Example #1
0
static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
			unsigned long long start, u64 size)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	unsigned long long addr = start, end = start + size;
	u64 next;

	while (addr < end) {
		pgd = pgdp + pgd_index(addr);
		pud = pud_offset(pgd, addr);
		if (pud_none(*pud)) {
			addr = pud_addr_end(addr, end);
			continue;
		}

		if (pud_huge(*pud)) {
			/*
			 * If we are dealing with a huge pud, just clear it and
			 * move on.
			 */
			clear_pud_entry(kvm, pud, addr);
			addr = pud_addr_end(addr, end);
			continue;
		}

		pmd = pmd_offset(pud, addr);
		if (pmd_none(*pmd)) {
			addr = pmd_addr_end(addr, end);
			continue;
		}

		if (!kvm_pmd_huge(*pmd)) {
			pte = pte_offset_kernel(pmd, addr);
			clear_pte_entry(kvm, pte, addr);
			next = addr + PAGE_SIZE;
		}

		/*
		 * If the pmd entry is to be cleared, walk back up the ladder
		 */
		if (kvm_pmd_huge(*pmd) || page_empty(pte)) {
			clear_pmd_entry(kvm, pmd, addr);
			next = pmd_addr_end(addr, end);
			if (page_empty(pmd) && !page_empty(pud)) {
				clear_pud_entry(kvm, pud, addr);
				next = pud_addr_end(addr, end);
			}
		}

		addr = next;
	}
}
Example #2
0
static void __init kasan_populate_pud(pud_t *pud, unsigned long addr,
				      unsigned long end, int nid)
{
	pmd_t *pmd;
	unsigned long next;

	if (pud_none(*pud)) {
		void *p;

		if (boot_cpu_has(X86_FEATURE_GBPAGES) &&
		    ((end - addr) == PUD_SIZE) &&
		    IS_ALIGNED(addr, PUD_SIZE)) {
			p = early_alloc(PUD_SIZE, nid, false);
			if (p && pud_set_huge(pud, __pa(p), PAGE_KERNEL))
				return;
			else if (p)
				memblock_free(__pa(p), PUD_SIZE);
		}

		p = early_alloc(PAGE_SIZE, nid, true);
		pud_populate(&init_mm, pud, p);
	}

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (!pmd_large(*pmd))
			kasan_populate_pmd(pmd, addr, next, nid);
	} while (pmd++, addr = next, addr != end);
}
Example #3
0
static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
{
	pmd_t *pmd;
	pte_t *pte;
	unsigned long addr, next;

	addr = start;
	do {
		pmd = pmd_offset(pud, addr);

		BUG_ON(pmd_sect(*pmd));

		if (pmd_none(*pmd)) {
			pte = pte_alloc_one_kernel(NULL, addr);
			if (!pte) {
				kvm_err("Cannot allocate Hyp pte\n");
				return -ENOMEM;
			}
			pmd_populate_kernel(NULL, pmd, pte);
			get_page(virt_to_page(pmd));
			kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
		}

		next = pmd_addr_end(addr, end);

		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
		pfn += (next - addr) >> PAGE_SHIFT;
	} while (addr = next, addr != end);

	return 0;
}
Example #4
0
static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
		int write, struct page **pages, int *nr)
{
	unsigned long next;
	pmd_t *pmdp;

	pmdp = pmd_offset(&pud, addr);
	do {
		pmd_t pmd = ACCESS_ONCE(*pmdp);

		next = pmd_addr_end(addr, end);
		/*
		 * If we find a splitting transparent hugepage we
		 * return zero. That will result in taking the slow
		 * path which will call wait_split_huge_page()
		 * if the pmd is still in splitting state
		 */
		if (pmd_none(pmd) || pmd_trans_splitting(pmd))
			return 0;
		if (pmd_huge(pmd) || pmd_large(pmd)) {
			if (!gup_hugepte((pte_t *)pmdp, PMD_SIZE, addr, next,
					 write, pages, nr))
				return 0;
		} else if (is_hugepd(pmdp)) {
			if (!gup_hugepd((hugepd_t *)pmdp, PMD_SHIFT,
					addr, next, write, pages, nr))
				return 0;
		} else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
			return 0;
	} while (pmdp++, addr = next, addr != end);

