Example #1
0
int
at_control(struct socket *so, u_long cmd, caddr_t data,
           struct ifnet *ifp, struct thread *td )
{
    struct ifreq	*ifr = (struct ifreq *)data;
    struct sockaddr_at	*sat;
    struct netrange	*nr;
    struct at_aliasreq	*ifra = (struct at_aliasreq *)data;
    struct at_ifaddr	*aa0;
    struct at_ifaddr	*aa = 0;
    struct ifaddr	*ifa, *ifa0;
    int error;

    /*
     * If we have an ifp, then find the matching at_ifaddr if it exists
     */
    if ( ifp ) {
        for ( aa = at_ifaddr; aa; aa = aa->aa_next ) {
            if ( aa->aa_ifp == ifp ) break;
        }
    }

    /*
     * In this first switch table we are basically getting ready for
     * the second one, by getting the atalk-specific things set up
     * so that they start to look more similar to other protocols etc.
     */

    switch ( cmd ) {
    case SIOCAIFADDR:
    case SIOCDIFADDR:
        /*
         * If we have an appletalk sockaddr, scan forward of where
         * we are now on the at_ifaddr list to find one with a matching
         * address on this interface.
         * This may leave aa pointing to the first address on the
         * NEXT interface!
         */
        if ( ifra->ifra_addr.sat_family == AF_APPLETALK ) {
            for ( ; aa; aa = aa->aa_next ) {
                if ( aa->aa_ifp == ifp &&
                        sateqaddr( &aa->aa_addr, &ifra->ifra_addr )) {
                    break;
                }
            }
        }
        /*
         * If we a retrying to delete an addres but didn't find such,
         * then rewurn with an error
         */
        if ( cmd == SIOCDIFADDR && aa == 0 ) {
            return( EADDRNOTAVAIL );
        }
    /*FALLTHROUGH*/

    case SIOCSIFADDR:
        /*
         * If we are not superuser, then we don't get to do these ops.
         */
        if (priv_check(td, PRIV_ROOT))
            return(EPERM);

        sat = satosat( &ifr->ifr_addr );
        nr = (struct netrange *)sat->sat_zero;
        if ( nr->nr_phase == 1 ) {
            /*
             * Look for a phase 1 address on this interface.
             * This may leave aa pointing to the first address on the
             * NEXT interface!
             */
            for ( ; aa; aa = aa->aa_next ) {
                if ( aa->aa_ifp == ifp &&
                        ( aa->aa_flags & AFA_PHASE2 ) == 0 ) {
                    break;
                }
            }
        } else {		/* default to phase 2 */
            /*
             * Look for a phase 2 address on this interface.
             * This may leave aa pointing to the first address on the
             * NEXT interface!
             */
            for ( ; aa; aa = aa->aa_next ) {
                if ( aa->aa_ifp == ifp && ( aa->aa_flags & AFA_PHASE2 )) {
                    break;
                }
            }
        }

        if ( ifp == 0 )
            panic( "at_control" );

        /*
         * If we failed to find an existing at_ifaddr entry, then we
         * allocate a fresh one.
         */
        if ( aa == NULL ) {
            aa0 = ifa_create(sizeof(struct at_ifaddr), M_WAITOK);
            callout_init(&aa0->aa_ch);
            if (( aa = at_ifaddr ) != NULL ) {
                /*
                 * Don't let the loopback be first, since the first
                 * address is the machine's default address for
                 * binding.
                 * If it is, stick ourself in front, otherwise
                 * go to the back of the list.
                 */
                if ( at_ifaddr->aa_ifp->if_flags & IFF_LOOPBACK ) {
                    aa = aa0;
                    aa->aa_next = at_ifaddr;
                    at_ifaddr = aa;
                } else {
                    for ( ; aa->aa_next; aa = aa->aa_next )
                        ;
                    aa->aa_next = aa0;
                }
            } else {
                at_ifaddr = aa0;
            }
            aa = aa0;

            /*
             * Find the end of the interface's addresses
             * and link our new one on the end
             */
            ifa = (struct ifaddr *)aa;
            ifa_iflink(ifa, ifp, 1);

            /*
             * As the at_ifaddr contains the actual sockaddrs,
             * and the ifaddr itself, link them al together correctly.
             */
            ifa->ifa_addr = (struct sockaddr *)&aa->aa_addr;
            ifa->ifa_dstaddr = (struct sockaddr *)&aa->aa_addr;
            ifa->ifa_netmask = (struct sockaddr *)&aa->aa_netmask;

            /*
             * Set/clear the phase 2 bit.
             */
            if ( nr->nr_phase == 1 ) {
                aa->aa_flags &= ~AFA_PHASE2;
            } else {
                aa->aa_flags |= AFA_PHASE2;
            }

            /*
             * and link it all together
             */
            aa->aa_ifp = ifp;
        } else {
            /*
             * If we DID find one then we clobber any routes dependent on it..
             */
            at_scrub( ifp, aa );
        }
        break;

    case SIOCGIFADDR :
        sat = satosat( &ifr->ifr_addr );
        nr = (struct netrange *)sat->sat_zero;
        if ( nr->nr_phase == 1 ) {
            /*
             * If the request is specifying phase 1, then
             * only look at a phase one address
             */
            for ( ; aa; aa = aa->aa_next ) {
                if ( aa->aa_ifp == ifp &&
                        ( aa->aa_flags & AFA_PHASE2 ) == 0 ) {
                    break;
                }
            }
        } else {
            /*
             * default to phase 2
             */
            for ( ; aa; aa = aa->aa_next ) {
                if ( aa->aa_ifp == ifp && ( aa->aa_flags & AFA_PHASE2 )) {
                    break;
                }
            }
        }

        if ( aa == NULL )
            return( EADDRNOTAVAIL );
        break;
    }

    /*
     * By the time this switch is run we should be able to assume that
     * the "aa" pointer is valid when needed.
     */
    switch ( cmd ) {
    case SIOCGIFADDR:

        /*
         * copy the contents of the sockaddr blindly.
         */
        sat = (struct sockaddr_at *)&ifr->ifr_addr;
        *sat = aa->aa_addr;

        /*
         * and do some cleanups
         */
        ((struct netrange *)&sat->sat_zero)->nr_phase
            = (aa->aa_flags & AFA_PHASE2) ? 2 : 1;
        ((struct netrange *)&sat->sat_zero)->nr_firstnet = aa->aa_firstnet;
        ((struct netrange *)&sat->sat_zero)->nr_lastnet = aa->aa_lastnet;
        break;

    case SIOCSIFADDR:
        return( at_ifinit( ifp, aa, (struct sockaddr_at *)&ifr->ifr_addr ));

    case SIOCAIFADDR:
        if ( sateqaddr( &ifra->ifra_addr, &aa->aa_addr )) {
            return( 0 );
        }
        return( at_ifinit( ifp, aa, (struct sockaddr_at *)&ifr->ifr_addr ));

    case SIOCDIFADDR:
        /*
         * scrub all routes.. didn't we just DO this? XXX yes, del it
         */
        at_scrub( ifp, aa );

        /*
         * remove the ifaddr from the interface
         */
        ifa0 = (struct ifaddr *)aa;
        ifa_ifunlink(ifa0, ifp);

        /*
         * Now remove the at_ifaddr from the parallel structure
         * as well, or we'd be in deep trouble
         */
        aa0 = aa;
        if ( aa0 == ( aa = at_ifaddr )) {
            at_ifaddr = aa->aa_next;
        } else {
            while ( aa->aa_next && ( aa->aa_next != aa0 )) {
                aa = aa->aa_next;
            }

            /*
             * if we found it, remove it, otherwise we screwed up.
             */
            if ( aa->aa_next ) {
                aa->aa_next = aa0->aa_next;
            } else {
                panic( "at_control" );
            }
        }

        /*
         * Now dump the memory we were using.
         * Decrement the reference count.
         * This should probably be the last reference
         * as the count will go from 1 to 0.
         * (unless there is still a route referencing this)
         */
        ifa_destroy(ifa0);
        break;

    default:
        if ( ifp == 0 || ifp->if_ioctl == 0 )
            return( EOPNOTSUPP );
        ifnet_serialize_all(ifp);
        error = ifp->if_ioctl(ifp, cmd, data, td->td_proc->p_ucred);
        ifnet_deserialize_all(ifp);
        return (error);
    }
    return( 0 );
}
Example #2
0
File: tty.c Project: Zeke-OS/zeke
struct tty * tty_alloc(const char * drv_name, dev_t dev_id,
                       const char * dev_name, size_t data_size)
{
    struct dev_info * dev;
    struct tty * tty;

    dev = kzalloc(sizeof(struct dev_info) + sizeof(struct tty) + data_size);
    if (!dev)
        return NULL;
    tty = (struct tty *)((uintptr_t)dev + sizeof(struct dev_info));

    dev->dev_id = dev_id;
    dev->drv_name = drv_name;
    strlcpy(dev->dev_name, dev_name, sizeof(dev->dev_name));
    dev->flags = DEV_FLAGS_MB_READ | DEV_FLAGS_WR_BT_MASK;
    dev->block_size = 1;
    dev->read = tty_read;
    dev->write = tty_write;
    dev->lseek = tty_lseek;
    dev->open_callback = tty_open_callback;
    dev->close_callback = tty_close_callback;
    dev->ioctl = tty_ioctl;
    dev->opt_data = tty;
    /*
     * Linux defaults:
     * tty->conf.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK | ECHOCTL |
     *                     ECHOKE | IEXTEN;
     */
    /*
     * TODO termios support
     * *supported now*
     * iflags: -
     * oflags: -
     * cflags: -
     * lfags: -
     */

    /* TODO Better winsize support. */
    tty->winsize = (struct winsize){
        .ws_row = 24,
        .ws_col = 80,
        .ws_xpixel = 0,
        .ws_ypixel = 0,
    };

    return tty;
}

void tty_free(struct tty * tty)
{
    struct dev_info * dev;

    dev = (struct dev_info *)((uintptr_t)tty - sizeof(struct dev_info));
    KASSERT(dev->opt_data == tty, "opt_data changed or invalid tty");

    kfree(dev);
}

struct dev_info * tty_get_dev(struct tty * tty)
{
    return (struct dev_info *)((uintptr_t)tty - sizeof(struct dev_info));
}

int make_ttydev(struct tty * tty)
{
    struct dev_info * dev;
    vnode_t * vn;

    dev = (struct dev_info *)((uintptr_t)tty - sizeof(struct dev_info));
    KASSERT(dev->opt_data == tty, "opt_data changed or invalid tty");

    if (tty->tty_vn != NULL) {
        KERROR(KERROR_ERR, "A device file is already created for this tty\n");
        return -EMLINK;
    }

    if (make_dev(dev, 0, 0, 0666, &vn)) {
        KERROR(KERROR_ERR, "Failed to make a tty dev.\n");
        return -ENODEV;
    }
    tty->tty_vn = vn;

    return 0;
}

void destroy_ttydev(struct tty * tty)
{
    struct dev_info * dev;

    dev = (struct dev_info *)((uintptr_t)tty - sizeof(struct dev_info));
    KASSERT(dev->opt_data == tty, "opt_data changed or invalid tty");

    destroy_dev(tty->tty_vn);
}

static ssize_t tty_read(struct dev_info * devnfo, off_t blkno, uint8_t * buf,
                        size_t bcount, int oflags)
{
    struct tty * tty = (struct tty *)devnfo->opt_data;

    KASSERT(tty, "opt_data should have a tty");

    return tty->read(tty, blkno, buf, bcount, oflags);
}

static ssize_t tty_write(struct dev_info * devnfo, off_t blkno, uint8_t * buf,
                         size_t bcount, int oflags)
{
    struct tty * tty = (struct tty *)devnfo->opt_data;
    ssize_t retval;

    KASSERT(tty, "opt_data should have a tty");

    retval = tty->write(tty, blkno, buf, bcount, oflags);
    if (retval > 0) {
        off_t n = tty->write_count + retval;
        tty->write_count = (n < 0) ? -n : n;
    }

    return retval;
}

static off_t tty_lseek(file_t * file, struct dev_info * devnfo, off_t offset,
                       int whence)
{
    struct tty * tty = (struct tty *)devnfo->opt_data;

    /*
     * Many unices will return the number of written characters if whence is
     * SEEK_SET and the file is a tty, and some will return -ESPIPE. We support
     * the write count.
     */
    if (whence == SEEK_SET)
        return tty->write_count;

    /*
     * Some drivers may use seek_pos as an index variable and on this kernel
     * we promise to return it if lseek is called with offset zero and SEEK_CUR
     * set as a whence.
     */
    if (offset == 0 && whence == SEEK_CUR)
        return file->seek_pos;

    return -ESPIPE;
}

static void tty_open_callback(struct proc_info * p, file_t * file,
                              struct dev_info * devnfo)
{
    struct tty * tty = (struct tty *)devnfo->opt_data;

    KASSERT(tty, "opt_data should have a tty");

    if (tty->open_callback)
        tty->open_callback(file, tty);
}

static void tty_close_callback(struct proc_info * p, file_t * file,
                               struct dev_info * devnfo)
{
    struct tty * tty = (struct tty *)devnfo->opt_data;

    KASSERT(tty, "opt_data should have a tty");

    if (tty->close_callback)
        tty->close_callback(file, tty);
}

static int tty_ioctl(struct dev_info * devnfo, uint32_t request,
                     void * arg, size_t arg_len)
{
    int err;
    struct tty * tty = (struct tty *)(devnfo->opt_data);

    if (!tty)
        return -EINVAL;

    /*
     * First call ioctl of the device driver since it may override some ioctls
     * defined here.
     */
    if (tty->ioctl) {
        err = tty->ioctl(devnfo, request, arg, arg_len);
        if (err == 0 || err != -EINVAL)
            return err;
    } /* otherwise check if we can handle it here */

    switch (request) {
    case IOCTL_GTERMIOS:
        if (arg_len < sizeof(struct termios))
            return -EINVAL;

        memcpy(arg, &(tty->conf), sizeof(struct termios));
        break;

    case IOCTL_STERMIOS:
        if (arg_len < sizeof(struct termios))
            return -EINVAL;

        err = priv_check(&curproc->cred, PRIV_TTY_SETA);
        if (err)
            return err;

        memcpy(&(tty->conf), arg, sizeof(struct termios));
        tty->setconf(&tty->conf);
        break;

    case IOCTL_TIOCGWINSZ:
        if (arg_len < sizeof(struct winsize))
            return -EINVAL;

        memcpy(arg, &(tty->winsize), sizeof(struct winsize));
        break;

    case IOCTL_TIOCSWINSZ:
        if (arg_len < sizeof(struct winsize))
            return -EINVAL;

        memcpy(&(tty->winsize), arg, sizeof(struct winsize));
        break;

    /*
     * This should be probably overriden and "optimized" in
     * the low level driver. Also if there is any muxing on
     * any lower level flush may do stupid things if done
     * by this function.
     */
    case IOCTL_TTYFLUSH:
        if (arg_len < sizeof(int)) {
            return -EINVAL;
        } else {
            int control = (int)arg;
            uint8_t buf[5];

            switch (control) {
            case TCIFLUSH:
                while (tty->read(tty, 0, buf, sizeof(buf), O_NONBLOCK) >= 0);
                break;
            default:
                return -EINVAL;
            }
        }
        break;

    case IOCTL_TCSBRK:
        /* NOP */
        break;

    default:
        return -EINVAL;
    }

    return 0;
}
Example #3
0
static int
ugen_ioctl_post(struct usb_fifo *f, u_long cmd, void *addr, int fflags)
{
	union {
		struct usb_interface_descriptor *idesc;
		struct usb_alt_interface *ai;
		struct usb_device_descriptor *ddesc;
		struct usb_config_descriptor *cdesc;
		struct usb_device_stats *stat;
		struct usb_fs_init *pinit;
		struct usb_fs_uninit *puninit;
		uint32_t *ptime;
		void   *addr;
		int    *pint;
	}     u;
	struct usb_device_descriptor *dtemp;
	struct usb_config_descriptor *ctemp;
	struct usb_interface *iface;
	int error = 0;
	uint8_t n;

	u.addr = addr;

