// Called when a vendor command is received
//
uint8 handleVendorCommand(uint8 cmd) {
	if (handleUVCCommand(cmd))
            return true;
	if (handleCDCCommand(cmd))
            return true;


	switch(cmd) {

	// Set various mode bits, or fetch status information
	//
	case CMD_MODE_STATUS:
		if ( SETUP_TYPE == (REQDIR_HOSTTODEVICE | REQTYPE_VENDOR) ) {
			const __xdata uint16 param = SETUP_VALUE();
			const __xdata uint8 value = SETUPDAT[4];
			if ( param == FIFO_MODE ) {
				// Enable or disable FIFO mode
				fifoSetEnabled(value);
			} else {
				return false;
			}
		} else {
			// Get STATUS: return the diagnostic byte
			while ( EP0CS & bmEPBUSY );
			EP0BUF[0] = 'N';                     // Magic bytes (my cat's name)
			EP0BUF[1] = 'E';
			EP0BUF[2] = 'M';
			EP0BUF[3] = 'I';
			EP0BUF[4] = m_diagnosticCode;        // Last operation diagnostic code
			EP0BUF[5] = (IOA & bmBIT2) ? 0 : 1;  // Flags
			EP0BUF[6] = 0x11;                    // NeroProg endpoints
			EP0BUF[7] = 0x26;                    // CommFPGA endpoints
			EP0BUF[8] = 0xFF;                    // Firmware ID MSB
			EP0BUF[9] = 0xFF;                    // Firmware ID LSB
			EP0BUF[10] = (uint8)(DATE>>24);      // Version MSB
			EP0BUF[11] = (uint8)(DATE>>16);      // Version
			EP0BUF[12] = (uint8)(DATE>>8);       // Version
			EP0BUF[13] = (uint8)DATE;            // Version LSB
			EP0BUF[14] = 0x00;                   // Reserved
			EP0BUF[15] = 0x00;                   // Reserved
			
			// Return status packet to host
			EP0BCH = 0;
			SYNCDELAY;
			EP0BCL = 16;
		}
		return true;

	// Clock data into and out of the JTAG chain. Reads from EP2OUT and writes to EP4IN.
	//
	case CMD_PROG_CLOCK_DATA:
		if ( SETUP_TYPE == (REQDIR_HOSTTODEVICE | REQTYPE_VENDOR) ) {
			EP0BCL = 0x00;                                     // Allow host transfer in
			while ( EP0CS & bmEPBUSY );                        // Wait for data
			progShiftBegin(*((uint32 *)EP0BUF), (ProgOp)SETUPDAT[4], SETUPDAT[2]);  // Init numBits & flagByte
			return true;
			// Now that numBits & flagByte are set, this operation will continue in mainLoop()...
		}
		break;
		
	// Clock an (up to) 32-bit pattern LSB-first into TMS to change JTAG TAP states
	//
	case CMD_JTAG_CLOCK_FSM:
		if ( SETUP_TYPE == (REQDIR_HOSTTODEVICE | REQTYPE_VENDOR) ) {
			EP0BCL = 0x00;                                   // Allow host transfer in
			while ( EP0CS & bmEPBUSY );                      // Wait for data
			progClockFSM(*((uint32 *)EP0BUF), SETUPDAT[2]);  // Bit pattern, transitionCount
			return true;
		}
		break;
		
	// Execute a number of JTAG clocks.
	//
	case CMD_JTAG_CLOCK:
		if ( SETUP_TYPE == (REQDIR_HOSTTODEVICE | REQTYPE_VENDOR) ) {
			progClocks(*((uint32 *)(SETUPDAT+2)));
			return true;
		}
		break;

	// Set various mode bits, or fetch status information
	//
	case CMD_PORT_BIT_IO:
		if ( SETUP_TYPE == (REQDIR_DEVICETOHOST | REQTYPE_VENDOR) ) {
			const __xdata uint8 portNumber = SETUPDAT[2];
			const __xdata uint8 bitNumber = SETUPDAT[3];
			const __xdata uint8 drive = SETUPDAT[4];
			const __xdata uint8 high = SETUPDAT[5];
			if ( portNumber > 4 || bitNumber > 7 ) {
				return false;  // illegal port or bit
			}