	return 1;
}
Example #5
0
static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
		int write, struct page **pages, int *nr)
{
	unsigned long next;
	pmd_t *pmdp;

	pmdp = pmd_offset(&pud, addr);
	do {
		pmd_t pmd = *pmdp;

		next = pmd_addr_end(addr, end);
		if (pmd_none(pmd))
			return 0;
		if (pmd_huge(pmd)) {
			if (!gup_hugepte((pte_t *)pmdp, PMD_SIZE, addr, next,
					 write, pages, nr))
				return 0;
		} else if (is_hugepd(pmdp)) {
			if (!gup_hugepd((hugepd_t *)pmdp, PMD_SHIFT,
					addr, next, write, pages, nr))
				return 0;
		} else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
			return 0;
	} while (pmdp++, addr = next, addr != end);

	return 1;
}
Example #6
0
static void idmap_add_pmd(pud_t *pud, unsigned long addr, unsigned long end,
	unsigned long prot)
{
	pmd_t *pmd;
	unsigned long next;

	if (pud_none_or_clear_bad(pud) || (pud_val(*pud) & L_PGD_SWAPPER)) {
		pmd = pmd_alloc_one(&init_mm, addr);
		if (!pmd) {
			pr_warning("Failed to allocate identity pmd.\n");
			return;
		}
		/*
		 * Copy the original PMD to ensure that the PMD entries for
		 * the kernel image are preserved.
		 */
		if (!pud_none(*pud))
			memcpy(pmd, pmd_offset(pud, 0),
			       PTRS_PER_PMD * sizeof(pmd_t));
		pud_populate(&init_mm, pud, pmd);
		pmd += pmd_index(addr);
	} else
		pmd = pmd_offset(pud, addr);

	do {
		next = pmd_addr_end(addr, end);
		*pmd = __pmd((addr & PMD_MASK) | prot);
		flush_pmd_entry(pmd);
	} while (pmd++, addr = next, addr != end);
}
Example #7
0
static int copy_pmd(pud_t *dst_pudp, pud_t *src_pudp, unsigned long start,
		    unsigned long end)
{
	pmd_t *src_pmdp;
	pmd_t *dst_pmdp;
	unsigned long next;
	unsigned long addr = start;

	if (pud_none(READ_ONCE(*dst_pudp))) {
		dst_pmdp = (pmd_t *)get_safe_page(GFP_ATOMIC);
		if (!dst_pmdp)
			return -ENOMEM;
		pud_populate(&init_mm, dst_pudp, dst_pmdp);
	}
	dst_pmdp = pmd_offset(dst_pudp, start);

	src_pmdp = pmd_offset(src_pudp, start);
	do {
		pmd_t pmd = READ_ONCE(*src_pmdp);

		next = pmd_addr_end(addr, end);
		if (pmd_none(pmd))
			continue;
		if (pmd_table(pmd)) {
			if (copy_pte(dst_pmdp, src_pmdp, addr, next))
				return -ENOMEM;
		} else {
			set_pmd(dst_pmdp,
				__pmd(pmd_val(pmd) & ~PMD_SECT_RDONLY));
		}
	} while (dst_pmdp++, src_pmdp++, addr = next, addr != end);

	return 0;
}
Example #8
0
static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
                          struct mm_walk *walk)
{
    pmd_t *pmd;
    unsigned long next;
    int err = 0;

    pmd = pmd_offset(pud, addr);
    do {
        next = pmd_addr_end(addr, end);
        if (pmd_none_or_clear_bad(pmd)) {
            if (walk->pte_hole)
                err = walk->pte_hole(addr, next, walk);
            if (err)
                break;
            continue;
        }
        if (walk->pmd_entry)
            err = walk->pmd_entry(pmd, addr, next, walk);
        if (!err && walk->pte_entry)
            err = walk_pte_range(pmd, addr, next, walk);
        if (err)
            break;
    } while (pmd++, addr = next, addr != end);

