(); uint32_t* firstRead = data.get() + 256 * 256; uint32_t* secondRead = data.get() + 2 * 256 * 256; // Fill with every possible premultiplied A, color channel value. There will be 256-y duplicate // values in row y. We set r,g, and b to the same value since they are handled identically. for (int y = 0; y < 256; ++y) { for (int x = 0; x < 256; ++x) { uint8_t* color = reinterpret_cast<uint8_t*>(&srcData[256*y + x]); color[3] = y; color[2] = SkTMin(x, y); color[1] = SkTMin(x, y); color[0] = SkTMin(x, y); } } GrSurfaceDesc desc; desc.fFlags = kRenderTarget_GrSurfaceFlag; desc.fWidth = 256; desc.fHeight = 256; desc.fConfig = kRGBA_8888_GrPixelConfig; SkAutoTUnref<GrTexture> readTex(context->textureProvider()->createTexture(desc, true, nullptr, 0)); if (!readTex.get()) { return; } SkAutoTUnref<GrTexture> tempTex(context->textureProvider()->createTexture(desc, true, nullptr, 0)); if (!tempTex.get()) { return; } desc.fFlags = kNone_GrSurfaceFlags; SkAutoTUnref<GrTexture> dataTex(context->textureProvider()->createTexture(desc, true, data, 0)); if (!dataTex.get()) { return; } static const PMConversion kConversionRules[][2] = { {kDivByAlpha_RoundDown_PMConversion, kMulByAlpha_RoundUp_PMConversion}, {kDivByAlpha_RoundUp_PMConversion, kMulByAlpha_RoundDown_PMConversion}, }; bool failed = true; for (size_t i = 0; i < SK_ARRAY_COUNT(kConversionRules) && failed; ++i) { *pmToUPMRule = kConversionRules[i][0]; *upmToPMRule = kConversionRules[i][1]; static const SkRect kDstRect = SkRect::MakeWH(SkIntToScalar(256), SkIntToScalar(256)); static const SkRect kSrcRect = SkRect::MakeWH(SK_Scalar1, SK_Scalar1); // We do a PM->UPM draw from dataTex to readTex and read the data. Then we do a UPM->PM draw // from readTex to tempTex followed by a PM->UPM draw to readTex and finally read the data. // We then verify that two reads produced the same values. GrPaint paint1; GrPaint paint2; GrPaint paint3; SkAutoTUnref<GrFragmentProcessor> pmToUPM1(new GrConfigConversionEffect( paint1.getProcessorDataManager(), dataTex, false, *pmToUPMRule, SkMatrix::I())); SkAutoTUnref<GrFragmentProcessor> upmToPM(new GrConfigConversionEffect( paint2.getProcessorDataManager(), readTex, false, *upmToPMRule, SkMatrix::I())); SkAutoTUnref<GrFragmentProcessor> pmToUPM2(new GrConfigConversionEffect( paint3.getProcessorDataManager(), tempTex, false, *pmToUPMRule, SkMatrix::I())); paint1.addColorFragmentProcessor(pmToUPM1); SkAutoTUnref<GrDrawContext> readDrawContext(context->drawContext()); if (!readDrawContext) { failed = true; break; } readDrawContext->drawNonAARectToRect(readTex->asRenderTarget(), GrClip::WideOpen(), paint1, SkMatrix::I(), kDstRect, kSrcRect); readTex->readPixels(0, 0, 256, 256, kRGBA_8888_GrPixelConfig, firstRead); paint2.addColorFragmentProcessor(upmToPM); SkAutoTUnref<GrDrawContext> tempDrawContext(context->drawContext()); if (!tempDrawContext) { failed = true; break; } tempDrawContext->drawNonAARectToRect(tempTex->asRenderTarget(), GrClip::WideOpen(), paint2, SkMatrix::I(), kDstRect, kSrcRect); paint3.addColorFragmentProcessor(pmToUPM2); readDrawContext.reset(context->drawContext()); if (!readDrawContext) { failed = true; break; } readDrawContext->drawNonAARectToRect(readTex->asRenderTarget(), GrClip::WideOpen(), paint3, SkMatrix::I(), kDstRect, kSrcRect); readTex->readPixels(0, 0, 256, 256, kRGBA_8888_GrPixelConfig, secondRead); failed = false; for (int y = 0; y < 256 && !failed; ++y) { for (int x = 0; x <= y; ++x) { if (firstRead[256 * y + x] != secondRead[256 * y + x]) { failed = true; break; } } } } if (failed) { *pmToUPMRule = kNone_PMConversion; *upmToPMRule = kNone_PMConversion; } }