			// Get the state of the port lines:
			while ( EP0CS & bmEPBUSY );
			EP0BUF[0] = portAccess(portNumber, (1<<bitNumber), drive, high);
			EP0BCH = 0;
			SYNCDELAY;
			EP0BCL = 1;
			return true;
		}
		break;

	case CMD_PORT_MAP:
		if ( SETUP_TYPE == (REQDIR_HOSTTODEVICE | REQTYPE_VENDOR) ) {
			__xdata uint8 patchClass = SETUPDAT[4];
			const __xdata uint8 patchPort = SETUPDAT[5];
			if ( patchClass == 0x00 ) {
				// Patch class zero is just an anchor for the less flexible Harvard architecture
				// micros like the AVR; since the FX2LP has a Von Neumann architecture it can
				// efficiently self-modify its code, so the port mapping can be done individually,
				// so there's no need for an anchor to group mapping operations together.
				return true;
			}
			patchClass--;
			if ( patchClass < 4 ) {
				const __xdata uint8 patchBit = SETUPDAT[2];
				livePatch(patchClass, 0x80 + (patchPort << 4) + patchBit);
			} else {
				livePatch(
					patchClass, 
					0x80 + (patchPort << 4)
				);
			}
			return true;
		}
		break;

	// Command to talk to the EEPROM
	//
	case CMD_READ_WRITE_EEPROM:
		if ( SETUP_TYPE == (REQDIR_DEVICETOHOST | REQTYPE_VENDOR) ) {
			// It's an IN operation - read from prom and send to host
			__xdata uint16 address = SETUP_VALUE();
			__xdata uint16 length = SETUP_LENGTH();
			__xdata uint16 chunkSize;
			__xdata uint8 i;
			while ( length ) {
				while ( EP0CS & bmEPBUSY );
				chunkSize = length < EP0BUF_SIZE ? length : EP0BUF_SIZE;
				for ( i = 0; i < chunkSize; i++ ) {
					EP0BUF[i] = 0x23;
				}
				promRead(SETUPDAT[4], address, chunkSize, EP0BUF);
				EP0BCH = 0;
				SYNCDELAY;
				EP0BCL = chunkSize;
				address += chunkSize;
				length -= chunkSize;
			}
		} else if ( SETUP_TYPE == (REQDIR_HOSTTODEVICE | REQTYPE_VENDOR) ) {
			// It's an OUT operation - read from host and send to prom
			__xdata uint16 address = SETUP_VALUE();
			__xdata uint16 length = SETUP_LENGTH();
			__xdata uint16 chunkSize;
			while ( length ) {
				EP0BCL = 0x00; // allow pc transfer in
				while ( EP0CS & bmEPBUSY ); // wait for data
				chunkSize = EP0BCL;
				promWrite(SETUPDAT[4], address, chunkSize, EP0BUF);
				address += chunkSize;
				length -= chunkSize;
			}
		}
		return true;
	}
	return false;  // unrecognised command
}
Example #2
0
// Called when a vendor command is received
//
uint8 handleVendorCommand(uint8 cmd) {
	switch(cmd) {

	// Set various mode bits, or fetch status information
	//
	case CMD_MODE_STATUS:
		if ( SETUP_TYPE == (REQDIR_HOSTTODEVICE | REQTYPE_VENDOR) ) {
			xdata uint16 wBits = SETUP_VALUE();
			xdata uint16 wMask = SETUP_INDEX();
			if ( wMask & MODE_FIFO ) {
				// Enable or disable FIFO mode
				fifoSetEnabled(wBits & MODE_FIFO ? true : false);
			} else {
				return false;
			}
		} else {
			// Get STATUS: return the diagnostic byte
			while ( EP0CS & bmEPBUSY );
			EP0BUF[0] = 'N';                     // Magic bytes (my cat's name)
			EP0BUF[1] = 'E';
			EP0BUF[2] = 'M';
			EP0BUF[3] = 'I';
			EP0BUF[4] = m_diagnosticCode;        // Last operation diagnostic code
			EP0BUF[5] = (IOA & bmBIT2) ? 0 : 1;  // Flags
			EP0BUF[6] = 0x11;                    // NeroProg endpoints
			EP0BUF[7] = 0x26;                    // CommFPGA endpoints
			EP0BUF[8] = 0x00;                    // Reserved
			EP0BUF[9] = 0x00;                    // Reserved
			EP0BUF[10] = 0x00;                   // Reserved
			EP0BUF[11] = 0x00;                   // Reserved
			EP0BUF[12] = 0x00;                   // Reserved
			EP0BUF[13] = 0x00;                   // Reserved
			EP0BUF[14] = 0x00;                   // Reserved
			EP0BUF[15] = 0x00;                   // Reserved
			
			// Return status packet to host
			EP0BCH = 0;
			SYNCDELAY;
			EP0BCL = 16;
		}
		return true;