    return err;
}
Example #9
0
/*
 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
 */
int __meminit vmemmap_populate(struct page *start_page,
						unsigned long size, int node)
{
	unsigned long addr = (unsigned long)start_page;
	unsigned long end = (unsigned long)(start_page + size);
	unsigned long next;
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;

	for (; addr < end; addr = next) {
		next = pmd_addr_end(addr, end);

		pgd = vmemmap_pgd_populate(addr, node);
		if (!pgd)
			return -ENOMEM;
		pud = vmemmap_pud_populate(pgd, addr, node);
		if (!pud)
			return -ENOMEM;

		pmd = pmd_offset(pud, addr);
		if (pmd_none(*pmd)) {
			pte_t entry;
			void *p = vmemmap_alloc_block(PMD_SIZE, node);
			if (!p)
				return -ENOMEM;

			entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
			mk_pte_huge(entry);
			set_pmd(pmd, __pmd(pte_val(entry)));

			printk(KERN_DEBUG " [%lx-%lx] PMD ->%p on node %d\n",
				addr, addr + PMD_SIZE - 1, p, node);
		} else
Example #10
0
static inline int ioremap_pmd_range(pud_t *pud, unsigned long addr,
		unsigned long end, phys_addr_t phys_addr, pgprot_t prot)
{
	pmd_t *pmd;
	unsigned long next;

	phys_addr -= addr;
	pmd = pmd_alloc(&init_mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);

		if (ioremap_pmd_enabled() &&
		    ((next - addr) == PMD_SIZE) &&
		    IS_ALIGNED(phys_addr + addr, PMD_SIZE)) {
			if (pmd_set_huge(pmd, phys_addr + addr, prot))
				continue;
		}

		if (ioremap_pte_range(pmd, addr, next, phys_addr + addr, prot))
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}
Example #11
0
/*
 * Do a chunk of "sys_mincore()". We've already checked
 * all the arguments, we hold the mmap semaphore: we should
 * just return the amount of info we're asked for.
 */
static long do_mincore(unsigned long addr, unsigned long pages, unsigned char *vec)
{
	struct vm_area_struct *vma;
	unsigned long end;

	vma = find_vma(current->mm, addr);
	if (!vma || addr < vma->vm_start)
		return -ENOMEM;

	end = min(vma->vm_end, addr + (pages << PAGE_SHIFT));

	if (is_vm_hugetlb_page(vma)) {
		mincore_hugetlb_page_range(vma, addr, end, vec);
		return (end - addr) >> PAGE_SHIFT;
	}

	end = pmd_addr_end(addr, end);

	if (is_vm_hugetlb_page(vma))
		mincore_hugetlb_page_range(vma, addr, end, vec);
	else
		mincore_page_range(vma, addr, end, vec);

	return (end - addr) >> PAGE_SHIFT;
}
Example #12
0
File: mmu.c Project: 1314cc/linux
static void alloc_init_pmd(pud_t *pud, unsigned long addr, unsigned long end,
				  phys_addr_t phys, pgprot_t prot,
				  phys_addr_t (*pgtable_alloc)(void))
{
	pmd_t *pmd;
	unsigned long next;

	/*
	 * Check for initial section mappings in the pgd/pud and remove them.
	 */
	if (pud_none(*pud) || pud_sect(*pud)) {
		phys_addr_t pmd_phys;
		BUG_ON(!pgtable_alloc);
		pmd_phys = pgtable_alloc();
		pmd = pmd_set_fixmap(pmd_phys);
		if (pud_sect(*pud)) {
			/*
			 * need to have the 1G of mappings continue to be
			 * present
			 */
			split_pud(pud, pmd);
		}
		__pud_populate(pud, pmd_phys, PUD_TYPE_TABLE);
		flush_tlb_all();
		pmd_clear_fixmap();
	}
	BUG_ON(pud_bad(*pud));