	DPRINTFN(6, "cmd=0x%08lx\n", cmd);

	switch (cmd) {
	case USB_DISCOVER:
		usb_needs_explore_all();
		break;

	case USB_SETDEBUG:
		if (!(fflags & FWRITE)) {
			error = EPERM;
			break;
		}
		usb_debug = *(int *)addr;
		break;

	case USB_GET_CONFIG:
		*(int *)addr = f->udev->curr_config_index;
		break;

	case USB_SET_CONFIG:
		if (!(fflags & FWRITE)) {
			error = EPERM;
			break;
		}
		error = ugen_set_config(f, *(int *)addr);
		break;

	case USB_GET_ALTINTERFACE:
		iface = usbd_get_iface(f->udev,
		    u.ai->uai_interface_index);
		if (iface && iface->idesc) {
			u.ai->uai_alt_index = iface->alt_index;
		} else {
			error = EINVAL;
		}
		break;

	case USB_SET_ALTINTERFACE:
		if (!(fflags & FWRITE)) {
			error = EPERM;
			break;
		}
		error = ugen_set_interface(f,
		    u.ai->uai_interface_index, u.ai->uai_alt_index);
		break;

	case USB_GET_DEVICE_DESC:
		dtemp = usbd_get_device_descriptor(f->udev);
		if (!dtemp) {
			error = EIO;
			break;
		}
		*u.ddesc = *dtemp;
		break;

	case USB_GET_CONFIG_DESC:
		ctemp = usbd_get_config_descriptor(f->udev);
		if (!ctemp) {
			error = EIO;
			break;
		}
		*u.cdesc = *ctemp;
		break;

	case USB_GET_FULL_DESC:
		error = ugen_get_cdesc(f, addr);
		break;

	case USB_GET_STRING_DESC:
		error = ugen_get_sdesc(f, addr);
		break;

	case USB_GET_IFACE_DRIVER:
		error = ugen_get_iface_driver(f, addr);
		break;

	case USB_REQUEST:
	case USB_DO_REQUEST:
		if (!(fflags & FWRITE)) {
			error = EPERM;
			break;
		}
		error = ugen_do_request(f, addr);
		break;

	case USB_DEVICEINFO:
	case USB_GET_DEVICEINFO:
		error = usb_gen_fill_deviceinfo(f, addr);
		break;

	case USB_DEVICESTATS:
		for (n = 0; n != 4; n++) {

			u.stat->uds_requests_fail[n] =
			    f->udev->bus->stats_err.uds_requests[n];

			u.stat->uds_requests_ok[n] =
			    f->udev->bus->stats_ok.uds_requests[n];
		}
		break;

	case USB_DEVICEENUMERATE:
		error = ugen_re_enumerate(f);
		break;

	case USB_GET_PLUGTIME:
		*u.ptime = f->udev->plugtime;
		break;

	case USB_CLAIM_INTERFACE:
	case USB_RELEASE_INTERFACE:
		/* TODO */
		break;

	case USB_IFACE_DRIVER_ACTIVE:

		n = *u.pint & 0xFF;

		iface = usbd_get_iface(f->udev, n);

		if (iface && iface->subdev)
			error = 0;
		else
			error = ENXIO;
		break;

	case USB_IFACE_DRIVER_DETACH:

		error = priv_check(curthread, PRIV_DRIVER);

		if (error)
			break;

		n = *u.pint & 0xFF;

		if (n == USB_IFACE_INDEX_ANY) {
			error = EINVAL;
			break;
		}

		/*
		 * Detach the currently attached driver.
		 */
		usb_detach_device(f->udev, n, 0);

		/*
		 * Set parent to self, this should keep attach away
		 * until the next set configuration event.
		 */
		usbd_set_parent_iface(f->udev, n, n);
		break;

	case USB_SET_POWER_MODE:
		error = ugen_set_power_mode(f, *u.pint);
		break;

	case USB_GET_POWER_MODE:
		*u.pint = ugen_get_power_mode(f);
		break;

	case USB_GET_POWER_USAGE:
		*u.pint = ugen_get_power_usage(f);
		break;

	case USB_SET_PORT_ENABLE:
		error = ugen_do_port_feature(f,
		    *u.pint, 1, UHF_PORT_ENABLE);
		break;

	case USB_SET_PORT_DISABLE:
		error = ugen_do_port_feature(f,
		    *u.pint, 0, UHF_PORT_ENABLE);
		break;

	case USB_FS_INIT:
		/* verify input parameters */
		if (u.pinit->pEndpoints == NULL) {
			error = EINVAL;
			break;
		}
		if (u.pinit->ep_index_max > 127) {
			error = EINVAL;
			break;
		}
		if (u.pinit->ep_index_max == 0) {
			error = EINVAL;
			break;
		}
		if (f->fs_xfer != NULL) {
			error = EBUSY;
			break;
		}
		if (f->dev_ep_index != 0) {
			error = EINVAL;
			break;
		}
		if (ugen_fifo_in_use(f, fflags)) {
			error = EBUSY;
			break;
		}
		error = usb_fifo_alloc_buffer(f, 1, u.pinit->ep_index_max);
		if (error) {
			break;
		}
		f->fs_xfer = malloc(sizeof(f->fs_xfer[0]) *
		    u.pinit->ep_index_max, M_USB, M_WAITOK | M_ZERO);
		if (f->fs_xfer == NULL) {
			usb_fifo_free_buffer(f);
			error = ENOMEM;
			break;
		}
		f->fs_ep_max = u.pinit->ep_index_max;
		f->fs_ep_ptr = u.pinit->pEndpoints;
		break;

	case USB_FS_UNINIT:
		if (u.puninit->dummy != 0) {
			error = EINVAL;
			break;
		}
		error = ugen_fs_uninit(f);
		break;

	default:
		mtx_lock(f->priv_mtx);
		error = ugen_iface_ioctl(f, cmd, addr, fflags);
		mtx_unlock(f->priv_mtx);
		break;
	}
	DPRINTFN(6, "error=%d\n", error);
	return (error);
}
Example #4
0
/* ARGSUSED */
int
sys_auditctl(struct thread *td, struct auditctl_args *uap)
{
	struct nameidata nd;
	struct ucred *cred;
	struct vnode *vp;
	int error = 0;
	int flags, vfslocked;

	if (jailed(td->td_ucred))
		return (ENOSYS);
	error = priv_check(td, PRIV_AUDIT_CONTROL);
	if (error)
		return (error);

	vp = NULL;
	cred = NULL;

	/*
	 * If a path is specified, open the replacement vnode, perform
	 * validity checks, and grab another reference to the current
	 * credential.
	 *
	 * On Darwin, a NULL path argument is also used to disable audit.
	 */
	if (uap->path == NULL)
		return (EINVAL);

	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | MPSAFE | AUDITVNODE1,
	    UIO_USERSPACE, uap->path, td);
	flags = AUDIT_OPEN_FLAGS;
	error = vn_open(&nd, &flags, 0, NULL);
	if (error)
		return (error);
	vfslocked = NDHASGIANT(&nd);
	vp = nd.ni_vp;
#ifdef MAC
	error = mac_system_check_auditctl(td->td_ucred, vp);
	VOP_UNLOCK(vp, 0);
	if (error) {
		vn_close(vp, AUDIT_CLOSE_FLAGS, td->td_ucred, td);
		VFS_UNLOCK_GIANT(vfslocked);
		return (error);
	}
#else
	VOP_UNLOCK(vp, 0);
#endif
	NDFREE(&nd, NDF_ONLY_PNBUF);
	if (vp->v_type != VREG) {
		vn_close(vp, AUDIT_CLOSE_FLAGS, td->td_ucred, td);
		VFS_UNLOCK_GIANT(vfslocked);
		return (EINVAL);
	}
	VFS_UNLOCK_GIANT(vfslocked);
	cred = td->td_ucred;
	crhold(cred);

	/*
	 * XXXAUDIT: Should audit_suspended actually be cleared by
	 * audit_worker?
	 */
	audit_suspended = 0;

	audit_rotate_vnode(cred, vp);

	return (error);
}
Example #5
0
/*
 * Q_QUOTAON - set up a quota file for a particular filesystem.
 */
int
quotaon(struct thread *td, struct mount *mp, int type, void *fname)
{
    struct ufsmount *ump;
    struct vnode *vp, **vpp;
    struct vnode *mvp;
    struct dquot *dq;
    int error, flags;
    struct nameidata nd;

    error = priv_check(td, PRIV_UFS_QUOTAON);
    if (error != 0) {
        vfs_unbusy(mp);
        return (error);
    }

    if ((mp->mnt_flag & MNT_RDONLY) != 0) {
        vfs_unbusy(mp);
        return (EROFS);
    }

    ump = VFSTOUFS(mp);
    dq = NODQUOT;

    NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, fname, td);
    flags = FREAD | FWRITE;
    vfs_ref(mp);
    vfs_unbusy(mp);
    error = vn_open(&nd, &flags, 0, NULL);
    if (error != 0) {
        vfs_rel(mp);
        return (error);
    }
    NDFREE(&nd, NDF_ONLY_PNBUF);
    vp = nd.ni_vp;
    error = vfs_busy(mp, MBF_NOWAIT);
    vfs_rel(mp);
    if (error == 0) {
        if (vp->v_type != VREG) {
            error = EACCES;
            vfs_unbusy(mp);
        }
    }
    if (error != 0) {
        VOP_UNLOCK(vp, 0);
        (void) vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
        return (error);
    }

    UFS_LOCK(ump);
    if ((ump->um_qflags[type] & (QTF_OPENING|QTF_CLOSING)) != 0) {
        UFS_UNLOCK(ump);
        VOP_UNLOCK(vp, 0);
        (void) vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
        vfs_unbusy(mp);
        return (EALREADY);
    }
    ump->um_qflags[type] |= QTF_OPENING|QTF_CLOSING;
    UFS_UNLOCK(ump);
    if ((error = dqopen(vp, ump, type)) != 0) {
        VOP_UNLOCK(vp, 0);
        UFS_LOCK(ump);
        ump->um_qflags[type] &= ~(QTF_OPENING|QTF_CLOSING);
        UFS_UNLOCK(ump);
        (void) vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
        vfs_unbusy(mp);
        return (error);
    }
    VOP_UNLOCK(vp, 0);
    MNT_ILOCK(mp);
    mp->mnt_flag |= MNT_QUOTA;
    MNT_IUNLOCK(mp);

    vpp = &ump->um_quotas[type];
    if (*vpp != vp)
        quotaoff1(td, mp, type);

    /*
     * When the directory vnode containing the quota file is
     * inactivated, due to the shared lookup of the quota file
     * vput()ing the dvp, the qsyncvp() call for the containing
     * directory would try to acquire the quota lock exclusive.
     * At the same time, lookup already locked the quota vnode
     * shared.  Mark the quota vnode lock as allowing recursion
     * and automatically converting shared locks to exclusive.
     *
     * Also mark quota vnode as system.
     */
    vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    vp->v_vflag |= VV_SYSTEM;
    VN_LOCK_AREC(vp);
    VN_LOCK_DSHARE(vp);
    VOP_UNLOCK(vp, 0);
    *vpp = vp;
    /*
     * Save the credential of the process that turned on quotas.
     * Set up the time limits for this quota.
     */
    ump->um_cred[type] = crhold(td->td_ucred);
    ump->um_btime[type] = MAX_DQ_TIME;
    ump->um_itime[type] = MAX_IQ_TIME;
    if (dqget(NULLVP, 0, ump, type, &dq) == 0) {
        if (dq->dq_btime > 0)
            ump->um_btime[type] = dq->dq_btime;
        if (dq->dq_itime > 0)
            ump->um_itime[type] = dq->dq_itime;
        dqrele(NULLVP, dq);
    }
    /*
     * Allow the getdq from getinoquota below to read the quota
     * from file.
     */
    UFS_LOCK(ump);
    ump->um_qflags[type] &= ~QTF_CLOSING;
    UFS_UNLOCK(ump);
    /*
     * Search vnodes associated with this mount point,
     * adding references to quota file being opened.
     * NB: only need to add dquot's for inodes being modified.
     */
again:
    MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
        if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK, td)) {
            MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
            goto again;
        }
        if (vp->v_type == VNON || vp->v_writecount == 0) {
            VOP_UNLOCK(vp, 0);
            vrele(vp);
            continue;
        }
        error = getinoquota(VTOI(vp));
        VOP_UNLOCK(vp, 0);
        vrele(vp);
        if (error) {
            MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
            break;
        }
    }

    if (error)
        quotaoff_inchange(td, mp, type);
    UFS_LOCK(ump);
    ump->um_qflags[type] &= ~QTF_OPENING;
    KASSERT((ump->um_qflags[type] & QTF_CLOSING) == 0,
            ("quotaon: leaking flags"));
    UFS_UNLOCK(ump);

    vfs_unbusy(mp);
    return (error);
}
Example #6
0
static int
cd9660_mount(struct mount *mp)
{
	struct vnode *devvp;
	struct thread *td;
	char *fspec;
	int error;
	accmode_t accmode;
	struct nameidata ndp;
	struct iso_mnt *imp = NULL;

	td = curthread;

	/*
	 * Unconditionally mount as read-only.
	 */
	MNT_ILOCK(mp);
	mp->mnt_flag |= MNT_RDONLY;
	MNT_IUNLOCK(mp);

	fspec = vfs_getopts(mp->mnt_optnew, "from", &error);
	if (error)
		return (error);

	imp = VFSTOISOFS(mp);

	if (mp->mnt_flag & MNT_UPDATE) {
		if (vfs_flagopt(mp->mnt_optnew, "export", NULL, 0))
			return (0);
	}
	/*
	 * Not an update, or updating the name: look up the name
	 * and verify that it refers to a sensible block device.
	 */
	NDINIT(&ndp, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, fspec, td);
	if ((error = namei(&ndp)))
		return (error);
	NDFREE(&ndp, NDF_ONLY_PNBUF);
	devvp = ndp.ni_vp;

	if (!vn_isdisk(devvp, &error)) {
		vput(devvp);
		return (error);
	}

	/*
	 * Verify that user has necessary permissions on the device,
	 * or has superuser abilities
	 */
	accmode = VREAD;
	error = VOP_ACCESS(devvp, accmode, td->td_ucred, td);
	if (error)
		error = priv_check(td, PRIV_VFS_MOUNT_PERM);
	if (error) {
		vput(devvp);
		return (error);
	}

	if ((mp->mnt_flag & MNT_UPDATE) == 0) {
		error = iso_mountfs(devvp, mp);
		if (error)
			vrele(devvp);
	} else {
		if (devvp != imp->im_devvp)
			error = EINVAL;	/* needs translation */
		vput(devvp);
	}
	if (error)
		return (error);
	vfs_mountedfrom(mp, fspec);
	return (0);
}
Example #7
0
static int
fuse_vfsop_mount(struct mount *mp)
{
	int err;

	uint64_t mntopts, __mntopts;
	int max_read_set;
	uint32_t max_read;
	int daemon_timeout;
	int fd;

	size_t len;

	struct cdev *fdev;
	struct fuse_data *data;
	struct thread *td;
	struct file *fp, *fptmp;
	char *fspec, *subtype;
	struct vfsoptlist *opts;

	subtype = NULL;
	max_read_set = 0;
	max_read = ~0;
	err = 0;
	mntopts = 0;
	__mntopts = 0;
	td = curthread;

	fuse_trace_printf_vfsop();

	if (mp->mnt_flag & MNT_UPDATE)
		return EOPNOTSUPP;

	mp->mnt_flag |= MNT_SYNCHRONOUS;
	mp->mnt_data = NULL;
	/* Get the new options passed to mount */
	opts = mp->mnt_optnew;

	if (!opts)
		return EINVAL;

	/* `fspath' contains the mount point (eg. /mnt/fuse/sshfs); REQUIRED */
	if (!vfs_getopts(opts, "fspath", &err))
		return err;

	/* `from' contains the device name (eg. /dev/fuse0); REQUIRED */
	fspec = vfs_getopts(opts, "from", &err);
	if (!fspec)
		return err;

	/* `fd' contains the filedescriptor for this session; REQUIRED */
	if (vfs_scanopt(opts, "fd", "%d", &fd) != 1)
		return EINVAL;

	err = fuse_getdevice(fspec, td, &fdev);
	if (err != 0)
		return err;

	/*
         * With the help of underscored options the mount program
         * can inform us from the flags it sets by default
         */
	FUSE_FLAGOPT(allow_other, FSESS_DAEMON_CAN_SPY);
	FUSE_FLAGOPT(push_symlinks_in, FSESS_PUSH_SYMLINKS_IN);
	FUSE_FLAGOPT(default_permissions, FSESS_DEFAULT_PERMISSIONS);
	FUSE_FLAGOPT(no_attrcache, FSESS_NO_ATTRCACHE);
	FUSE_FLAGOPT(no_readahed, FSESS_NO_READAHEAD);
	FUSE_FLAGOPT(no_datacache, FSESS_NO_DATACACHE);
	FUSE_FLAGOPT(no_namecache, FSESS_NO_NAMECACHE);
	FUSE_FLAGOPT(no_mmap, FSESS_NO_MMAP);
	FUSE_FLAGOPT(brokenio, FSESS_BROKENIO);

	if (vfs_scanopt(opts, "max_read=", "%u", &max_read) == 1)
		max_read_set = 1;
	if (vfs_scanopt(opts, "timeout=", "%u", &daemon_timeout) == 1) {
		if (daemon_timeout < FUSE_MIN_DAEMON_TIMEOUT)
			daemon_timeout = FUSE_MIN_DAEMON_TIMEOUT;
		else if (daemon_timeout > FUSE_MAX_DAEMON_TIMEOUT)
			daemon_timeout = FUSE_MAX_DAEMON_TIMEOUT;
	} else {
		daemon_timeout = FUSE_DEFAULT_DAEMON_TIMEOUT;
	}
	subtype = vfs_getopts(opts, "subtype=", &err);