	// Clock data into and out of the JTAG chain. Reads from EP2OUT and writes to EP4IN.
	//
	case CMD_JTAG_CLOCK_DATA:
		if ( SETUP_TYPE == (REQDIR_HOSTTODEVICE | REQTYPE_VENDOR) ) {
			EP0BCL = 0x00;                                     // Allow host transfer in
			while ( EP0CS & bmEPBUSY );                        // Wait for data
			progShiftBegin(*((uint32 *)EP0BUF), (ProgOp)SETUPDAT[4], SETUPDAT[2]);  // Init numBits & flagByte
			return true;
			// Now that numBits & flagByte are set, this operation will continue in mainLoop()...
		}
		break;
		
	// Clock an (up to) 32-bit pattern LSB-first into TMS to change JTAG TAP states
	//
	case CMD_JTAG_CLOCK_FSM:
		if ( SETUP_TYPE == (REQDIR_HOSTTODEVICE | REQTYPE_VENDOR) ) {
			EP0BCL = 0x00;                                   // Allow host transfer in
			while ( EP0CS & bmEPBUSY );                      // Wait for data
			progClockFSM(*((uint32 *)EP0BUF), SETUPDAT[2]);  // Bit pattern, transitionCount
			return true;
		}
		break;
		
	// Execute a number of JTAG clocks.
	//
	case CMD_JTAG_CLOCK:
		if ( SETUP_TYPE == (REQDIR_HOSTTODEVICE | REQTYPE_VENDOR) ) {
			progClocks(*((uint32 *)(SETUPDAT+2)));
			return true;
		}
		break;

	// Set various mode bits, or fetch status information
	//
	case CMD_PORT_IO:
		if ( SETUP_TYPE == (REQDIR_DEVICETOHOST | REQTYPE_VENDOR) ) {
			const xdata uint8 portSelect = SETUPDAT[4];
			const xdata uint8 mask = SETUPDAT[5];
			xdata uint8 ddrWrite = SETUPDAT[2];
			xdata uint8 portWrite = SETUPDAT[3];

			//usartSendString("Got: ");
			//usartSendByteHex(portSelect);
			//usartSendByteHex(mask);
			//usartSendByteHex(ddrWrite);
			//usartSendByteHex(portWrite);
			//usartSendByte('\r');

			if ( portSelect > 4 ) {
				return false;  // illegal port
			}
			portWrite &= mask;
			ddrWrite &= mask;

			// Get the state of the port lines:
			while ( EP0CS & bmEPBUSY );
			EP0BUF[0] = portAccess(portSelect, mask, ddrWrite, portWrite);
			EP0BCH = 0;
			SYNCDELAY;
			EP0BCL = 1;
			return true;
		}
		break;

	case CMD_PORT_MAP:
		if ( SETUP_TYPE == (REQDIR_HOSTTODEVICE | REQTYPE_VENDOR) ) {
			const xdata uint8 patchClass = SETUPDAT[4];
			const xdata uint8 patchPort = SETUPDAT[5];
			if ( patchClass < 4 ) {
				const xdata uint8 patchBit = SETUPDAT[2];
				livePatch(patchClass, 0x80 + (patchPort << 4) + patchBit);
			} else {
				livePatch(
					patchClass, 
					0x80 + (patchPort << 4)
				);
			}
			return true;
		}
		break;

	// Command to talk to the EEPROM
	//
	case CMD_READ_WRITE_EEPROM:
		if ( SETUP_TYPE == (REQDIR_DEVICETOHOST | REQTYPE_VENDOR) ) {
			// It's an IN operation - read from prom and send to host
			xdata uint16 address = SETUP_VALUE();
			xdata uint16 length = SETUP_LENGTH();
			xdata uint16 chunkSize;
			xdata uint8 i;
			while ( length ) {
				while ( EP0CS & bmEPBUSY );
				chunkSize = length < EP0BUF_SIZE ? length : EP0BUF_SIZE;
				for ( i = 0; i < chunkSize; i++ ) {
					EP0BUF[i] = 0x23;
				}
				promRead(SETUPDAT[4], address, chunkSize, EP0BUF);
				EP0BCH = 0;
				SYNCDELAY;
				EP0BCL = chunkSize;
				address += chunkSize;
				length -= chunkSize;
			}
		} else if ( SETUP_TYPE == (REQDIR_HOSTTODEVICE | REQTYPE_VENDOR) ) {
			// It's an OUT operation - read from host and send to prom
			xdata uint16 address = SETUP_VALUE();
			xdata uint16 length = SETUP_LENGTH();
			xdata uint16 chunkSize;
			while ( length ) {
				EP0BCL = 0x00; // allow pc transfer in
				while ( EP0CS & bmEPBUSY ); // wait for data
				chunkSize = EP0BCL;
				promWrite(SETUPDAT[4], address, chunkSize, EP0BUF);
				address += chunkSize;
				length -= chunkSize;
			}
		}
		return true;
	}
	return false;  // unrecognised command
}