	pmd = pmd_set_fixmap_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		/* try section mapping first */
		if (((addr | next | phys) & ~SECTION_MASK) == 0 &&
		      block_mappings_allowed(pgtable_alloc)) {
			pmd_t old_pmd =*pmd;
			pmd_set_huge(pmd, phys, prot);
			/*
			 * Check for previous table entries created during
			 * boot (__create_page_tables) and flush them.
			 */
			if (!pmd_none(old_pmd)) {
				flush_tlb_all();
				if (pmd_table(old_pmd)) {
					phys_addr_t table = pmd_page_paddr(old_pmd);
					if (!WARN_ON_ONCE(slab_is_available()))
						memblock_free(table, PAGE_SIZE);
				}
			}
		} else {
			alloc_init_pte(pmd, addr, next, __phys_to_pfn(phys),
				       prot, pgtable_alloc);
		}
		phys += next - addr;
	} while (pmd++, addr = next, addr != end);

	pmd_clear_fixmap();
}
static void __init kasan_pmd_populate(pud_t *pudp, unsigned long addr,
				      unsigned long end, int node, bool early)
{
	unsigned long next;
	pmd_t *pmdp = kasan_pmd_offset(pudp, addr, node, early);

	do {
		next = pmd_addr_end(addr, end);
		kasan_pte_populate(pmdp, addr, next, node, early);
	} while (pmdp++, addr = next, addr != end && pmd_none(READ_ONCE(*pmdp)));
}
Example #14
0
static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
			unsigned long long start, u64 size)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	unsigned long long addr = start, end = start + size;
	u64 next;

	while (addr < end) {
		pgd = pgdp + pgd_index(addr);
		pud = pud_offset(pgd, addr);
		if (pud_none(*pud)) {
			addr = pud_addr_end(addr, end);
			continue;
		}

		pmd = pmd_offset(pud, addr);
		if (pmd_none(*pmd)) {
			addr = pmd_addr_end(addr, end);
			continue;
		}

		pte = pte_offset_kernel(pmd, addr);
		clear_pte_entry(kvm, pte, addr);
		next = addr + PAGE_SIZE;

		/* If we emptied the pte, walk back up the ladder */
		if (page_empty(pte)) {
			clear_pmd_entry(kvm, pmd, addr);
			next = pmd_addr_end(addr, end);
			if (page_empty(pmd) && !page_empty(pud)) {
				clear_pud_entry(kvm, pud, addr);
				next = pud_addr_end(addr, end);
			}
		}

		addr = next;
	}
}
Example #15
0
static void alloc_init_pmd(struct mm_struct *mm, pud_t *pud,
				  unsigned long addr, unsigned long end,
				  phys_addr_t phys, pgprot_t prot,
				  void *(*alloc)(unsigned long size))
{
	pmd_t *pmd;
	unsigned long next;

	/*
	 * Check for initial section mappings in the pgd/pud and remove them.
	 */
	if (pud_none(*pud) || pud_sect(*pud)) {
		pmd = alloc(PTRS_PER_PMD * sizeof(pmd_t));
		if (pud_sect(*pud)) {
			/*
			 * need to have the 1G of mappings continue to be
			 * present
			 */
			split_pud(pud, pmd);
		}
		pud_populate(mm, pud, pmd);
		flush_tlb_all();
	}
	BUG_ON(pud_bad(*pud));

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		/* try section mapping first */
		if (((addr | next | phys) & ~SECTION_MASK) == 0) {
			pmd_t old_pmd =*pmd;
			set_pmd(pmd, __pmd(phys |
					   pgprot_val(mk_sect_prot(prot))));
			/*
			 * Check for previous table entries created during
			 * boot (__create_page_tables) and flush them.
			 */
			if (!pmd_none(old_pmd)) {
				flush_tlb_all();
				if (pmd_table(old_pmd)) {
					phys_addr_t table = __pa(pte_offset_map(&old_pmd, 0));
					if (!WARN_ON_ONCE(slab_is_available()))
						memblock_free(table, PAGE_SIZE);
				}
			}
		} else {
			alloc_init_pte(pmd, addr, next, __phys_to_pfn(phys),
				       prot, alloc);
		}
		phys += next - addr;
	} while (pmd++, addr = next, addr != end);
}
Example #16
0
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (pmd_none_or_clear_bad(pmd))
			continue;
		vunmap_pte_range(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);
}
Example #17
0
static inline unsigned long msync_pmd_range(struct vm_area_struct *vma,
			pud_t *pud, unsigned long addr, unsigned long end)
{
	pmd_t *pmd;
	unsigned long next;
	unsigned long ret = 0;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (pmd_none_or_clear_bad(pmd))
			continue;
		ret += msync_pte_range(vma, pmd, addr, next);
	} while (pmd++, addr = next, addr != end);
	return ret;
}
Example #18
0
static void __init kasan_early_pmd_populate(pud_t *pud,
					unsigned long addr,
					unsigned long end)
{
	pmd_t *pmd;
	unsigned long next;