	FS_DEBUG2G("mntopts 0x%jx\n", (uintmax_t)mntopts);

	err = fget(td, fd, CAP_READ, &fp);
	if (err != 0) {
		FS_DEBUG("invalid or not opened device: data=%p\n", data);
		goto out;
	}
	fptmp = td->td_fpop;
	td->td_fpop = fp;
        err = devfs_get_cdevpriv((void **)&data);
	td->td_fpop = fptmp;
	fdrop(fp, td);
	FUSE_LOCK();
	if (err != 0 || data == NULL || data->mp != NULL) {
		FS_DEBUG("invalid or not opened device: data=%p data.mp=%p\n",
		    data, data != NULL ? data->mp : NULL);
		err = ENXIO;
		FUSE_UNLOCK();
		goto out;
	}
	if (fdata_get_dead(data)) {
		FS_DEBUG("device is dead during mount: data=%p\n", data);
		err = ENOTCONN;
		FUSE_UNLOCK();
		goto out;
	}
	/* Sanity + permission checks */
	if (!data->daemoncred)
		panic("fuse daemon found, but identity unknown");
	if (mntopts & FSESS_DAEMON_CAN_SPY)
		err = priv_check(td, PRIV_VFS_FUSE_ALLOWOTHER);
	if (err == 0 && td->td_ucred->cr_uid != data->daemoncred->cr_uid)
		/* are we allowed to do the first mount? */
		err = priv_check(td, PRIV_VFS_FUSE_MOUNT_NONUSER);
	if (err) {
		FUSE_UNLOCK();
		goto out;
	}
	/* We need this here as this slot is used by getnewvnode() */
	mp->mnt_stat.f_iosize = PAGE_SIZE;
	mp->mnt_data = data;
	data->ref++;
	data->mp = mp;
	data->dataflags |= mntopts;
	data->max_read = max_read;
	data->daemon_timeout = daemon_timeout;
#ifdef XXXIP
	if (!priv_check(td, PRIV_VFS_FUSE_SYNC_UNMOUNT))
		data->dataflags |= FSESS_CAN_SYNC_UNMOUNT;
#endif
	FUSE_UNLOCK();

	vfs_getnewfsid(mp);
	mp->mnt_flag |= MNT_LOCAL;
	mp->mnt_kern_flag |= MNTK_MPSAFE;
	if (subtype) {
		strlcat(mp->mnt_stat.f_fstypename, ".", MFSNAMELEN);
		strlcat(mp->mnt_stat.f_fstypename, subtype, MFSNAMELEN);
	}
	copystr(fspec, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, &len);
	bzero(mp->mnt_stat.f_mntfromname + len, MNAMELEN - len);
	FS_DEBUG2G("mp %p: %s\n", mp, mp->mnt_stat.f_mntfromname);

	/* Now handshaking with daemon */
	fuse_internal_send_init(data, td);

out:
	if (err) {
		FUSE_LOCK();
		if (data->mp == mp) {
			/*
			 * Destroy device only if we acquired reference to
			 * it
			 */
			FS_DEBUG("mount failed, destroy device: data=%p mp=%p"
			      " err=%d\n",
			    data, mp, err);
			data->mp = NULL;
			fdata_trydestroy(data);
		}
		FUSE_UNLOCK();
		dev_rel(fdev);
	}
	return err;
}
Example #8
0
/*
 * mp - path - addr in user space of mount point (ie /usr or whatever)
 * data - addr in user space of mount params including the name of the block
 * special file to treat as a filesystem.
 */
static int
msdosfs_mount(struct mount *mp)
{
	struct vnode *devvp;	  /* vnode for blk device to mount */
	struct thread *td;
	/* msdosfs specific mount control block */
	struct msdosfsmount *pmp = NULL;
	struct nameidata ndp;
	int error, flags;
	accmode_t accmode;
	char *from;

	td = curthread;
	if (vfs_filteropt(mp->mnt_optnew, msdosfs_opts))
		return (EINVAL);

	/*
	 * If updating, check whether changing from read-only to
	 * read/write; if there is no device name, that's all we do.
	 */
	if (mp->mnt_flag & MNT_UPDATE) {
		pmp = VFSTOMSDOSFS(mp);
		if (vfs_flagopt(mp->mnt_optnew, "export", NULL, 0)) {
			/*
			 * Forbid export requests if filesystem has
			 * MSDOSFS_LARGEFS flag set.
			 */
			if ((pmp->pm_flags & MSDOSFS_LARGEFS) != 0) {
				vfs_mount_error(mp,
				    "MSDOSFS_LARGEFS flag set, cannot export");
				return (EOPNOTSUPP);
			}
		}
		if (!(pmp->pm_flags & MSDOSFSMNT_RONLY) &&
		    vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0)) {
			error = VFS_SYNC(mp, MNT_WAIT);
			if (error)
				return (error);
			flags = WRITECLOSE;
			if (mp->mnt_flag & MNT_FORCE)
				flags |= FORCECLOSE;
			error = vflush(mp, 0, flags, td);
			if (error)
				return (error);

			/*
			 * Now the volume is clean.  Mark it so while the
			 * device is still rw.
			 */
			error = markvoldirty(pmp, 0);
			if (error) {
				(void)markvoldirty(pmp, 1);
				return (error);
			}

			/* Downgrade the device from rw to ro. */
			DROP_GIANT();
			g_topology_lock();
			error = g_access(pmp->pm_cp, 0, -1, 0);
			g_topology_unlock();
			PICKUP_GIANT();
			if (error) {
				(void)markvoldirty(pmp, 1);
				return (error);
			}

			/*
			 * Backing out after an error was painful in the
			 * above.  Now we are committed to succeeding.
			 */
			pmp->pm_fmod = 0;
			pmp->pm_flags |= MSDOSFSMNT_RONLY;
			MNT_ILOCK(mp);
			mp->mnt_flag |= MNT_RDONLY;
			MNT_IUNLOCK(mp);
		} else if ((pmp->pm_flags & MSDOSFSMNT_RONLY) &&
		    !vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0)) {
			/*
			 * If upgrade to read-write by non-root, then verify
			 * that user has necessary permissions on the device.
			 */
			devvp = pmp->pm_devvp;
			vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
			error = VOP_ACCESS(devvp, VREAD | VWRITE,
			    td->td_ucred, td);
			if (error)
				error = priv_check(td, PRIV_VFS_MOUNT_PERM);
			if (error) {
				VOP_UNLOCK(devvp, 0);
				return (error);
			}
			VOP_UNLOCK(devvp, 0);
			DROP_GIANT();
			g_topology_lock();
			error = g_access(pmp->pm_cp, 0, 1, 0);
			g_topology_unlock();
			PICKUP_GIANT();
			if (error)
				return (error);

			pmp->pm_fmod = 1;
			pmp->pm_flags &= ~MSDOSFSMNT_RONLY;
			MNT_ILOCK(mp);
			mp->mnt_flag &= ~MNT_RDONLY;
			MNT_IUNLOCK(mp);

			/* Now that the volume is modifiable, mark it dirty. */
			error = markvoldirty(pmp, 1);
			if (error)
				return (error); 
		}
	}
	/*
	 * Not an update, or updating the name: look up the name
	 * and verify that it refers to a sensible disk device.
	 */
	if (vfs_getopt(mp->mnt_optnew, "from", (void **)&from, NULL))
		return (EINVAL);
	NDINIT(&ndp, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, from, td);
	error = namei(&ndp);
	if (error)
		return (error);
	devvp = ndp.ni_vp;
	NDFREE(&ndp, NDF_ONLY_PNBUF);

	if (!vn_isdisk(devvp, &error)) {
		vput(devvp);
		return (error);
	}
	/*
	 * If mount by non-root, then verify that user has necessary
	 * permissions on the device.
	 */
	accmode = VREAD;
	if ((mp->mnt_flag & MNT_RDONLY) == 0)
		accmode |= VWRITE;
	error = VOP_ACCESS(devvp, accmode, td->td_ucred, td);
	if (error)
		error = priv_check(td, PRIV_VFS_MOUNT_PERM);
	if (error) {
		vput(devvp);
		return (error);
	}
	if ((mp->mnt_flag & MNT_UPDATE) == 0) {
		error = mountmsdosfs(devvp, mp);
#ifdef MSDOSFS_DEBUG		/* only needed for the printf below */
		pmp = VFSTOMSDOSFS(mp);
#endif
	} else {
		vput(devvp);
		if (devvp != pmp->pm_devvp)
			return (EINVAL);	/* XXX needs translation */
	}
	if (error) {
		vrele(devvp);
		return (error);
	}

	error = update_mp(mp, td);
	if (error) {
		if ((mp->mnt_flag & MNT_UPDATE) == 0)
			msdosfs_unmount(mp, MNT_FORCE);
		return error;
	}

	if (devvp->v_type == VCHR && devvp->v_rdev != NULL)
		devvp->v_rdev->si_mountpt = mp;
	vfs_mountedfrom(mp, from);
#ifdef MSDOSFS_DEBUG
	printf("msdosfs_mount(): mp %p, pmp %p, inusemap %p\n", mp, pmp, pmp->pm_inusemap);
#endif
	return (0);
}
Example #9
0
int
udp6_output(struct in6pcb *in6p, struct mbuf *m, struct sockaddr *addr6,
	    struct mbuf *control, struct thread *td)
{
	u_int32_t ulen = m->m_pkthdr.len;
	u_int32_t plen = sizeof(struct udphdr) + ulen;
	struct ip6_hdr *ip6;
	struct udphdr *udp6;
	struct in6_addr *laddr, *faddr;
	u_short fport;
	int error = 0;
	struct ip6_pktopts opt, *stickyopt = in6p->in6p_outputopts;
	int priv;
	int hlen = sizeof(struct ip6_hdr);
	struct sockaddr_in6 tmp;

	priv = !priv_check(td, PRIV_ROOT);	/* 1 if privileged, 0 if not */
	if (control) {
		if ((error = ip6_setpktoptions(control, &opt,
		    in6p->in6p_outputopts, 
		    IPPROTO_UDP, priv)) != 0)
			goto release;
		in6p->in6p_outputopts = &opt;
	}

	if (addr6) {
		/*
		 * IPv4 version of udp_output calls in_pcbconnect in this case,
		 * which needs splnet and affects performance.
		 * Since we saw no essential reason for calling in_pcbconnect,
		 * we get rid of such kind of logic, and call in6_selectsrc
		 * and in6_pcbsetlport in order to fill in the local address
		 * and the local port.
		 */
		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr6;

		/* Caller should have rejected the v4-mapped address */
		KASSERT(!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr),
		    ("v4-mapped address"));

		if (sin6->sin6_port == 0) {
			error = EADDRNOTAVAIL;
			goto release;
		}

		if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) {
			/* how about ::ffff:0.0.0.0 case? */
			error = EISCONN;
			goto release;
		}
		if (!prison_remote_ip(td, addr6)) {
			error = EAFNOSUPPORT; /* IPv4 only jail */
			goto release;
		}

		/* protect *sin6 from overwrites */
		tmp = *sin6;
		sin6 = &tmp;

		faddr = &sin6->sin6_addr;
		fport = sin6->sin6_port; /* allow 0 port */

		/* KAME hack: embed scopeid */
		if (in6_embedscope(&sin6->sin6_addr, sin6, in6p, NULL) != 0) {
			error = EINVAL;
			goto release;
		}

		laddr = in6_selectsrc(sin6, in6p->in6p_outputopts,
				      in6p->in6p_moptions,
				      &in6p->in6p_route,
				      &in6p->in6p_laddr, &error, NULL);
		if (laddr == NULL) {
			if (error == 0)
				error = EADDRNOTAVAIL;
			goto release;
		}
		if (in6p->in6p_lport == 0 &&
		    (error = in6_pcbsetlport(laddr, in6p, td)) != 0)
			goto release;
	} else {
		if (IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) {
			error = ENOTCONN;
			goto release;
		}

		/* Connection to v4-mapped address should have been rejected */
		KASSERT(!IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr),
		    ("bound to v4-mapped address"));

		laddr = &in6p->in6p_laddr;
		faddr = &in6p->in6p_faddr;
		fport = in6p->in6p_fport;
	}

	/*
	 * Calculate data length and get a mbuf
	 * for UDP and IP6 headers.
	 */
	M_PREPEND(m, hlen + sizeof(struct udphdr), M_NOWAIT);
	if (m == NULL) {
		error = ENOBUFS;
		goto release;
	}

	/*
	 * Stuff checksum and output datagram.
	 */
	udp6 = (struct udphdr *)(mtod(m, caddr_t) + hlen);
	udp6->uh_sport = in6p->in6p_lport; /* lport is always set in the PCB */
	udp6->uh_dport = fport;
	if (plen <= 0xffff)
		udp6->uh_ulen = htons((u_short)plen);
	else
		udp6->uh_ulen = 0;
	udp6->uh_sum = 0;

	ip6 = mtod(m, struct ip6_hdr *);
	ip6->ip6_flow	= in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
	ip6->ip6_vfc 	&= ~IPV6_VERSION_MASK;
	ip6->ip6_vfc 	|= IPV6_VERSION;
#if 0				/* ip6_plen will be filled in ip6_output. */
	ip6->ip6_plen	= htons((u_short)plen);
#endif
	ip6->ip6_nxt	= IPPROTO_UDP;
	ip6->ip6_hlim	= in6_selecthlim(in6p,
					 in6p->in6p_route.ro_rt ?
					 in6p->in6p_route.ro_rt->rt_ifp : NULL);
	ip6->ip6_src	= *laddr;
	ip6->ip6_dst	= *faddr;

	if ((udp6->uh_sum = in6_cksum(m, IPPROTO_UDP,
			sizeof(struct ip6_hdr), plen)) == 0) {
		udp6->uh_sum = 0xffff;
	}

	udp6stat.udp6s_opackets++;
	error = ip6_output(m, in6p->in6p_outputopts, &in6p->in6p_route, 0,
	    in6p->in6p_moptions, NULL, in6p);
	goto releaseopt;

release:
	m_freem(m);

releaseopt:
	if (control) {
		ip6_clearpktopts(in6p->in6p_outputopts, -1);
		in6p->in6p_outputopts = stickyopt;
		m_freem(control);
	}
	return (error);
}
Example #10
0
int
thread_create(struct thread *td, struct rtprio *rtp,
    int (*initialize_thread)(struct thread *, void *), void *thunk)
{
	struct thread *newtd;
	struct proc *p;
	int error;

	p = td->td_proc;

	if (rtp != NULL) {
		switch(rtp->type) {
		case RTP_PRIO_REALTIME:
		case RTP_PRIO_FIFO:
			/* Only root can set scheduler policy */
			if (priv_check(td, PRIV_SCHED_SETPOLICY) != 0)
				return (EPERM);
			if (rtp->prio > RTP_PRIO_MAX)
				return (EINVAL);
			break;
		case RTP_PRIO_NORMAL:
			rtp->prio = 0;
			break;
		default:
			return (EINVAL);
		}
	}

#ifdef RACCT
	if (racct_enable) {
		PROC_LOCK(p);
		error = racct_add(p, RACCT_NTHR, 1);
		PROC_UNLOCK(p);
		if (error != 0)
			return (EPROCLIM);
	}
#endif

	/* Initialize our td */
	error = kern_thr_alloc(p, 0, &newtd);
	if (error)
		goto fail;

	cpu_copy_thread(newtd, td);

	bzero(&newtd->td_startzero,
	    __rangeof(struct thread, td_startzero, td_endzero));
	bcopy(&td->td_startcopy, &newtd->td_startcopy,
	    __rangeof(struct thread, td_startcopy, td_endcopy));
	newtd->td_proc = td->td_proc;
	newtd->td_rb_list = newtd->td_rbp_list = newtd->td_rb_inact = 0;
	thread_cow_get(newtd, td);

	error = initialize_thread(newtd, thunk);
	if (error != 0) {
		thread_cow_free(newtd);
		thread_free(newtd);
		goto fail;
	}

	PROC_LOCK(p);
	p->p_flag |= P_HADTHREADS;
	thread_link(newtd, p);
	bcopy(p->p_comm, newtd->td_name, sizeof(newtd->td_name));
	thread_lock(td);
	/* let the scheduler know about these things. */
	sched_fork_thread(td, newtd);
	thread_unlock(td);
	if (P_SHOULDSTOP(p))
		newtd->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
	if (p->p_ptevents & PTRACE_LWP)
		newtd->td_dbgflags |= TDB_BORN;

	PROC_UNLOCK(p);
#ifdef	HWPMC_HOOKS
	if (PMC_PROC_IS_USING_PMCS(p))
		PMC_CALL_HOOK(newtd, PMC_FN_THR_CREATE, NULL);
	else if (PMC_SYSTEM_SAMPLING_ACTIVE())
		PMC_CALL_HOOK_UNLOCKED(newtd, PMC_FN_THR_CREATE_LOG, NULL);
#endif

	tidhash_add(newtd);

	thread_lock(newtd);
	if (rtp != NULL) {
		if (!(td->td_pri_class == PRI_TIMESHARE &&
		      rtp->type == RTP_PRIO_NORMAL)) {
			rtp_to_pri(rtp, newtd);
			sched_prio(newtd, newtd->td_user_pri);
		} /* ignore timesharing class */
	}
	TD_SET_CAN_RUN(newtd);
	sched_add(newtd, SRQ_BORING);
	thread_unlock(newtd);

	return (0);

fail:
#ifdef RACCT
	if (racct_enable) {
		PROC_LOCK(p);
		racct_sub(p, RACCT_NTHR, 1);
		PROC_UNLOCK(p);
	}
#endif
	return (error);
}
Example #11
0
/*
 * Generic internet control operations (ioctl's).
 */
int
ipx_control_oncpu(struct socket *so, u_long cmd, caddr_t data,
	struct ifnet *ifp, struct thread *td)
{
	struct ifreq *ifr = (struct ifreq *)data;
	struct ipx_aliasreq *ifra = (struct ipx_aliasreq *)data;
	struct ipx_ifaddr *ia;
	struct ifaddr *ifa;
	struct ipx_ifaddr *oia;
	int dstIsNew, hostIsNew;
	int error = 0;