void GrConfigConversionEffect::TestForPreservingPMConversions(GrContext* context, PMConversion* pmToUPMRule, PMConversion* upmToPMRule) { *pmToUPMRule = kNone_PMConversion; *upmToPMRule = kNone_PMConversion; static constexpr int kSize = 256; static constexpr GrPixelConfig kConfig = kRGBA_8888_GrPixelConfig; SkAutoTMalloc<uint32_t> data(kSize * kSize * 3); uint32_t* srcData = data.get(); uint32_t* firstRead = data.get() + kSize * kSize; uint32_t* secondRead = data.get() + 2 * kSize * kSize; // Fill with every possible premultiplied A, color channel value. There will be 256-y duplicate // values in row y. We set r,g, and b to the same value since they are handled identically. for (int y = 0; y < kSize; ++y) { for (int x = 0; x < kSize; ++x) { uint8_t* color = reinterpret_cast<uint8_t*>(&srcData[kSize*y + x]); color[3] = y; color[2] = SkTMin(x, y); color[1] = SkTMin(x, y); color[0] = SkTMin(x, y); } } sk_sp<GrDrawContext> readDC(context->makeDrawContext(SkBackingFit::kExact, kSize, kSize, kConfig, nullptr)); sk_sp<GrDrawContext> tempDC(context->makeDrawContext(SkBackingFit::kExact, kSize, kSize, kConfig, nullptr)); if (!readDC || !tempDC) { return; } GrSurfaceDesc desc; desc.fWidth = kSize; desc.fHeight = kSize; desc.fConfig = kConfig; SkAutoTUnref<GrTexture> dataTex(context->textureProvider()->createTexture( desc, SkBudgeted::kYes, data, 0)); if (!dataTex.get()) { return; } static const PMConversion kConversionRules[][2] = { {kDivByAlpha_RoundDown_PMConversion, kMulByAlpha_RoundUp_PMConversion}, {kDivByAlpha_RoundUp_PMConversion, kMulByAlpha_RoundDown_PMConversion}, }; bool failed = true; for (size_t i = 0; i < SK_ARRAY_COUNT(kConversionRules) && failed; ++i) { *pmToUPMRule = kConversionRules[i][0]; *upmToPMRule = kConversionRules[i][1]; static const SkRect kDstRect = SkRect::MakeIWH(kSize, kSize); static const SkRect kSrcRect = SkRect::MakeIWH(1, 1); // We do a PM->UPM draw from dataTex to readTex and read the data. Then we do a UPM->PM draw // from readTex to tempTex followed by a PM->UPM draw to readTex and finally read the data. // We then verify that two reads produced the same values. GrPaint paint1; GrPaint paint2; GrPaint paint3; sk_sp<GrFragmentProcessor> pmToUPM1(new GrConfigConversionEffect( dataTex, GrSwizzle::RGBA(), *pmToUPMRule, SkMatrix::I())); sk_sp<GrFragmentProcessor> upmToPM(new GrConfigConversionEffect( readDC->asTexture().get(), GrSwizzle::RGBA(), *upmToPMRule, SkMatrix::I())); sk_sp<GrFragmentProcessor> pmToUPM2(new GrConfigConversionEffect( tempDC->asTexture().get(), GrSwizzle::RGBA(), *pmToUPMRule, SkMatrix::I())); paint1.addColorFragmentProcessor(std::move(pmToUPM1)); paint1.setPorterDuffXPFactory(SkXfermode::kSrc_Mode); readDC->fillRectToRect(GrNoClip(), paint1, SkMatrix::I(), kDstRect, kSrcRect); readDC->asTexture()->readPixels(0, 0, kSize, kSize, kConfig, firstRead); paint2.addColorFragmentProcessor(std::move(upmToPM)); paint2.setPorterDuffXPFactory(SkXfermode::kSrc_Mode); tempDC->fillRectToRect(GrNoClip(), paint2, SkMatrix::I(), kDstRect, kSrcRect); paint3.addColorFragmentProcessor(std::move(pmToUPM2)); paint3.setPorterDuffXPFactory(SkXfermode::kSrc_Mode); readDC->fillRectToRect(GrNoClip(), paint3, SkMatrix::I(), kDstRect, kSrcRect); readDC->asTexture()->readPixels(0, 0, kSize, kSize, kConfig, secondRead); failed = false; for (int y = 0; y < kSize && !failed; ++y) { for (int x = 0; x <= y; ++x) { if (firstRead[kSize * y + x] != secondRead[kSize * y + x]) { failed = true; break; } } } } if (failed) { *pmToUPMRule = kNone_PMConversion; *upmToPMRule = kNone_PMConversion; } }