	if (pud_none(*pud))
		__pud_populate(pud, __pa_symbol(kasan_zero_pmd), PMD_TYPE_TABLE);

	pmd = pmd_offset_kimg(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		kasan_early_pte_populate(pmd, addr, next);
	} while (pmd++, addr = next, addr != end && pmd_none(*pmd));
}
Example #19
0
static unsigned long clear_pmd_range(struct vm_area_struct *vma, pud_t *pud,
				     unsigned long addr, unsigned long end)
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (pmd_none(*pmd))
			continue;
		next = clear_pte_range(vma, pmd, addr, next);
	} while (pmd++, addr = next, addr != end);

	return addr;
}
Example #20
0
static void __init kasan_early_pmd_populate(pud_t *pud,
					unsigned long addr,
					unsigned long end)
{
	pmd_t *pmd;
	unsigned long next;

	if (pud_none(*pud))
		pud_populate(&init_mm, pud, kasan_zero_pmd);

	pmd = pmd_offset_kimg(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		kasan_early_pte_populate(pmd, addr, next);
	} while (pmd++, addr = next, addr != end && pmd_none(*pmd));
}
Example #21
0
static inline int check_pmd_range(struct mm_struct *mm, pud_t *pud,
		unsigned long addr, unsigned long end, unsigned long *nodes)
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (pmd_none_or_clear_bad(pmd))
			continue;
		if (check_pte_range(mm, pmd, addr, next, nodes))
			return -EIO;
	} while (pmd++, addr = next, addr != end);
	return 0;
}
Example #22
0
static int vmap_pmd_range(pud_t *pud, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_alloc(&init_mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}
Example #23
0
static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
				unsigned long addr, unsigned long end,
				swp_entry_t entry, struct page *page)
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (pmd_none_or_clear_bad(pmd))
			continue;
		if (unuse_pte_range(vma, pmd, addr, next, entry, page))
			return 1;
	} while (pmd++, addr = next, addr != end);
	return 0;
}
Example #24
0
static inline int ioremap_pmd_range(pud_t *pud, unsigned long addr,
		unsigned long end, unsigned long phys_addr, pgprot_t prot)
{
	pmd_t *pmd;
	unsigned long next;

	phys_addr -= addr;
	pmd = pmd_alloc(&init_mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
		if (ioremap_pte_range(pmd, addr, next, phys_addr + addr, prot))
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}
Example #25
0
static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
			  struct mm_walk *walk)
{
	pmd_t *pmd;
	unsigned long next;
	int err = 0;

	pmd = pmd_offset(pud, addr);
	do {
again:
		next = pmd_addr_end(addr, end);
		if (pmd_none(*pmd)) {
			if (walk->pte_hole)
				err = walk->pte_hole(addr, next, walk);
			if (err)
				break;
			continue;
		}
		/*
		 * This implies that each ->pmd_entry() handler
		 * needs to know about pmd_trans_huge() pmds
		 */
		if (walk->pmd_entry)
			err = walk->pmd_entry(pmd, addr, next, walk);
		if (err)
			break;