	/*
	 * Find address for this interface, if it exists.
	 */
	if (ifp == NULL)
		return (EADDRNOTAVAIL);
	for (ia = ipx_ifaddr; ia != NULL; ia = ia->ia_next)
		if (ia->ia_ifp == ifp)
			break;

	switch (cmd) {

	case SIOCGIFADDR:
		if (ia == NULL)
			return (EADDRNOTAVAIL);
		*(struct sockaddr_ipx *)&ifr->ifr_addr = ia->ia_addr;
		return (0);

	case SIOCGIFBRDADDR:
		if (ia == NULL)
			return (EADDRNOTAVAIL);
		if ((ifp->if_flags & IFF_BROADCAST) == 0)
			return (EINVAL);
		*(struct sockaddr_ipx *)&ifr->ifr_dstaddr = ia->ia_broadaddr;
		return (0);

	case SIOCGIFDSTADDR:
		if (ia == NULL)
			return (EADDRNOTAVAIL);
		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
			return (EINVAL);
		*(struct sockaddr_ipx *)&ifr->ifr_dstaddr = ia->ia_dstaddr;
		return (0);
	}

	if ((error = priv_check(td, PRIV_ROOT)) != 0)
		return (error);

	switch (cmd) {
	case SIOCAIFADDR:
	case SIOCDIFADDR:
		if (ifra->ifra_addr.sipx_family == AF_IPX)
		    for (oia = ia; ia != NULL; ia = ia->ia_next) {
			if (ia->ia_ifp == ifp  &&
			    ipx_neteq(ia->ia_addr.sipx_addr,
				  ifra->ifra_addr.sipx_addr))
			    break;
		    }
		if (cmd == SIOCDIFADDR && ia == NULL)
			return (EADDRNOTAVAIL);
		/* FALLTHROUGH */

	case SIOCSIFADDR:
	case SIOCSIFDSTADDR:
		if (ia == NULL) {
			oia = ifa_create(sizeof(*ia), M_WAITOK);
			if ((ia = ipx_ifaddr) != NULL) {
				for ( ; ia->ia_next != NULL; ia = ia->ia_next)
					;
				ia->ia_next = oia;
			} else
				ipx_ifaddr = oia;
			ia = oia;
			ifa = (struct ifaddr *)ia;
			ifa_iflink(ifa, ifp, 1);
			ia->ia_ifp = ifp;
			ifa->ifa_addr = (struct sockaddr *)&ia->ia_addr;

			ifa->ifa_netmask = (struct sockaddr *)&ipx_netmask;

			ifa->ifa_dstaddr = (struct sockaddr *)&ia->ia_dstaddr;
			if (ifp->if_flags & IFF_BROADCAST) {
				ia->ia_broadaddr.sipx_family = AF_IPX;
				ia->ia_broadaddr.sipx_len = sizeof(ia->ia_addr);
				ia->ia_broadaddr.sipx_addr.x_host = ipx_broadhost;
			}
		}
	}

	switch (cmd) {

	case SIOCSIFDSTADDR:
		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
			return (EINVAL);
		if (ia->ia_flags & IFA_ROUTE) {
			rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST);
			ia->ia_flags &= ~IFA_ROUTE;
		}
		if (ifp->if_ioctl) {
			ifnet_serialize_all(ifp);
			error = ifp->if_ioctl(ifp, SIOCSIFDSTADDR,
					      (void *)ia, td->td_proc->p_ucred);
			ifnet_deserialize_all(ifp);
			if (error)
				return (error);
		}
		*(struct sockaddr *)&ia->ia_dstaddr = ifr->ifr_dstaddr;
		return (0);

	case SIOCSIFADDR:
		return (ipx_ifinit(ifp, ia,
				(struct sockaddr_ipx *)&ifr->ifr_addr, 1));

	case SIOCDIFADDR:
		ipx_ifscrub(ifp, ia);
		ifa = (struct ifaddr *)ia;
		ifa_ifunlink(ifa, ifp);
		oia = ia;
		if (oia == (ia = ipx_ifaddr)) {
			ipx_ifaddr = ia->ia_next;
		} else {
			while (ia->ia_next && (ia->ia_next != oia)) {
				ia = ia->ia_next;
			}
			if (ia->ia_next)
			    ia->ia_next = oia->ia_next;
			else
				kprintf("Didn't unlink ipxifadr from list\n");
		}
		ifa_destroy(&oia->ia_ifa);
		return (0);
	
	case SIOCAIFADDR:
		dstIsNew = 0;
		hostIsNew = 1;
		if (ia->ia_addr.sipx_family == AF_IPX) {
			if (ifra->ifra_addr.sipx_len == 0) {
				ifra->ifra_addr = ia->ia_addr;
				hostIsNew = 0;
			} else if (ipx_neteq(ifra->ifra_addr.sipx_addr,
					 ia->ia_addr.sipx_addr))
				hostIsNew = 0;
		}
		if ((ifp->if_flags & IFF_POINTOPOINT) &&
		    (ifra->ifra_dstaddr.sipx_family == AF_IPX)) {
			if (hostIsNew == 0)
				ipx_ifscrub(ifp, ia);
			ia->ia_dstaddr = ifra->ifra_dstaddr;
			dstIsNew  = 1;
		}
		if (ifra->ifra_addr.sipx_family == AF_IPX &&
					    (hostIsNew || dstIsNew))
			error = ipx_ifinit(ifp, ia, &ifra->ifra_addr, 0);
		return (error);

	default:
		if (ifp->if_ioctl == NULL)
			return (EOPNOTSUPP);
		ifnet_serialize_all(ifp);
		error = ifp->if_ioctl(ifp, cmd, data, td->td_proc->p_ucred);
		ifnet_deserialize_all(ifp);
		return (error);
	}
}
Example #12
0
static int 
acd_geom_ioctl(struct g_provider *pp, u_long cmd, void *addr, int fflag, struct thread *td)
{
    device_t dev = pp->geom->softc;
    struct ata_device *atadev = device_get_softc(dev);
    struct acd_softc *cdp = device_get_ivars(dev);
    int error = 0, nocopyout = 0;

    if (!cdp)
	return ENXIO;

    if (atadev->flags & ATA_D_MEDIA_CHANGED) {
	switch (cmd) {
	case CDIOCRESET:
	    acd_test_ready(dev);
	    break;
	   
	default:
	    acd_read_toc(dev);
	    acd_prevent_allow(dev, 1);
	    cdp->flags |= F_LOCKED;
	    break;
	}
    }

    switch (cmd) {

    case CDIOCRESUME:
	error = acd_pause_resume(dev, 1);
	break;

    case CDIOCPAUSE:
	error = acd_pause_resume(dev, 0);
	break;

    case CDIOCSTART:
	error = acd_start_stop(dev, 1);
	break;

    case CDIOCSTOP:
	error = acd_start_stop(dev, 0);
	break;

    case CDIOCALLOW:
	error = acd_prevent_allow(dev, 0);
	cdp->flags &= ~F_LOCKED;
	break;

    case CDIOCPREVENT:
	error = acd_prevent_allow(dev, 1);
	cdp->flags |= F_LOCKED;
	break;

    /*
     * XXXRW: Why does this require privilege?
     */
    case CDIOCRESET:
	error = priv_check(td, PRIV_DRIVER);
	if (error)
	    break;
	error = acd_test_ready(dev);
	break;

    case CDIOCEJECT:
	if (pp->acr != 1) {
	    error = EBUSY;
	    break;
	}
	error = acd_tray(dev, 0);
	break;

    case CDIOCCLOSE:
	if (pp->acr != 1)
	    break;
	error = acd_tray(dev, 1);
	break;

    case CDIOREADTOCHEADER:
	if (!cdp->toc.hdr.ending_track) {
	    error = EIO;
	    break;
	}
	bcopy(&cdp->toc.hdr, addr, sizeof(cdp->toc.hdr));
	break;

    case CDIOREADTOCENTRYS:
	{
	    struct ioc_read_toc_entry *te = (struct ioc_read_toc_entry *)addr;
	    struct toc *toc = &cdp->toc;
	    int starting_track = te->starting_track;
	    int len;

	    if (!toc->hdr.ending_track) {
		error = EIO;
		break;
	    }

	    if (te->data_len < sizeof(toc->tab[0]) || 
		(te->data_len % sizeof(toc->tab[0])) != 0 || 
		(te->address_format != CD_MSF_FORMAT &&
		te->address_format != CD_LBA_FORMAT)) {
		error = EINVAL;
		break;
	    }

	    if (!starting_track)
		starting_track = toc->hdr.starting_track;
	    else if (starting_track == 170) 
		starting_track = toc->hdr.ending_track + 1;
	    else if (starting_track < toc->hdr.starting_track ||
		     starting_track > toc->hdr.ending_track + 1) {
		error = EINVAL;
		break;
	    }

	    len = ((toc->hdr.ending_track + 1 - starting_track) + 1) *
		  sizeof(toc->tab[0]);
	    if (te->data_len < len)
		len = te->data_len;
	    if (len > sizeof(toc->tab)) {
		error = EINVAL;
		break;
	    }

	    if (te->address_format == CD_MSF_FORMAT) {
		struct cd_toc_entry *entry;

		if (!(toc = malloc(sizeof(struct toc), M_ACD, M_NOWAIT))) {
		    error = ENOMEM;
		    break;
		}
		bcopy(&cdp->toc, toc, sizeof(struct toc));
		entry = toc->tab + (toc->hdr.ending_track + 1 -
			toc->hdr.starting_track) + 1;
		while (--entry >= toc->tab) {
		    lba2msf(ntohl(entry->addr.lba), &entry->addr.msf.minute,
			    &entry->addr.msf.second, &entry->addr.msf.frame);
		    entry->addr_type = CD_MSF_FORMAT;
		}
	    }
	    error = copyout(toc->tab + starting_track - toc->hdr.starting_track,
			    te->data, len);
	    if (te->address_format == CD_MSF_FORMAT)
		free(toc, M_ACD);
	}
	break;

    case CDIOREADTOCENTRY:
	{
	    struct ioc_read_toc_single_entry *te =
		(struct ioc_read_toc_single_entry *)addr;
	    struct toc *toc = &cdp->toc;
	    u_char track = te->track;

	    if (!toc->hdr.ending_track) {
		error = EIO;
		break;
	    }

	    if (te->address_format != CD_MSF_FORMAT && 
		te->address_format != CD_LBA_FORMAT) {
		error = EINVAL;
		break;
	    }

	    if (!track)
		track = toc->hdr.starting_track;
	    else if (track == 170)
		track = toc->hdr.ending_track + 1;
	    else if (track < toc->hdr.starting_track ||
		     track > toc->hdr.ending_track + 1) {
		error = EINVAL;
		break;
	    }

	    if (te->address_format == CD_MSF_FORMAT) {
		struct cd_toc_entry *entry;

		if (!(toc = malloc(sizeof(struct toc), M_ACD, M_NOWAIT))) {
		    error = ENOMEM;
		    break;
		}
		bcopy(&cdp->toc, toc, sizeof(struct toc));
		entry = toc->tab + (track - toc->hdr.starting_track);
		lba2msf(ntohl(entry->addr.lba), &entry->addr.msf.minute,
			&entry->addr.msf.second, &entry->addr.msf.frame);
	    }
	    bcopy(toc->tab + track - toc->hdr.starting_track,
		  &te->entry, sizeof(struct cd_toc_entry));
	    if (te->address_format == CD_MSF_FORMAT)
		free(toc, M_ACD);
	}
	break;

#if __FreeBSD_version > 600008
    case CDIOCREADSUBCHANNEL_SYSSPACE:
	nocopyout = 1;
	/* FALLTHROUGH */

#endif
    case CDIOCREADSUBCHANNEL:
	{
	    struct ioc_read_subchannel *args =
		(struct ioc_read_subchannel *)addr;
	    u_int8_t format;
	    int8_t ccb[16] = { ATAPI_READ_SUBCHANNEL, 0, 0x40, 1, 0, 0, 0,
			       sizeof(cdp->subchan)>>8, sizeof(cdp->subchan),
			       0, 0, 0, 0, 0, 0, 0 };

	    if (args->data_len > sizeof(struct cd_sub_channel_info) ||
		args->data_len < sizeof(struct cd_sub_channel_header)) {
		error = EINVAL;
		break;
	    }

	    format = args->data_format;
	    if ((format != CD_CURRENT_POSITION) &&
		(format != CD_MEDIA_CATALOG) && (format != CD_TRACK_INFO)) {
		error = EINVAL;
		break;
	    }

	    ccb[1] = args->address_format & CD_MSF_FORMAT;

	    if ((error = ata_atapicmd(dev, ccb, (caddr_t)&cdp->subchan,
				      sizeof(cdp->subchan), ATA_R_READ, 10)))
		break;

	    if ((format == CD_MEDIA_CATALOG) || (format == CD_TRACK_INFO)) {
		if (cdp->subchan.header.audio_status == 0x11) {
		    error = EINVAL;
		    break;
		}

		ccb[3] = format;
		if (format == CD_TRACK_INFO)
		    ccb[6] = args->track;

		if ((error = ata_atapicmd(dev, ccb, (caddr_t)&cdp->subchan, 
					  sizeof(cdp->subchan),ATA_R_READ,10))){
		    break;
		}
	    }
	    if (nocopyout == 0) {
		error = copyout(&cdp->subchan, args->data, args->data_len);
	    } else {
		error = 0;
		bcopy(&cdp->subchan, args->data, args->data_len);
	    }
	}
	break;

    case CDIOCPLAYMSF:
	{
	    struct ioc_play_msf *args = (struct ioc_play_msf *)addr;

	    error = 
		acd_play(dev, 
			 msf2lba(args->start_m, args->start_s, args->start_f),
			 msf2lba(args->end_m, args->end_s, args->end_f));
	}
	break;

    case CDIOCPLAYBLOCKS:
	{
	    struct ioc_play_blocks *args = (struct ioc_play_blocks *)addr;

	    error = acd_play(dev, args->blk, args->blk + args->len);
	}
	break;

    case CDIOCPLAYTRACKS:
	{
	    struct ioc_play_track *args = (struct ioc_play_track *)addr;
	    int t1, t2;

	    if (!cdp->toc.hdr.ending_track) {
		error = EIO;
		break;
	    }
	    if (args->end_track < cdp->toc.hdr.ending_track + 1)
		++args->end_track;
	    if (args->end_track > cdp->toc.hdr.ending_track + 1)
		args->end_track = cdp->toc.hdr.ending_track + 1;
	    t1 = args->start_track - cdp->toc.hdr.starting_track;
	    t2 = args->end_track - cdp->toc.hdr.starting_track;
	    if (t1 < 0 || t2 < 0 ||
		t1 > (cdp->toc.hdr.ending_track-cdp->toc.hdr.starting_track)) {
		error = EINVAL;
		break;
	    }
	    error = acd_play(dev, ntohl(cdp->toc.tab[t1].addr.lba),
			     ntohl(cdp->toc.tab[t2].addr.lba));
	}
	break;

    case CDIOCGETVOL:
	{
	    struct ioc_vol *arg = (struct ioc_vol *)addr;

	    if ((error = acd_mode_sense(dev, ATAPI_CDROM_AUDIO_PAGE,
					(caddr_t)&cdp->au, sizeof(cdp->au))))
		break;

	    if (cdp->au.page_code != ATAPI_CDROM_AUDIO_PAGE) {
		error = EIO;
		break;
	    }
	    arg->vol[0] = cdp->au.port[0].volume;
	    arg->vol[1] = cdp->au.port[1].volume;
	    arg->vol[2] = cdp->au.port[2].volume;
	    arg->vol[3] = cdp->au.port[3].volume;
	}
	break;

    case CDIOCSETVOL:
	{
	    struct ioc_vol *arg = (struct ioc_vol *)addr;

	    if ((error = acd_mode_sense(dev, ATAPI_CDROM_AUDIO_PAGE,
					(caddr_t)&cdp->au, sizeof(cdp->au))))
		break;
	    if (cdp->au.page_code != ATAPI_CDROM_AUDIO_PAGE) {
		error = EIO;
		break;
	    }
	    if ((error = acd_mode_sense(dev, ATAPI_CDROM_AUDIO_PAGE_MASK,
					(caddr_t)&cdp->aumask,
					sizeof(cdp->aumask))))
		break;
	    cdp->au.data_length = 0;
	    cdp->au.port[0].channels = CHANNEL_0;
	    cdp->au.port[1].channels = CHANNEL_1;
	    cdp->au.port[0].volume = arg->vol[0] & cdp->aumask.port[0].volume;
	    cdp->au.port[1].volume = arg->vol[1] & cdp->aumask.port[1].volume;
	    cdp->au.port[2].volume = arg->vol[2] & cdp->aumask.port[2].volume;
	    cdp->au.port[3].volume = arg->vol[3] & cdp->aumask.port[3].volume;
	    error =  acd_mode_select(dev, (caddr_t)&cdp->au, sizeof(cdp->au));
	}
	break;

    case CDIOCSETPATCH:
	{
	    struct ioc_patch *arg = (struct ioc_patch *)addr;

	    error = acd_setchan(dev, arg->patch[0], arg->patch[1],
				arg->patch[2], arg->patch[3]);
	}
	break;

    case CDIOCSETMONO:
	error = acd_setchan(dev, CHANNEL_0|CHANNEL_1, CHANNEL_0|CHANNEL_1, 0,0);
	break;

    case CDIOCSETSTEREO:
	error = acd_setchan(dev, CHANNEL_0, CHANNEL_1, 0, 0);
	break;

    case CDIOCSETMUTE:
	error = acd_setchan(dev, 0, 0, 0, 0);
	break;

    case CDIOCSETLEFT:
	error = acd_setchan(dev, CHANNEL_0, CHANNEL_0, 0, 0);
	break;

    case CDIOCSETRIGHT:
	error = acd_setchan(dev, CHANNEL_1, CHANNEL_1, 0, 0);
	break;

    case CDRIOCBLANK:
	error = acd_blank(dev, (*(int *)addr));
	break;

    case CDRIOCNEXTWRITEABLEADDR:
	{
	    struct acd_track_info track_info;

	    if ((error = acd_read_track_info(dev, 0xff, &track_info)))
		break;

	    if (!track_info.nwa_valid) {
		error = EINVAL;
		break;
	    }
	    *(int*)addr = track_info.next_writeable_addr;
	}
	break;
 
    case CDRIOCINITWRITER:
	error = acd_init_writer(dev, (*(int *)addr));
	break;

    case CDRIOCINITTRACK:
	error = acd_init_track(dev, (struct cdr_track *)addr);
	break;

    case CDRIOCFLUSH:
	error = acd_flush(dev);
	break;

    case CDRIOCFIXATE:
	error = acd_fixate(dev, (*(int *)addr));
	break;

    case CDRIOCREADSPEED:
	{
	    int speed = *(int *)addr;

	    /* Preserve old behavior: units in multiples of CDROM speed */
	    if (speed < 177)
		speed *= 177;
	    error = acd_set_speed(dev, speed, CDR_MAX_SPEED);
	}
	break;

    case CDRIOCWRITESPEED:
	{
	    int speed = *(int *)addr;

	    if (speed < 177)
		speed *= 177;
	    error = acd_set_speed(dev, CDR_MAX_SPEED, speed);
	}
	break;

    case CDRIOCGETBLOCKSIZE:
	*(int *)addr = cdp->block_size;
	break;

    case CDRIOCSETBLOCKSIZE:
	cdp->block_size = *(int *)addr;
	pp->sectorsize = cdp->block_size;       /* hack for GEOM SOS */
	acd_set_ioparm(dev);
	break;

    case CDRIOCGETPROGRESS:
	error = acd_get_progress(dev, (int *)addr);
	break;

    case CDRIOCSENDCUE:
	error = acd_send_cue(dev, (struct cdr_cuesheet *)addr);
	break;

    case CDRIOCREADFORMATCAPS:
	error = acd_read_format_caps(dev, (struct cdr_format_capacities *)addr);
	break;

    case CDRIOCFORMAT:
	error = acd_format(dev, (struct cdr_format_params *)addr);
	break;

    case DVDIOCREPORTKEY:
	if (cdp->cap.media & MST_READ_DVDROM)
	    error = acd_report_key(dev, (struct dvd_authinfo *)addr);
	else
	    error = EINVAL;
	break;

    case DVDIOCSENDKEY:
	if (cdp->cap.media & MST_READ_DVDROM)
	    error = acd_send_key(dev, (struct dvd_authinfo *)addr);
	else
	    error = EINVAL;
	break;

    case DVDIOCREADSTRUCTURE:
	if (cdp->cap.media & MST_READ_DVDROM)
	    error = acd_read_structure(dev, (struct dvd_struct *)addr);
	else
	    error = EINVAL;
	break;

    default:
	error = ata_device_ioctl(dev, cmd, addr);
    }
    return error;
}

static int
acd_geom_access(struct g_provider *pp, int dr, int dw, int de)
{
    device_t dev = pp->geom->softc;
    struct acd_softc *cdp = device_get_ivars(dev);
    struct ata_request *request;
    int8_t ccb[16] = { ATAPI_TEST_UNIT_READY, 0, 0, 0, 0,
		       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
    int timeout = 60, track;

    if (!(request = ata_alloc_request()))
	return ENOMEM;

    /* wait if drive is not finished loading the medium */
    while (timeout--) {
	request->dev = dev;
	bcopy(ccb, request->u.atapi.ccb, 16);
	request->flags = ATA_R_ATAPI;
	request->timeout = ATA_REQUEST_TIMEOUT;
	ata_queue_request(request);
	if (!request->error &&
	    (request->u.atapi.sense.key == 2 ||
	     request->u.atapi.sense.key == 7) &&
	    request->u.atapi.sense.asc == 4 &&
	    request->u.atapi.sense.ascq == 1)
	    pause("acdld", hz / 2);
	else
	    break;
    }
    ata_free_request(request);

    if (pp->acr == 0) {
	acd_prevent_allow(dev, 1);
	cdp->flags |= F_LOCKED;
	acd_read_toc(dev);
    }

    if (dr + pp->acr == 0) {
	acd_prevent_allow(dev, 0);
	cdp->flags &= ~F_LOCKED;
    }

    if ((track = pp->index)) {
	pp->sectorsize = (cdp->toc.tab[track - 1].control & 4) ? 2048 : 2352;
	pp->mediasize = ntohl(cdp->toc.tab[track].addr.lba) -
			ntohl(cdp->toc.tab[track - 1].addr.lba);
    }
    else {
	pp->sectorsize = cdp->block_size;
	pp->mediasize = cdp->disk_size;
    }
    pp->mediasize *= pp->sectorsize;

    return 0;
}
Example #13
0
/*
 * MPALMOSTSAFE
 */
int
sys_msgctl(struct msgctl_args *uap)
{
	struct thread *td = curthread;
	struct proc *p = td->td_proc;
	int msqid = uap->msqid;
	int cmd = uap->cmd;
	struct msqid_ds *user_msqptr = uap->buf;
	int rval, eval;
	struct msqid_ds msqbuf;
	struct msqid_ds *msqptr;

#ifdef MSG_DEBUG_OK
	kprintf("call to msgctl(%d, %d, 0x%x)\n", msqid, cmd, user_msqptr);
#endif

	if (!jail_sysvipc_allowed && td->td_ucred->cr_prison != NULL)
		return (ENOSYS);

	get_mplock();
	msqid = IPCID_TO_IX(msqid);

	if (msqid < 0 || msqid >= msginfo.msgmni) {
#ifdef MSG_DEBUG_OK
		kprintf("msqid (%d) out of range (0<=msqid<%d)\n", msqid,
		    msginfo.msgmni);
#endif
		eval = EINVAL;
		goto done;
	}

	msqptr = &msqids[msqid];

	if (msqptr->msg_qbytes == 0) {
#ifdef MSG_DEBUG_OK
		kprintf("no such msqid\n");
#endif
		eval = EINVAL;
		goto done;
	}
	if (msqptr->msg_perm.seq != IPCID_TO_SEQ(uap->msqid)) {
#ifdef MSG_DEBUG_OK
		kprintf("wrong sequence number\n");
#endif
		eval = EINVAL;
		goto done;
	}

	rval = 0;

	switch (cmd) {
	case IPC_RMID:
	{
		struct msg *msghdr;
		if ((eval = ipcperm(p, &msqptr->msg_perm, IPC_M)) != 0)
			break;
		/* Free the message headers */
		msghdr = msqptr->msg_first;
		while (msghdr != NULL) {
			struct msg *msghdr_tmp;

			/* Free the segments of each message */
			msqptr->msg_cbytes -= msghdr->msg_ts;
			msqptr->msg_qnum--;
			msghdr_tmp = msghdr;
			msghdr = msghdr->msg_next;
			msg_freehdr(msghdr_tmp);
		}

		if (msqptr->msg_cbytes != 0)
			panic("msg_cbytes is screwed up");
		if (msqptr->msg_qnum != 0)
			panic("msg_qnum is screwed up");

		msqptr->msg_qbytes = 0;	/* Mark it as free */

		wakeup((caddr_t)msqptr);
	}

		break;

	case IPC_SET:
		if ((eval = ipcperm(p, &msqptr->msg_perm, IPC_M)) != 0)
			break;
		if ((eval = copyin(user_msqptr, &msqbuf, sizeof(msqbuf))) != 0)
			break;
		if (msqbuf.msg_qbytes > msqptr->msg_qbytes) {
			eval = priv_check(td, PRIV_ROOT);
			if (eval)
				break;
		}
		if (msqbuf.msg_qbytes > msginfo.msgmnb) {
#ifdef MSG_DEBUG_OK
			kprintf("can't increase msg_qbytes beyond %d (truncating)\n",
			    msginfo.msgmnb);
#endif
			msqbuf.msg_qbytes = msginfo.msgmnb;	/* silently restrict qbytes to system limit */
		}
		if (msqbuf.msg_qbytes == 0) {
#ifdef MSG_DEBUG_OK
			kprintf("can't reduce msg_qbytes to 0\n");
#endif
			eval = EINVAL;		/* non-standard errno! */
			break;
		}
		msqptr->msg_perm.uid = msqbuf.msg_perm.uid;	/* change the owner */
		msqptr->msg_perm.gid = msqbuf.msg_perm.gid;	/* change the owner */
		msqptr->msg_perm.mode = (msqptr->msg_perm.mode & ~0777) |
					(msqbuf.msg_perm.mode & 0777);
		msqptr->msg_qbytes = msqbuf.msg_qbytes;
		msqptr->msg_ctime = time_second;
		break;

	case IPC_STAT:
		if ((eval = ipcperm(p, &msqptr->msg_perm, IPC_R))) {
#ifdef MSG_DEBUG_OK
			kprintf("requester doesn't have read access\n");
#endif
			eval = EINVAL;
			break;
		}
		eval = copyout(msqptr, user_msqptr, sizeof(struct msqid_ds));
		break;

	default:
#ifdef MSG_DEBUG_OK
		kprintf("invalid command %d\n", cmd);
#endif
		eval = EINVAL;
		break;
	}
done:
	rel_mplock();
	if (eval == 0)
		uap->sysmsg_result = rval;
	return(eval);
}
Example #14
0
int
thread_create(struct thread *td, struct rtprio *rtp,
    int (*initialize_thread)(struct thread *, void *), void *thunk)
{
	struct thread *newtd;
	struct proc *p;
	int error;

	p = td->td_proc;

	if (rtp != NULL) {
		switch(rtp->type) {
		case RTP_PRIO_REALTIME:
		case RTP_PRIO_FIFO:
			/* Only root can set scheduler policy */
			if (priv_check(td, PRIV_SCHED_SETPOLICY) != 0)
				return (EPERM);
			if (rtp->prio > RTP_PRIO_MAX)
				return (EINVAL);
			break;
		case RTP_PRIO_NORMAL:
			rtp->prio = 0;
			break;
		default:
			return (EINVAL);
		}
	}

#ifdef RACCT
	if (racct_enable) {
		PROC_LOCK(p);
		error = racct_add(p, RACCT_NTHR, 1);
		PROC_UNLOCK(p);
		if (error != 0)
			return (EPROCLIM);
	}
#endif

	/* Initialize our td */
	error = kern_thr_alloc(p, 0, &newtd);
	if (error)
		goto fail;

	cpu_set_upcall(newtd, td);

	bzero(&newtd->td_startzero,
	    __rangeof(struct thread, td_startzero, td_endzero));
	bcopy(&td->td_startcopy, &newtd->td_startcopy,
	    __rangeof(struct thread, td_startcopy, td_endcopy));
	newtd->td_proc = td->td_proc;
	thread_cow_get(newtd, td);

	error = initialize_thread(newtd, thunk);
	if (error != 0) {
		thread_cow_free(newtd);
		thread_free(newtd);
		goto fail;
	}

	PROC_LOCK(p);
	p->p_flag |= P_HADTHREADS;
	thread_link(newtd, p);
	bcopy(p->p_comm, newtd->td_name, sizeof(newtd->td_name));
	newtd->td_pax = p->p_pax;
	thread_lock(td);
	/* let the scheduler know about these things. */
	sched_fork_thread(td, newtd);
	thread_unlock(td);
	if (P_SHOULDSTOP(p))
		newtd->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
	if (p->p_flag2 & P2_LWP_EVENTS)
		newtd->td_dbgflags |= TDB_BORN;

	/*
	 * Copy the existing thread VM policy into the new thread.
	 */
	vm_domain_policy_localcopy(&newtd->td_vm_dom_policy,
	    &td->td_vm_dom_policy);

	PROC_UNLOCK(p);

	tidhash_add(newtd);

	thread_lock(newtd);
	if (rtp != NULL) {
		if (!(td->td_pri_class == PRI_TIMESHARE &&
		      rtp->type == RTP_PRIO_NORMAL)) {
			rtp_to_pri(rtp, newtd);
			sched_prio(newtd, newtd->td_user_pri);
		} /* ignore timesharing class */
	}
	TD_SET_CAN_RUN(newtd);
	sched_add(newtd, SRQ_BORING);
	thread_unlock(newtd);

	return (0);

fail:
#ifdef RACCT
	if (racct_enable) {
		PROC_LOCK(p);
		racct_sub(p, RACCT_NTHR, 1);
		PROC_UNLOCK(p);
	}
#endif
	return (error);
}
Example #15
0
static int
create_thread(struct thread *td, mcontext_t *ctx,
	    void (*start_func)(void *), void *arg,
	    char *stack_base, size_t stack_size,
	    char *tls_base,
	    long *child_tid, long *parent_tid,
	    int flags, struct rtprio *rtp)
{
	stack_t stack;
	struct thread *newtd;
	struct proc *p;
	int error;

	p = td->td_proc;

	/* Have race condition but it is cheap. */
	if (p->p_numthreads >= max_threads_per_proc) {
		++max_threads_hits;
		return (EPROCLIM);
	}

	if (rtp != NULL) {
		switch(rtp->type) {
		case RTP_PRIO_REALTIME:
		case RTP_PRIO_FIFO:
			/* Only root can set scheduler policy */
			if (priv_check(td, PRIV_SCHED_SETPOLICY) != 0)
				return (EPERM);
			if (rtp->prio > RTP_PRIO_MAX)
				return (EINVAL);
			break;
		case RTP_PRIO_NORMAL:
			rtp->prio = 0;
			break;
		default:
			return (EINVAL);
		}
	}

#ifdef RACCT
	PROC_LOCK(td->td_proc);
	error = racct_add(p, RACCT_NTHR, 1);
	PROC_UNLOCK(td->td_proc);
	if (error != 0)
		return (EPROCLIM);
#endif

	/* Initialize our td */
	newtd = thread_alloc(0);
	if (newtd == NULL) {
		error = ENOMEM;
		goto fail;
	}

	/*
	 * Try the copyout as soon as we allocate the td so we don't
	 * have to tear things down in a failure case below.
	 * Here we copy out tid to two places, one for child and one
	 * for parent, because pthread can create a detached thread,
	 * if parent wants to safely access child tid, it has to provide 
	 * its storage, because child thread may exit quickly and
	 * memory is freed before parent thread can access it.
	 */
	if ((child_tid != NULL &&
	    suword_lwpid(child_tid, newtd->td_tid)) ||
	    (parent_tid != NULL &&
	    suword_lwpid(parent_tid, newtd->td_tid))) {
		thread_free(newtd);
		error = EFAULT;
		goto fail;
	}

	bzero(&newtd->td_startzero,
	    __rangeof(struct thread, td_startzero, td_endzero));
	bcopy(&td->td_startcopy, &newtd->td_startcopy,
	    __rangeof(struct thread, td_startcopy, td_endcopy));
	newtd->td_proc = td->td_proc;
	newtd->td_ucred = crhold(td->td_ucred);

	cpu_set_upcall(newtd, td);

	if (ctx != NULL) { /* old way to set user context */
		error = set_mcontext(newtd, ctx);
		if (error != 0) {
			thread_free(newtd);
			crfree(td->td_ucred);
			goto fail;
		}
	} else {
		/* Set up our machine context. */
		stack.ss_sp = stack_base;
		stack.ss_size = stack_size;
		/* Set upcall address to user thread entry function. */
		cpu_set_upcall_kse(newtd, start_func, arg, &stack);
		/* Setup user TLS address and TLS pointer register. */
		error = cpu_set_user_tls(newtd, tls_base);
		if (error != 0) {
			thread_free(newtd);
			crfree(td->td_ucred);
			goto fail;
		}
	}