		/*
		 * Check this here so we only break down trans_huge
		 * pages when we _need_ to
		 */
		if (!walk->pte_entry)
			continue;

		split_huge_page_pmd(walk->mm, pmd);
		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
			goto again;
		err = walk_pte_range(pmd, addr, next, walk);
		if (err)
			break;
	} while (pmd++, addr = next, addr != end);

	return err;
}
Example #26
0
File: gup.c Project: 1800alex/linux
static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
		int write, struct page **pages, int *nr)
{
	unsigned long next;
	pmd_t *pmdp;

	pmdp = pmd_offset(&pud, addr);
	do {
		pmd_t pmd = *pmdp;

		next = pmd_addr_end(addr, end);
		if (pmd_none(pmd))
			return 0;
		if (!gup_pte_range(pmd, addr, next, write, pages, nr))
			return 0;
	} while (pmdp++, addr = next, addr != end);

	return 1;
}
Example #27
0
static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
		int write, struct page **pages, int *nr)
{
	unsigned long next;
	pmd_t *pmdp;

	pmdp = pmd_offset(&pud, addr);
	do {
		pmd_t pmd = READ_ONCE(*pmdp);

		next = pmd_addr_end(addr, end);
		/*
		 * If we find a splitting transparent hugepage we
		 * return zero. That will result in taking the slow
		 * path which will call wait_split_huge_page()
		 * if the pmd is still in splitting state
		 */
		if (pmd_none(pmd) || pmd_trans_splitting(pmd))
			return 0;
		if (pmd_huge(pmd) || pmd_large(pmd)) {
			/*
			 * NUMA hinting faults need to be handled in the GUP
			 * slowpath for accounting purposes and so that they
			 * can be serialised against THP migration.
			 */
			if (pmd_numa(pmd))
				return 0;

			if (!gup_hugepte((pte_t *)pmdp, PMD_SIZE, addr, next,
					 write, pages, nr))
				return 0;
		} else if (is_hugepd(pmdp)) {
			if (!gup_hugepd((hugepd_t *)pmdp, PMD_SHIFT,
					addr, next, write, pages, nr))
				return 0;
		} else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
			return 0;
	} while (pmdp++, addr = next, addr != end);

	return 1;
}
Example #28
0
static void __init zero_pmd_populate(pud_t *pud, unsigned long addr,
				unsigned long end)
{
	pmd_t *pmd = pmd_offset(pud, addr);
	unsigned long next;

	do {
		next = pmd_addr_end(addr, end);

		if (IS_ALIGNED(addr, PMD_SIZE) && end - addr >= PMD_SIZE) {
			pmd_populate_kernel(&init_mm, pmd, kasan_zero_pte);
			continue;
		}

		if (pmd_none(*pmd)) {
			pmd_populate_kernel(&init_mm, pmd,
					early_alloc(PAGE_SIZE, NUMA_NO_NODE));
		}
		zero_pte_populate(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);
}
Example #29
0
static inline int remap_area_pmd(pgd_t *pgd, unsigned long addr,
				 unsigned long end, unsigned long phys_addr,
				 const struct mem_type *type)
{
	unsigned long next;
	pmd_t *pmd;
	int ret = 0;

	pmd = pmd_alloc(&init_mm, pgd, addr);
	if (!pmd)
		return -ENOMEM;

	do {
		next = pmd_addr_end(addr, end);
		ret = remap_area_pte(pmd, addr, next, phys_addr, type);
		if (ret)
			return ret;
		phys_addr += next - addr;
	} while (pmd++, addr = next, addr != end);
	return ret;
}
Example #30
0
static void idmap_add_pmd(pud_t *pud, unsigned long addr, unsigned long end,
	unsigned long prot)
{
	pmd_t *pmd;
	unsigned long next;

	if (pud_none_or_clear_bad(pud) || (pud_val(*pud) & L_PGD_SWAPPER)) {
		pmd = pmd_alloc_one(NULL, addr);
		if (!pmd) {
			pr_warning("Failed to allocate identity pmd.\n");
			return;
		}
		pud_populate(NULL, pud, pmd);
		pmd += pmd_index(addr);
	} else
		pmd = pmd_offset(pud, addr);

	do {
		next = pmd_addr_end(addr, end);
		*pmd = __pmd((addr & PMD_MASK) | prot);
		flush_pmd_entry(pmd);
	} while (pmd++, addr = next, addr != end);
}