	PROC_LOCK(td->td_proc);
	td->td_proc->p_flag |= P_HADTHREADS;
	newtd->td_sigmask = td->td_sigmask;
	thread_link(newtd, p); 
	bcopy(p->p_comm, newtd->td_name, sizeof(newtd->td_name));
	thread_lock(td);
	/* let the scheduler know about these things. */
	sched_fork_thread(td, newtd);
	thread_unlock(td);
	if (P_SHOULDSTOP(p))
		newtd->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
	PROC_UNLOCK(p);

	tidhash_add(newtd);

	thread_lock(newtd);
	if (rtp != NULL) {
		if (!(td->td_pri_class == PRI_TIMESHARE &&
		      rtp->type == RTP_PRIO_NORMAL)) {
			rtp_to_pri(rtp, newtd);
			sched_prio(newtd, newtd->td_user_pri);
		} /* ignore timesharing class */
	}
	TD_SET_CAN_RUN(newtd);
	sched_add(newtd, SRQ_BORING);
	thread_unlock(newtd);

	return (0);

fail:
#ifdef RACCT
	PROC_LOCK(p);
	racct_sub(p, RACCT_NTHR, 1);
	PROC_UNLOCK(p);
#endif
	return (error);
}
Example #16
0
/*
 * VFS Operations.
 *
 * mount system call
 */
static int
ext2_mount(struct mount *mp)
{
	struct vfsoptlist *opts;
	struct vnode *devvp;
	struct thread *td;
	struct ext2mount *ump = NULL;
	struct m_ext2fs *fs;
	struct nameidata nd, *ndp = &nd;
	accmode_t accmode;
	char *path, *fspec;
	int error, flags, len;

	td = curthread;
	opts = mp->mnt_optnew;

	if (vfs_filteropt(opts, ext2_opts))
		return (EINVAL);

	vfs_getopt(opts, "fspath", (void **)&path, NULL);
	/* Double-check the length of path.. */
	if (strlen(path) >= MAXMNTLEN - 1)
		return (ENAMETOOLONG);

	fspec = NULL;
	error = vfs_getopt(opts, "from", (void **)&fspec, &len);
	if (!error && fspec[len - 1] != '\0')
		return (EINVAL);

	/*
	 * If updating, check whether changing from read-only to
	 * read/write; if there is no device name, that's all we do.
	 */
	if (mp->mnt_flag & MNT_UPDATE) {
		ump = VFSTOEXT2(mp);
		fs = ump->um_e2fs; 
		error = 0;
		if (fs->e2fs_ronly == 0 &&
		    vfs_flagopt(opts, "ro", NULL, 0)) {
			error = VFS_SYNC(mp, MNT_WAIT);
			if (error)
				return (error);
			flags = WRITECLOSE;
			if (mp->mnt_flag & MNT_FORCE)
				flags |= FORCECLOSE;
			error = ext2_flushfiles(mp, flags, td);
			if ( error == 0 && fs->e2fs_wasvalid && ext2_cgupdate(ump, MNT_WAIT) == 0) {
				fs->e2fs->e2fs_state |= E2FS_ISCLEAN;
				ext2_sbupdate(ump, MNT_WAIT);
			}
			fs->e2fs_ronly = 1;
			vfs_flagopt(opts, "ro", &mp->mnt_flag, MNT_RDONLY);
			DROP_GIANT();
			g_topology_lock();
			g_access(ump->um_cp, 0, -1, 0);
			g_topology_unlock();
			PICKUP_GIANT();
		}
		if (!error && (mp->mnt_flag & MNT_RELOAD))
			error = ext2_reload(mp, td);
		if (error)
			return (error);
		devvp = ump->um_devvp;
		if (fs->e2fs_ronly && !vfs_flagopt(opts, "ro", NULL, 0)) {
			if (ext2_check_sb_compat(fs->e2fs, devvp->v_rdev, 0))
				return (EPERM);

			/*
			 * If upgrade to read-write by non-root, then verify
			 * that user has necessary permissions on the device.
			 */
			vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
			error = VOP_ACCESS(devvp, VREAD | VWRITE,
			    td->td_ucred, td);
			if (error)
				error = priv_check(td, PRIV_VFS_MOUNT_PERM);
			if (error) {
				VOP_UNLOCK(devvp, 0);
				return (error);
			}
			VOP_UNLOCK(devvp, 0);
			DROP_GIANT();
			g_topology_lock();
			error = g_access(ump->um_cp, 0, 1, 0);
			g_topology_unlock();
			PICKUP_GIANT();
			if (error)
				return (error);

			if ((fs->e2fs->e2fs_state & E2FS_ISCLEAN) == 0 ||
			    (fs->e2fs->e2fs_state & E2FS_ERRORS)) {
				if (mp->mnt_flag & MNT_FORCE) {
					printf(
"WARNING: %s was not properly dismounted\n", fs->e2fs_fsmnt);
				} else {
					printf(
"WARNING: R/W mount of %s denied.  Filesystem is not clean - run fsck\n",
					    fs->e2fs_fsmnt);
					return (EPERM);
				}
			}
			fs->e2fs->e2fs_state &= ~E2FS_ISCLEAN;
			(void)ext2_cgupdate(ump, MNT_WAIT);
			fs->e2fs_ronly = 0;
			MNT_ILOCK(mp);
			mp->mnt_flag &= ~MNT_RDONLY;
			MNT_IUNLOCK(mp);
		}
		if (vfs_flagopt(opts, "export", NULL, 0)) {
			/* Process export requests in vfs_mount.c. */
			return (error);
		}
	}

	/*
	 * Not an update, or updating the name: look up the name
	 * and verify that it refers to a sensible disk device.
	 */
	if (fspec == NULL)
		return (EINVAL);
	NDINIT(ndp, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, fspec, td);
	if ((error = namei(ndp)) != 0)
		return (error);
	NDFREE(ndp, NDF_ONLY_PNBUF);
	devvp = ndp->ni_vp;

	if (!vn_isdisk(devvp, &error)) {
		vput(devvp);
		return (error);
	}

	/*
	 * If mount by non-root, then verify that user has necessary
	 * permissions on the device.
	 *
	 * XXXRW: VOP_ACCESS() enough?
	 */
	accmode = VREAD;
	if ((mp->mnt_flag & MNT_RDONLY) == 0)
		accmode |= VWRITE;
	error = VOP_ACCESS(devvp, accmode, td->td_ucred, td);
	if (error)
		error = priv_check(td, PRIV_VFS_MOUNT_PERM);
	if (error) {
		vput(devvp);
		return (error);
	}

	if ((mp->mnt_flag & MNT_UPDATE) == 0) {
		error = ext2_mountfs(devvp, mp);
	} else {
		if (devvp != ump->um_devvp) {
			vput(devvp);
			return (EINVAL);	/* needs translation */
		} else
			vput(devvp);
	}
	if (error) {
		vrele(devvp);
		return (error);
	}
	ump = VFSTOEXT2(mp);
	fs = ump->um_e2fs;

	/*
	 * Note that this strncpy() is ok because of a check at the start
	 * of ext2_mount().
	 */
	strncpy(fs->e2fs_fsmnt, path, MAXMNTLEN);
	fs->e2fs_fsmnt[MAXMNTLEN - 1] = '\0';
	vfs_mountedfrom(mp, fspec);
	return (0);
}
Example #17
0
#include <machine/psl.h>
#include <machine/specialreg.h>

#include <vm/vm.h>
#include <vm/pmap.h>

#include <machine/iodev.h>

/* ARGSUSED */
int
ioopen(struct cdev *dev __unused, int flags __unused, int fmt __unused,
    struct thread *td)
{
	int error;

	error = priv_check(td, PRIV_IO);
	if (error != 0)
		return (error);
	error = securelevel_gt(td->td_ucred, 0);
	if (error != 0)
		return (error);

	td->td_frame->tf_eflags |= PSL_IOPL;

	return (0);
}

/* ARGSUSED */
int
ioclose(struct cdev *dev __unused, int flags __unused, int fmt __unused,
    struct thread *td)
Example #18
0
static int
udf_mount(struct mount *mp)
{
	struct vnode *devvp;	/* vnode of the mount device */
	struct thread *td;
	struct udf_mnt *imp = NULL;
	struct vfsoptlist *opts;
	char *fspec, *cs_disk, *cs_local;
	int error, len, *udf_flags;
	struct nameidata nd, *ndp = &nd;

	td = curthread;
	opts = mp->mnt_optnew;

	/*
	 * Unconditionally mount as read-only.
	 */
	MNT_ILOCK(mp);
	mp->mnt_flag |= MNT_RDONLY;
	MNT_IUNLOCK(mp);

	/*
	 * No root filesystem support.  Probably not a big deal, since the
	 * bootloader doesn't understand UDF.
	 */
	if (mp->mnt_flag & MNT_ROOTFS)
		return (ENOTSUP);

	fspec = NULL;
	error = vfs_getopt(opts, "from", (void **)&fspec, &len);
	if (!error && fspec[len - 1] != '\0')
		return (EINVAL);

	if (mp->mnt_flag & MNT_UPDATE) {
		return (0);
	}

	/* Check that the mount device exists */
	if (fspec == NULL)
		return (EINVAL);
	NDINIT(ndp, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, fspec, td);
	if ((error = namei(ndp)))
		return (error);
	NDFREE(ndp, NDF_ONLY_PNBUF);
	devvp = ndp->ni_vp;

	if (vn_isdisk(devvp, &error) == 0) {
		vput(devvp);
		return (error);
	}

	/* Check the access rights on the mount device */
	error = VOP_ACCESS(devvp, VREAD, td->td_ucred, td);
	if (error)
		error = priv_check(td, PRIV_VFS_MOUNT_PERM);
	if (error) {
		vput(devvp);
		return (error);
	}

	if ((error = udf_mountfs(devvp, mp))) {
		vrele(devvp);
		return (error);
	}

	imp = VFSTOUDFFS(mp);

	udf_flags = NULL;
	error = vfs_getopt(opts, "flags", (void **)&udf_flags, &len);
	if (error || len != sizeof(int))
		return (EINVAL);
	imp->im_flags = *udf_flags;

	if (imp->im_flags & UDFMNT_KICONV && udf_iconv) {
		cs_disk = NULL;
		error = vfs_getopt(opts, "cs_disk", (void **)&cs_disk, &len);
		if (!error && cs_disk[len - 1] != '\0')
			return (EINVAL);
		cs_local = NULL;
		error = vfs_getopt(opts, "cs_local", (void **)&cs_local, &len);
		if (!error && cs_local[len - 1] != '\0')
			return (EINVAL);
		udf_iconv->open(cs_local, cs_disk, &imp->im_d2l);
#if 0
		udf_iconv->open(cs_disk, cs_local, &imp->im_l2d);
#endif
	}

	vfs_mountedfrom(mp, fspec);
	return 0;
};
Example #19
0
/*
 * Process ioctls
 */
int
procfs_ioctl(PFS_IOCTL_ARGS)
{
	struct procfs_status *ps;
#ifdef COMPAT_FREEBSD32
	struct procfs_status32 *ps32;
#endif
	int error, flags, sig;
#ifdef COMPAT_FREEBSD6
	int ival;
#endif

	KASSERT(p != NULL,
	    ("%s() called without a process", __func__));
	PROC_LOCK_ASSERT(p, MA_OWNED);

	error = 0;
	switch (cmd) {
#if defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
	case _IOC(IOC_IN, 'p', 1, 0):
#endif
#ifdef COMPAT_FREEBSD6
	case _IO('p', 1):
		ival = IOCPARM_IVAL(data);
		data = &ival;
#endif
	case PIOCBIS:
		p->p_stops |= *(unsigned int *)data;
		break;
#if defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
	case _IOC(IOC_IN, 'p', 2, 0):
#endif
#ifdef COMPAT_FREEBSD6
	case _IO('p', 2):
		ival = IOCPARM_IVAL(data);
		data = &ival;
#endif
	case PIOCBIC:
		p->p_stops &= ~*(unsigned int *)data;
		break;
#if defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
	case _IOC(IOC_IN, 'p', 3, 0):
#endif
#ifdef COMPAT_FREEBSD6
	case _IO('p', 3):
		ival = IOCPARM_IVAL(data);
		data = &ival;
#endif
	case PIOCSFL:
		flags = *(unsigned int *)data;
		if (flags & PF_ISUGID) {
			/*
			 * XXXRW: Is this specific check required here, as
			 * p_candebug() should implement it, or other checks
			 * are missing.
			 */
			error = priv_check(td, PRIV_DEBUG_SUGID);
			if (error)
				break;
		}
		p->p_pfsflags = flags;
		break;
	case PIOCGFL:
		*(unsigned int *)data = p->p_pfsflags;
		break;
	case PIOCWAIT:
		while (p->p_step == 0 && (p->p_flag & P_WEXIT) == 0) {
			/* sleep until p stops */
			_PHOLD(p);
			error = msleep(&p->p_stype, &p->p_mtx,
			    PWAIT|PCATCH, "pioctl", 0);
			_PRELE(p);
			if (error != 0)
				break;
		}
		/* fall through to PIOCSTATUS */
	case PIOCSTATUS:
		ps = (struct procfs_status *)data;
		ps->state = (p->p_step == 0);
		ps->flags = 0; /* nope */
		ps->events = p->p_stops;
		ps->why = p->p_step ? p->p_stype : 0;
		ps->val = p->p_step ? p->p_xstat : 0;
		break;
#ifdef COMPAT_FREEBSD32
	case PIOCWAIT32:
		while (p->p_step == 0 && (p->p_flag & P_WEXIT) == 0) {
			/* sleep until p stops */
			_PHOLD(p);
			error = msleep(&p->p_stype, &p->p_mtx,
			    PWAIT|PCATCH, "pioctl", 0);
			_PRELE(p);
			if (error != 0)
				break;
		}
		/* fall through to PIOCSTATUS32 */
	case PIOCSTATUS32:
		ps32 = (struct procfs_status32 *)data;
		ps32->state = (p->p_step == 0);
		ps32->flags = 0; /* nope */
		ps32->events = p->p_stops;
		ps32->why = p->p_step ? p->p_stype : 0;
		ps32->val = p->p_step ? p->p_xstat : 0;
		break;
#endif
#if defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
	case _IOC(IOC_IN, 'p', 5, 0):
#endif
#ifdef COMPAT_FREEBSD6
	case _IO('p', 5):
		ival = IOCPARM_IVAL(data);
		data = &ival;
#endif
	case PIOCCONT:
		if (p->p_step == 0)
			break;
		sig = *(unsigned int *)data;
		if (sig != 0 && !_SIG_VALID(sig)) {
			error = EINVAL;
			break;
		}
#if 0
		p->p_step = 0;
		if (P_SHOULDSTOP(p)) {
			p->p_xstat = sig;
			p->p_flag &= ~(P_STOPPED_TRACE|P_STOPPED_SIG);
			PROC_SLOCK(p);
			thread_unsuspend(p);
			PROC_SUNLOCK(p);
		} else if (sig)
			kern_psignal(p, sig);
#else
		if (sig)
			kern_psignal(p, sig);
		p->p_step = 0;
		wakeup(&p->p_step);
#endif
		break;
	default:
		error = (ENOTTY);
	}

	return (error);
}
Example #20
0
/*
 * audit_syscall_enter() is called on entry to each system call.  It is
 * responsible for deciding whether or not to audit the call (preselection),
 * and if so, allocating a per-thread audit record.  audit_new() will fill in
 * basic thread/credential properties.
 */
void
audit_syscall_enter(unsigned short code, struct thread *td)
{
	struct au_mask *aumask;
	au_class_t class;
	au_event_t event;
	au_id_t auid;

	KASSERT(td->td_ar == NULL, ("audit_syscall_enter: td->td_ar != NULL"));
	KASSERT((td->td_pflags & TDP_AUDITREC) == 0,
	    ("audit_syscall_enter: TDP_AUDITREC set"));

	/*
	 * In FreeBSD, each ABI has its own system call table, and hence
	 * mapping of system call codes to audit events.  Convert the code to
	 * an audit event identifier using the process system call table
	 * reference.  In Darwin, there's only one, so we use the global
	 * symbol for the system call table.  No audit record is generated
	 * for bad system calls, as no operation has been performed.
	 */
	if (code >= td->td_proc->p_sysent->sv_size)
		return;

	event = td->td_proc->p_sysent->sv_table[code].sy_auevent;
	if (event == AUE_NULL)
		return;

	/*
	 * Check which audit mask to use; either the kernel non-attributable
	 * event mask or the process audit mask.
	 */
	auid = td->td_ucred->cr_audit.ai_auid;
	if (auid == AU_DEFAUDITID)
		aumask = &audit_nae_mask;
	else
		aumask = &td->td_ucred->cr_audit.ai_mask;

	/*
	 * Allocate an audit record, if preselection allows it, and store in
	 * the thread for later use.
	 */
	class = au_event_class(event);
	if (au_preselect(event, class, aumask, AU_PRS_BOTH)) {
		/*
		 * If we're out of space and need to suspend unprivileged
		 * processes, do that here rather than trying to allocate
		 * another audit record.
		 *
		 * Note: we might wish to be able to continue here in the
		 * future, if the system recovers.  That should be possible
		 * by means of checking the condition in a loop around
		 * cv_wait().  It might be desirable to reevaluate whether an
		 * audit record is still required for this event by
		 * re-calling au_preselect().
		 */
		if (audit_in_failure &&
		    priv_check(td, PRIV_AUDIT_FAILSTOP) != 0) {
			cv_wait(&audit_fail_cv, &audit_mtx);
			panic("audit_failing_stop: thread continued");
		}
		td->td_ar = audit_new(event, td);
		if (td->td_ar != NULL)
			td->td_pflags |= TDP_AUDITREC;
	} else if (audit_pipe_preselect(auid, event, class, AU_PRS_BOTH, 0)) {
Example #21
0
/*
 * VFS call to manage extended attributes in UFS.  If filename_vp is
 * non-NULL, it must be passed in locked, and regardless of errors in
 * processing, will be unlocked.
 */
int
ufs_extattrctl(struct mount *mp, int cmd, struct vnode *filename_vp,
    int attrnamespace, const char *attrname)
{
	struct ufsmount *ump = VFSTOUFS(mp);
	struct thread *td = curthread;
	int error;

	/*
	 * Processes with privilege, but in jail, are not allowed to
	 * configure extended attributes.
	 */
	error = priv_check(td, PRIV_UFS_EXTATTRCTL);
	if (error) {
		if (filename_vp != NULL)
			VOP_UNLOCK(filename_vp, 0);
		return (error);
	}

	/*
	 * We only allow extattrctl(2) on UFS1 file systems, as UFS2 uses
	 * native extended attributes.
	 */
	if (ump->um_fstype != UFS1) {
		if (filename_vp != NULL)
			VOP_UNLOCK(filename_vp, 0);
		return (EOPNOTSUPP);
	}

	switch(cmd) {
	case UFS_EXTATTR_CMD_START:
		if (filename_vp != NULL) {
			VOP_UNLOCK(filename_vp, 0);
			return (EINVAL);
		}
		if (attrname != NULL)
			return (EINVAL);

		error = ufs_extattr_start(mp, td);

		return (error);
		
	case UFS_EXTATTR_CMD_STOP:
		if (filename_vp != NULL) {
			VOP_UNLOCK(filename_vp, 0);
			return (EINVAL);
		}
		if (attrname != NULL)
			return (EINVAL);

		error = ufs_extattr_stop(mp, td);

		return (error);

	case UFS_EXTATTR_CMD_ENABLE:

		if (filename_vp == NULL)
			return (EINVAL);
		if (attrname == NULL) {
			VOP_UNLOCK(filename_vp, 0);
			return (EINVAL);
		}

		/*
		 * ufs_extattr_enable_with_open() will always unlock the
		 * vnode, regardless of failure.
		 */
		ufs_extattr_uepm_lock(ump);
		error = ufs_extattr_enable_with_open(ump, filename_vp,
		    attrnamespace, attrname, td);
		ufs_extattr_uepm_unlock(ump);

		return (error);

	case UFS_EXTATTR_CMD_DISABLE:

		if (filename_vp != NULL) {
			VOP_UNLOCK(filename_vp, 0);
			return (EINVAL);
		}
		if (attrname == NULL)
			return (EINVAL);

		ufs_extattr_uepm_lock(ump);
		error = ufs_extattr_disable(ump, attrnamespace, attrname,
		    td);
		ufs_extattr_uepm_unlock(ump);

		return (error);

	default:
		return (EINVAL);
	}
}
Example #22
0
static int
ugen_set_power_mode(struct usb_fifo *f, int mode)
{
	struct usb_device *udev = f->udev;
	int err;
	uint8_t old_mode;

	if ((udev == NULL) ||
	    (udev->parent_hub == NULL)) {
		return (EINVAL);
	}
	err = priv_check(curthread, PRIV_DRIVER);
	if (err)
		return (err);

	/* get old power mode */
	old_mode = udev->power_mode;

	/* if no change, then just return */
	if (old_mode == mode)
		return (0);

	switch (mode) {
	case USB_POWER_MODE_OFF:
		/* get the device unconfigured */
		err = ugen_set_config(f, USB_UNCONFIG_INDEX);
		if (err) {
			DPRINTFN(0, "Could not unconfigure "
			    "device (ignored)\n");
		}

		/* clear port enable */
		err = usbd_req_clear_port_feature(udev->parent_hub,
		    NULL, udev->port_no, UHF_PORT_ENABLE);
		break;

	case USB_POWER_MODE_ON:
	case USB_POWER_MODE_SAVE:
		break;

	case USB_POWER_MODE_RESUME:
#if USB_HAVE_POWERD
		/* let USB-powerd handle resume */
		USB_BUS_LOCK(udev->bus);
		udev->pwr_save.write_refs++;
		udev->pwr_save.last_xfer_time = ticks;
		USB_BUS_UNLOCK(udev->bus);

		/* set new power mode */
		usbd_set_power_mode(udev, USB_POWER_MODE_SAVE);

		/* wait for resume to complete */
		usb_pause_mtx(NULL, hz / 4);

		/* clear write reference */
		USB_BUS_LOCK(udev->bus);
		udev->pwr_save.write_refs--;
		USB_BUS_UNLOCK(udev->bus);
#endif
		mode = USB_POWER_MODE_SAVE;
		break;

	case USB_POWER_MODE_SUSPEND:
#if USB_HAVE_POWERD
		/* let USB-powerd handle suspend */
		USB_BUS_LOCK(udev->bus);
		udev->pwr_save.last_xfer_time = ticks - (256 * hz);
		USB_BUS_UNLOCK(udev->bus);
#endif
		mode = USB_POWER_MODE_SAVE;
		break;

	default:
		return (EINVAL);
	}

	if (err)
		return (ENXIO);		/* I/O failure */

	/* if we are powered off we need to re-enumerate first */
	if (old_mode == USB_POWER_MODE_OFF) {
		if (udev->flags.usb_mode == USB_MODE_HOST) {
			if (udev->re_enumerate_wait == 0)
				udev->re_enumerate_wait = 1;
		}
		/* set power mode will wake up the explore thread */
	}

	/* set new power mode */
	usbd_set_power_mode(udev, mode);

	return (0);			/* success */
}
Example #23
0
/*
 * Mount system call
 */
static int
reiserfs_mount(struct mount *mp)
{
	size_t size;
	int error, len;
	accmode_t accmode;
	char *path, *fspec;
	struct vnode *devvp;
	struct vfsoptlist *opts;
	struct reiserfs_mount *rmp;
	struct reiserfs_sb_info *sbi;
	struct nameidata nd, *ndp = &nd;
	struct thread *td;

	td = curthread;
	if (!(mp->mnt_flag & MNT_RDONLY))
		return EROFS;

	/* Get the new options passed to mount */
	opts = mp->mnt_optnew;

	/* `fspath' contains the mount point (eg. /mnt/linux); REQUIRED */
	vfs_getopt(opts, "fspath", (void **)&path, NULL);
	reiserfs_log(LOG_INFO, "mount point is `%s'\n", path);

	/* `from' contains the device name (eg. /dev/ad0s1); REQUIRED */
	fspec = NULL;
	error = vfs_getopt(opts, "from", (void **)&fspec, &len);
	if (!error && fspec[len - 1] != '\0')
		return (EINVAL);
	reiserfs_log(LOG_INFO, "device is `%s'\n", fspec);

	/* Handle MNT_UPDATE (mp->mnt_flag) */
	if (mp->mnt_flag & MNT_UPDATE) {
		/* For now, only NFS export is supported. */
		if (vfs_flagopt(opts, "export", NULL, 0))
			return (0);
	}

	/* Not an update, or updating the name: look up the name
	 * and verify that it refers to a sensible disk device. */
	if (fspec == NULL)
		return (EINVAL);

	NDINIT(ndp, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, fspec, td);
	if ((error = namei(ndp)) != 0)
		return (error);
	NDFREE(ndp, NDF_ONLY_PNBUF);
	devvp = ndp->ni_vp;

	if (!vn_isdisk(devvp, &error)) {
		vput(devvp);
		return (error);
	}

	/* If mount by non-root, then verify that user has necessary
	 * permissions on the device. */
	accmode = VREAD;
	if ((mp->mnt_flag & MNT_RDONLY) == 0)
		accmode |= VWRITE;
	error = VOP_ACCESS(devvp, accmode, td->td_ucred, td);
	if (error)
		error = priv_check(td, PRIV_VFS_MOUNT_PERM);
	if (error) {
		vput(devvp);
		return (error);
	}

	if ((mp->mnt_flag & MNT_UPDATE) == 0) {
		error = reiserfs_mountfs(devvp, mp, td);
	} else {
		/* TODO Handle MNT_UPDATE */
		vput(devvp);
		return (EOPNOTSUPP);
	}

	if (error) {
		vrele(devvp);
		return (error);
	}

	rmp = VFSTOREISERFS(mp);
	sbi = rmp->rm_reiserfs;

	/*
	 * Note that this strncpy() is ok because of a check at the start
	 * of reiserfs_mount().
	 */
	reiserfs_log(LOG_DEBUG, "prepare statfs data\n");
	(void)copystr(fspec, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, &size);
	bzero(mp->mnt_stat.f_mntfromname + size, MNAMELEN - size);
	(void)reiserfs_statfs(mp, &mp->mnt_stat);

	reiserfs_log(LOG_DEBUG, "done\n");
	return (0);
}
Example #24
0
/* ARGSUSED */
int
sys_audit(struct thread *td, struct audit_args *uap)
{
	int error;
	void * rec;
	struct kaudit_record *ar;

	if (jailed(td->td_ucred))
		return (ENOSYS);
	error = priv_check(td, PRIV_AUDIT_SUBMIT);
	if (error)
		return (error);

	if ((uap->length <= 0) || (uap->length > audit_qctrl.aq_bufsz))
		return (EINVAL);

	ar = currecord();

	/*
	 * If there's no current audit record (audit() itself not audited)
	 * commit the user audit record.
	 */
	if (ar == NULL) {

		/*
		 * This is not very efficient; we're required to allocate a
		 * complete kernel audit record just so the user record can
		 * tag along.
		 *
		 * XXXAUDIT: Maybe AUE_AUDIT in the system call context and
		 * special pre-select handling?
		 */
		td->td_ar = audit_new(AUE_NULL, td);
		if (td->td_ar == NULL)
			return (ENOTSUP);
		td->td_pflags |= TDP_AUDITREC;
		ar = td->td_ar;
	}

	if (uap->length > MAX_AUDIT_RECORD_SIZE)
		return (EINVAL);

	rec = malloc(uap->length, M_AUDITDATA, M_WAITOK);

	error = copyin(uap->record, rec, uap->length);
	if (error)
		goto free_out;

	/* Verify the record. */
	if (bsm_rec_verify(rec) == 0) {
		error = EINVAL;
		goto free_out;
	}

#ifdef MAC
	error = mac_system_check_audit(td->td_ucred, rec, uap->length);
	if (error)
		goto free_out;
#endif

	/*
	 * Attach the user audit record to the kernel audit record.  Because
	 * this system call is an auditable event, we will write the user
	 * record along with the record for this audit event.
	 *
	 * XXXAUDIT: KASSERT appropriate starting values of k_udata, k_ulen,
	 * k_ar_commit & AR_COMMIT_USER?
	 */
	ar->k_udata = rec;
	ar->k_ulen  = uap->length;
	ar->k_ar_commit |= AR_COMMIT_USER;

	/*
	 * Currently we assume that all preselection has been performed in
	 * userspace.  We unconditionally set these masks so that the records
	 * get committed both to the trail and pipe.  In the future we will
	 * want to setup kernel based preselection.
	 */
	ar->k_ar_commit |= (AR_PRESELECT_USER_TRAIL | AR_PRESELECT_USER_PIPE);
	return (0);

free_out:
	/*
	 * audit_syscall_exit() will free the audit record on the thread even
	 * if we allocated it above.
	 */
	free(rec, M_AUDITDATA);
	return (error);
}
Example #25
0
static int
ntfs_mount(struct mount *mp)
{
	int err = 0, error;
	struct vnode *devvp;
	struct nameidata ndp;
	struct thread *td;
	char *from;

	td = curthread;
	if (vfs_filteropt(mp->mnt_optnew, ntfs_opts))
		return (EINVAL);

	/* Force mount as read-only. */
	MNT_ILOCK(mp);
	mp->mnt_flag |= MNT_RDONLY;
	MNT_IUNLOCK(mp);

	from = vfs_getopts(mp->mnt_optnew, "from", &error);
	if (error)	
		return (error);

	/*
	 * If updating, check whether changing from read-only to
	 * read/write.
	 */
	if (mp->mnt_flag & MNT_UPDATE) {
		if (vfs_flagopt(mp->mnt_optnew, "export", NULL, 0)) {
			/* Process export requests in vfs_mount.c */
			return (0);
		} else {
			printf("ntfs_mount(): MNT_UPDATE not supported\n");
			return (EINVAL);
		}
	}

	/*
	 * Not an update, or updating the name: look up the name
	 * and verify that it refers to a sensible block device.
	 */
	NDINIT(&ndp, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, from, td);
	err = namei(&ndp);
	if (err)
		return (err);
	NDFREE(&ndp, NDF_ONLY_PNBUF);
	devvp = ndp.ni_vp;

	if (!vn_isdisk(devvp, &err))  {
		vput(devvp);
		return (err);
	}

	/*
	 * If mount by non-root, then verify that user has necessary
	 * permissions on the device.
	 */
	err = VOP_ACCESS(devvp, VREAD, td->td_ucred, td);
	if (err)
		err = priv_check(td, PRIV_VFS_MOUNT_PERM);
	if (err) {
		vput(devvp);
		return (err);
	}


	/*
	 * Since this is a new mount, we want the names for the device and
	 * the mount point copied in.  If an error occurs, the mountpoint is
	 * discarded by the upper level code.  Note that vfs_mount() handles
	 * copying the mountpoint f_mntonname for us, so we don't have to do
	 * it here unless we want to set it to something other than "path"
	 * for some rason.
	 */

	err = ntfs_mountfs(devvp, mp, td);
	if (err == 0) {

		/* Save "mounted from" info for mount point. */
		vfs_mountedfrom(mp, from);
	} else
		vrele(devvp);
	return (err);
}
Example #26
0
/* ARGSUSED */
int
auditon(struct thread *td, struct auditon_args *uap)
{
	struct ucred *cred, *newcred, *oldcred;
	int error;
	union auditon_udata udata;
	struct proc *tp;

	if (jailed(td->td_ucred))
		return (ENOSYS);
	AUDIT_ARG_CMD(uap->cmd);

#ifdef MAC
	error = mac_system_check_auditon(td->td_ucred, uap->cmd);
	if (error)
		return (error);
#endif

	error = priv_check(td, PRIV_AUDIT_CONTROL);
	if (error)
		return (error);

	if ((uap->length <= 0) || (uap->length > sizeof(union auditon_udata)))
		return (EINVAL);

	memset((void *)&udata, 0, sizeof(udata));

	/*
	 * Some of the GET commands use the arguments too.
	 */
	switch (uap->cmd) {
	case A_SETPOLICY:
	case A_OLDSETPOLICY:
	case A_SETKMASK:
	case A_SETQCTRL:
	case A_OLDSETQCTRL:
	case A_SETSTAT:
	case A_SETUMASK:
	case A_SETSMASK:
	case A_SETCOND:
	case A_OLDSETCOND:
	case A_SETCLASS:
	case A_SETPMASK:
	case A_SETFSIZE:
	case A_SETKAUDIT:
	case A_GETCLASS:
	case A_GETPINFO:
	case A_GETPINFO_ADDR:
	case A_SENDTRIGGER:
		error = copyin(uap->data, (void *)&udata, uap->length);
		if (error)
			return (error);
		AUDIT_ARG_AUDITON(&udata);
		break;
	}

	/*
	 * XXXAUDIT: Locking?
	 */
	switch (uap->cmd) {
	case A_OLDGETPOLICY:
	case A_GETPOLICY:
		if (uap->length == sizeof(udata.au_policy64)) {
			if (!audit_fail_stop)
				udata.au_policy64 |= AUDIT_CNT;
			if (audit_panic_on_write_fail)
				udata.au_policy64 |= AUDIT_AHLT;
			if (audit_argv)
				udata.au_policy64 |= AUDIT_ARGV;
			if (audit_arge)
				udata.au_policy64 |= AUDIT_ARGE;
			break;
		}
		if (uap->length != sizeof(udata.au_policy))
			return (EINVAL);
		if (!audit_fail_stop)
			udata.au_policy |= AUDIT_CNT;
		if (audit_panic_on_write_fail)
			udata.au_policy |= AUDIT_AHLT;
		if (audit_argv)
			udata.au_policy |= AUDIT_ARGV;
		if (audit_arge)
			udata.au_policy |= AUDIT_ARGE;
		break;

	case A_OLDSETPOLICY:
	case A_SETPOLICY:
		if (uap->length == sizeof(udata.au_policy64)) {
			if (udata.au_policy & (~AUDIT_CNT|AUDIT_AHLT|
			    AUDIT_ARGV|AUDIT_ARGE))
				return (EINVAL);
			audit_fail_stop = ((udata.au_policy64 & AUDIT_CNT) ==
			    0);
			audit_panic_on_write_fail = (udata.au_policy64 &
			    AUDIT_AHLT);
			audit_argv = (udata.au_policy64 & AUDIT_ARGV);
			audit_arge = (udata.au_policy64 & AUDIT_ARGE);
			break;
		}
		if (uap->length != sizeof(udata.au_policy))
			return (EINVAL);
		if (udata.au_policy & ~(AUDIT_CNT|AUDIT_AHLT|AUDIT_ARGV|
		    AUDIT_ARGE))
			return (EINVAL);
		/*
		 * XXX - Need to wake up waiters if the policy relaxes?
		 */
		audit_fail_stop = ((udata.au_policy & AUDIT_CNT) == 0);
		audit_panic_on_write_fail = (udata.au_policy & AUDIT_AHLT);
		audit_argv = (udata.au_policy & AUDIT_ARGV);
		audit_arge = (udata.au_policy & AUDIT_ARGE);
		break;

	case A_GETKMASK:
		if (uap->length != sizeof(udata.au_mask))
			return (EINVAL);
		udata.au_mask = audit_nae_mask;
		break;

	case A_SETKMASK:
		if (uap->length != sizeof(udata.au_mask))
			return (EINVAL);
		audit_nae_mask = udata.au_mask;
		break;

	case A_OLDGETQCTRL:
	case A_GETQCTRL:
		if (uap->length == sizeof(udata.au_qctrl64)) {
			udata.au_qctrl64.aq64_hiwater =
			    (u_int64_t)audit_qctrl.aq_hiwater;
			udata.au_qctrl64.aq64_lowater =
			    (u_int64_t)audit_qctrl.aq_lowater;
			udata.au_qctrl64.aq64_bufsz =
			    (u_int64_t)audit_qctrl.aq_bufsz;
			udata.au_qctrl64.aq64_minfree =
			    (u_int64_t)audit_qctrl.aq_minfree;
			break;
		}
		if (uap->length != sizeof(udata.au_qctrl))
			return (EINVAL);
		udata.au_qctrl = audit_qctrl;
		break;

	case A_OLDSETQCTRL:
	case A_SETQCTRL:
		if (uap->length == sizeof(udata.au_qctrl64)) {
			if ((udata.au_qctrl64.aq64_hiwater > AQ_MAXHIGH) ||
			    (udata.au_qctrl64.aq64_lowater >=
			    udata.au_qctrl.aq_hiwater) ||
			    (udata.au_qctrl64.aq64_bufsz > AQ_MAXBUFSZ) ||
			    (udata.au_qctrl64.aq64_minfree < 0) ||
			    (udata.au_qctrl64.aq64_minfree > 100))
				return (EINVAL);
			audit_qctrl.aq_hiwater =
			    (int)udata.au_qctrl64.aq64_hiwater;
			audit_qctrl.aq_lowater =
			    (int)udata.au_qctrl64.aq64_lowater;
			audit_qctrl.aq_bufsz =
			    (int)udata.au_qctrl64.aq64_bufsz;
			audit_qctrl.aq_minfree =
			    (int)udata.au_qctrl64.aq64_minfree;
			audit_qctrl.aq_delay = -1;	/* Not used. */
			break;
		}
		if (uap->length != sizeof(udata.au_qctrl))
			return (EINVAL);
		if ((udata.au_qctrl.aq_hiwater > AQ_MAXHIGH) ||
		    (udata.au_qctrl.aq_lowater >= udata.au_qctrl.aq_hiwater) ||
		    (udata.au_qctrl.aq_bufsz > AQ_MAXBUFSZ) ||
		    (udata.au_qctrl.aq_minfree < 0) ||
		    (udata.au_qctrl.aq_minfree > 100))
			return (EINVAL);

		audit_qctrl = udata.au_qctrl;
		/* XXX The queue delay value isn't used with the kernel. */
		audit_qctrl.aq_delay = -1;
		break;

	case A_GETCWD:
		return (ENOSYS);
		break;

	case A_GETCAR:
		return (ENOSYS);
		break;

	case A_GETSTAT:
		return (ENOSYS);
		break;

	case A_SETSTAT:
		return (ENOSYS);
		break;

	case A_SETUMASK:
		return (ENOSYS);
		break;

	case A_SETSMASK:
		return (ENOSYS);
		break;

	case A_OLDGETCOND:
	case A_GETCOND:
		if (uap->length == sizeof(udata.au_cond64)) {
			if (audit_enabled && !audit_suspended)
				udata.au_cond64 = AUC_AUDITING;
			else
				udata.au_cond64 = AUC_NOAUDIT;
			break;
		}
		if (uap->length != sizeof(udata.au_cond))
			return (EINVAL);
		if (audit_enabled && !audit_suspended)
			udata.au_cond = AUC_AUDITING;
		else
			udata.au_cond = AUC_NOAUDIT;
		break;

	case A_OLDSETCOND:
	case A_SETCOND:
		if (uap->length == sizeof(udata.au_cond64)) {
			if (udata.au_cond64 == AUC_NOAUDIT)
				audit_suspended = 1;
			if (udata.au_cond64 == AUC_AUDITING)
				audit_suspended = 0;
			if (udata.au_cond64 == AUC_DISABLED) {
				audit_suspended = 1;
				audit_shutdown(NULL, 0);
			}
			break;
		}
		if (uap->length != sizeof(udata.au_cond))
			return (EINVAL);
		if (udata.au_cond == AUC_NOAUDIT)
			audit_suspended = 1;
		if (udata.au_cond == AUC_AUDITING)
			audit_suspended = 0;
		if (udata.au_cond == AUC_DISABLED) {
			audit_suspended = 1;
			audit_shutdown(NULL, 0);
		}
		break;

	case A_GETCLASS:
		if (uap->length != sizeof(udata.au_evclass))
			return (EINVAL);
		udata.au_evclass.ec_class = au_event_class(
		    udata.au_evclass.ec_number);
		break;

	case A_SETCLASS:
		if (uap->length != sizeof(udata.au_evclass))
			return (EINVAL);
		au_evclassmap_insert(udata.au_evclass.ec_number,
		    udata.au_evclass.ec_class);
		break;

	case A_GETPINFO:
		if (uap->length != sizeof(udata.au_aupinfo))
			return (EINVAL);
		if (udata.au_aupinfo.ap_pid < 1)
			return (ESRCH);
		if ((tp = pfind(udata.au_aupinfo.ap_pid)) == NULL)
			return (ESRCH);
		if ((error = p_cansee(td, tp)) != 0) {
			PROC_UNLOCK(tp);
			return (error);
		}
		cred = tp->p_ucred;
		if (cred->cr_audit.ai_termid.at_type == AU_IPv6) {
			PROC_UNLOCK(tp);
			return (EINVAL);
		}
		udata.au_aupinfo.ap_auid = cred->cr_audit.ai_auid;
		udata.au_aupinfo.ap_mask.am_success =
		    cred->cr_audit.ai_mask.am_success;
		udata.au_aupinfo.ap_mask.am_failure =
		    cred->cr_audit.ai_mask.am_failure;
		udata.au_aupinfo.ap_termid.machine =
		    cred->cr_audit.ai_termid.at_addr[0];
		udata.au_aupinfo.ap_termid.port =
		    (dev_t)cred->cr_audit.ai_termid.at_port;
		udata.au_aupinfo.ap_asid = cred->cr_audit.ai_asid;
		PROC_UNLOCK(tp);
		break;

	case A_SETPMASK:
		if (uap->length != sizeof(udata.au_aupinfo))
			return (EINVAL);
		if (udata.au_aupinfo.ap_pid < 1)
			return (ESRCH);
		newcred = crget();
		if ((tp = pfind(udata.au_aupinfo.ap_pid)) == NULL) {
			crfree(newcred);
			return (ESRCH);
		}
		if ((error = p_cansee(td, tp)) != 0) {
			PROC_UNLOCK(tp);
			crfree(newcred);
			return (error);
		}
		oldcred = tp->p_ucred;
		crcopy(newcred, oldcred);
		newcred->cr_audit.ai_mask.am_success =
		    udata.au_aupinfo.ap_mask.am_success;
		newcred->cr_audit.ai_mask.am_failure =
		    udata.au_aupinfo.ap_mask.am_failure;
		td->td_proc->p_ucred = newcred;
		PROC_UNLOCK(tp);
		crfree(oldcred);
		break;

	case A_SETFSIZE:
		if (uap->length != sizeof(udata.au_fstat))
			return (EINVAL);
		if ((udata.au_fstat.af_filesz != 0) &&
		   (udata.au_fstat.af_filesz < MIN_AUDIT_FILE_SIZE))
			return (EINVAL);
		audit_fstat.af_filesz = udata.au_fstat.af_filesz;
		break;

	case A_GETFSIZE:
		if (uap->length != sizeof(udata.au_fstat))
			return (EINVAL);
		udata.au_fstat.af_filesz = audit_fstat.af_filesz;
		udata.au_fstat.af_currsz = audit_fstat.af_currsz;
		break;

	case A_GETPINFO_ADDR:
		if (uap->length != sizeof(udata.au_aupinfo_addr))
			return (EINVAL);
		if (udata.au_aupinfo_addr.ap_pid < 1)
			return (ESRCH);
		if ((tp = pfind(udata.au_aupinfo_addr.ap_pid)) == NULL)
			return (ESRCH);
		cred = tp->p_ucred;
		udata.au_aupinfo_addr.ap_auid = cred->cr_audit.ai_auid;
		udata.au_aupinfo_addr.ap_mask.am_success =
		    cred->cr_audit.ai_mask.am_success;
		udata.au_aupinfo_addr.ap_mask.am_failure =
		    cred->cr_audit.ai_mask.am_failure;
		udata.au_aupinfo_addr.ap_termid = cred->cr_audit.ai_termid;
		udata.au_aupinfo_addr.ap_asid = cred->cr_audit.ai_asid;
		PROC_UNLOCK(tp);
		break;

	case A_GETKAUDIT:
		if (uap->length != sizeof(udata.au_kau_info))
			return (EINVAL);
		audit_get_kinfo(&udata.au_kau_info);
		break;

	case A_SETKAUDIT:
		if (uap->length != sizeof(udata.au_kau_info))
			return (EINVAL);
		if (udata.au_kau_info.ai_termid.at_type != AU_IPv4 &&
		    udata.au_kau_info.ai_termid.at_type != AU_IPv6)
			return (EINVAL);
		audit_set_kinfo(&udata.au_kau_info);
		break;

	case A_SENDTRIGGER:
		if (uap->length != sizeof(udata.au_trigger))
			return (EINVAL);
		if ((udata.au_trigger < AUDIT_TRIGGER_MIN) ||
		    (udata.au_trigger > AUDIT_TRIGGER_MAX))
			return (EINVAL);
		return (audit_send_trigger(udata.au_trigger));

	default:
		return (EINVAL);
	}

	/*
	 * Copy data back to userspace for the GET comands.
	 */
	switch (uap->cmd) {
	case A_GETPOLICY:
	case A_OLDGETPOLICY:
	case A_GETKMASK:
	case A_GETQCTRL:
	case A_OLDGETQCTRL:
	case A_GETCWD:
	case A_GETCAR:
	case A_GETSTAT:
	case A_GETCOND:
	case A_OLDGETCOND:
	case A_GETCLASS:
	case A_GETPINFO:
	case A_GETFSIZE:
	case A_GETPINFO_ADDR:
	case A_GETKAUDIT:
		error = copyout((void *)&udata, uap->data, uap->length);
		if (error)
			return (error);
		break;
	}

	return (0);
}
Example #27
0
int
udp6_output(struct in6pcb *in6p, struct mbuf *m, struct sockaddr *addr6,
	    struct mbuf *control, struct thread *td)
{
	u_int32_t ulen = m->m_pkthdr.len;
	u_int32_t plen = sizeof(struct udphdr) + ulen;
	struct ip6_hdr *ip6;
	struct udphdr *udp6;
	struct in6_addr *laddr, *faddr;
	u_short fport;
	int error = 0;
	struct ip6_pktopts opt, *stickyopt = in6p->in6p_outputopts;
	int priv;
	int af = AF_INET6, hlen = sizeof(struct ip6_hdr);
	int flags;
	struct sockaddr_in6 tmp;

	priv = !priv_check(td, PRIV_ROOT);	/* 1 if privileged, 0 if not */
	if (control) {
		if ((error = ip6_setpktoptions(control, &opt,
		    in6p->in6p_outputopts, 
		    IPPROTO_UDP, priv)) != 0)
			goto release;
		in6p->in6p_outputopts = &opt;
	}

	if (addr6) {
		/*
		 * IPv4 version of udp_output calls in_pcbconnect in this case,
		 * which needs splnet and affects performance.
		 * Since we saw no essential reason for calling in_pcbconnect,
		 * we get rid of such kind of logic, and call in6_selectsrc
		 * and in6_pcbsetport in order to fill in the local address
		 * and the local port.
		 */
		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr6;
		if (sin6->sin6_port == 0) {
			error = EADDRNOTAVAIL;
			goto release;
		}

		if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) {
			/* how about ::ffff:0.0.0.0 case? */
			error = EISCONN;
			goto release;
		}
		if (!prison_remote_ip(td, addr6)) {
			error = EAFNOSUPPORT; /* IPv4 only jail */
			goto release;
		}

		/* protect *sin6 from overwrites */
		tmp = *sin6;
		sin6 = &tmp;

		faddr = &sin6->sin6_addr;
		fport = sin6->sin6_port; /* allow 0 port */

		if (IN6_IS_ADDR_V4MAPPED(faddr)) {
			if ((in6p->in6p_flags & IN6P_IPV6_V6ONLY)) {
				/*
				 * I believe we should explicitly discard the
				 * packet when mapped addresses are disabled,
				 * rather than send the packet as an IPv6 one.
				 * If we chose the latter approach, the packet
				 * might be sent out on the wire based on the
				 * default route, the situation which we'd
				 * probably want to avoid.
				 * (20010421 [email protected])
				 */
				error = EINVAL;
				goto release;
			} else
				af = AF_INET;
		}

		/* KAME hack: embed scopeid */
		if (in6_embedscope(&sin6->sin6_addr, sin6, in6p, NULL) != 0) {
			error = EINVAL;
			goto release;
		}

		if (!IN6_IS_ADDR_V4MAPPED(faddr)) {
			laddr = in6_selectsrc(sin6, in6p->in6p_outputopts,
					      in6p->in6p_moptions,
					      &in6p->in6p_route,
					      &in6p->in6p_laddr, &error, NULL);
		} else
			laddr = &in6p->in6p_laddr;	/* XXX */
		if (laddr == NULL) {
			if (error == 0)
				error = EADDRNOTAVAIL;
			goto release;
		}
		if (in6p->in6p_lport == 0 &&
		    (error = in6_pcbsetport(laddr, in6p, td)) != 0)
			goto release;
	} else {
		if (IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) {
			error = ENOTCONN;
			goto release;
		}
		if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr)) {
			if ((in6p->in6p_flags & IN6P_IPV6_V6ONLY)) {
				/*
				 * XXX: this case would happen when the
				 * application sets the V6ONLY flag after
				 * connecting the foreign address.
				 * Such applications should be fixed,
				 * so we bark here.
				 */
				log(LOG_INFO, "udp6_output: IPV6_V6ONLY "
				    "option was set for a connected socket\n");
				error = EINVAL;
				goto release;
			} else
				af = AF_INET;
		}
		laddr = &in6p->in6p_laddr;
		faddr = &in6p->in6p_faddr;
		fport = in6p->in6p_fport;
	}

	if (af == AF_INET)
		hlen = sizeof(struct ip);

	/*
	 * Calculate data length and get a mbuf
	 * for UDP and IP6 headers.
	 */
	M_PREPEND(m, hlen + sizeof(struct udphdr), MB_DONTWAIT);
	if (m == NULL) {
		error = ENOBUFS;
		goto release;
	}

	/*
	 * Stuff checksum and output datagram.
	 */
	udp6 = (struct udphdr *)(mtod(m, caddr_t) + hlen);
	udp6->uh_sport = in6p->in6p_lport; /* lport is always set in the PCB */
	udp6->uh_dport = fport;
	if (plen <= 0xffff)
		udp6->uh_ulen = htons((u_short)plen);
	else
		udp6->uh_ulen = 0;
	udp6->uh_sum = 0;

	switch (af) {
	case AF_INET6:
		ip6 = mtod(m, struct ip6_hdr *);
		ip6->ip6_flow	= in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
		ip6->ip6_vfc 	&= ~IPV6_VERSION_MASK;
		ip6->ip6_vfc 	|= IPV6_VERSION;
#if 0				/* ip6_plen will be filled in ip6_output. */
		ip6->ip6_plen	= htons((u_short)plen);
#endif
		ip6->ip6_nxt	= IPPROTO_UDP;
		ip6->ip6_hlim	= in6_selecthlim(in6p,
						 in6p->in6p_route.ro_rt ?
						 in6p->in6p_route.ro_rt->rt_ifp : NULL);
		ip6->ip6_src	= *laddr;
		ip6->ip6_dst	= *faddr;

		if ((udp6->uh_sum = in6_cksum(m, IPPROTO_UDP,
				sizeof(struct ip6_hdr), plen)) == 0) {
			udp6->uh_sum = 0xffff;
		}

		flags = 0;

		udp6stat.udp6s_opackets++;
		error = ip6_output(m, in6p->in6p_outputopts, &in6p->in6p_route,
		    flags, in6p->in6p_moptions, NULL, in6p);
		break;
	case AF_INET:
		error = EAFNOSUPPORT;
		goto release;
	}
	goto releaseopt;

release:
	m_freem(m);

releaseopt:
	if (control) {
		ip6_clearpktopts(in6p->in6p_outputopts, -1);
		in6p->in6p_outputopts = stickyopt;
		m_freem(control);
	}
	return (error);
}