Example #1
0
int
main(void)
{
    struct kerberos_config *config;
    struct remctl_result *result;
    struct process *remctld;
    const char *expected;
    const char *test[] = { "help", NULL };

    /* Unless we have Kerberos available, we can't really do anything. */
    config = kerberos_setup(TAP_KRB_NEEDS_KEYTAB);

    plan(12);

    /* Run the tests with summaries. */
    remctld = remctld_start(config, "data/conf-simple", NULL);
    result = remctl("localhost", 14373, config->principal, test);
    ok(result != NULL, "summary command works");
    if (result == NULL)
        bail("remctl returned NULL");
    is_int(0, result->status, "...with correct status");
    is_int(0, result->stderr_len, "...and no stderr");
    is_int(32, result->stdout_len, "...and correct stdout_len");
    if (result->stdout_buf == NULL)
        ok(0, "...and correct data");
    else {
        expected = "summary text\nsubcommand summary\n";
        ok(memcmp(expected, result->stdout_buf, 32) == 0,
           "...and correct data");
    }
    is_string(NULL, result->error, "...and no error");
    remctl_result_free(result);
    process_stop(remctld);

    /* Run the tests with the no-summary configuration. */
    remctld = remctld_start(config, "data/conf-nosummary", NULL);
    result = remctl("localhost", 14373, config->principal, test);
    ok(result != NULL, "summary command works");
    if (result == NULL)
        bail("remctl returned NULL");
    is_int(0, result->status, "...with correct status");
    is_int(0, result->stderr_len, "...and no stderr");
    is_int(0, result->stdout_len, "...and no stdout");
    ok(result->error != NULL, "...and error");
    is_string("Unknown command", result->error, "...and correct error text");
    remctl_result_free(result);
    process_stop(remctld);

    return 0;
}
int process_action(const char *pidFilename, const char *action, bool *stop)
{
    *stop = false;
    if (action == NULL)
    {
        return 0;
    }

    if (strcmp(action, "stop") == 0)
    {
        *stop = true;
        return process_stop(pidFilename);
    }
    else if (strcmp(action, "restart") == 0)
    {
        return process_restart(pidFilename);
    }
    else if (strcmp(action, "start") == 0)
    {
        return process_start(pidFilename);
    }
    else
    {
        fprintf(stderr, "invalid action: %s\n", action);
        return EINVAL;
    }
}
Example #3
0
/*
 * Stop all running processes.  This is called as a cleanup handler during
 * process shutdown.  The first argument, which says whether the test was
 * successful, is ignored, since the same actions should be performed
 * regardless.  The second argument says whether this is the primary process,
 * in which case we do the full shutdown.  Otherwise, we only free resources
 * but don't stop the process.
 */
static void
process_stop_all(int success UNUSED, int primary)
{
    while (processes != NULL) {
        if (primary)
            process_stop(processes);
        else
            process_free(processes);
    }
}
Example #4
0
void zmq::object_t::process_command (command_t &cmd_)
{
    switch (cmd_.type) {

    case command_t::revive:
        process_revive ();
        break;

    case command_t::stop:
        process_stop ();
        break;

    case command_t::plug:
        process_plug ();
        process_seqnum ();
        return;

    case command_t::own:
        process_own (cmd_.args.own.object);
        return;

    case command_t::attach:
        process_attach (cmd_.args.attach.engine);
        process_seqnum ();
        return;

    case command_t::bind:
        process_bind (cmd_.args.bind.in_pipe, cmd_.args.bind.out_pipe);
        process_seqnum ();
        return;

    case command_t::pipe_term:
        process_pipe_term ();
        return;

    case command_t::pipe_term_ack:
        process_pipe_term_ack ();
        return;

    case command_t::term_req:
        process_term_req (cmd_.args.term_req.object);
        return;

    case command_t::term:
        process_term ();
        return;

    case command_t::term_ack:
        process_term_ack ();
        return;

    default:
        zmq_assert (false);
    }
}
Example #5
0
void process_free(Process* proc) {
    MAGIC_ASSERT(proc);

    process_stop(proc);

    g_string_free(proc->arguments, TRUE);

    if(proc->atExitFunctions) {
        g_queue_free_full(proc->atExitFunctions, g_free);
    }

    MAGIC_CLEAR(proc);
    g_free(proc);
}
Example #6
0
/**
 * \brief Control request event handler
 *
 * This implementation handles the control requests for the GuiderPort device
 */
void	EVENT_USB_Device_ControlRequest() {
	if (is_control()) {
		if (is_incoming()) {
			switch (USB_ControlRequest.bRequest) {
			case FOCUSER_RESET:
				process_reset();
				break;
			case FOCUSER_SET:
				process_set();
				break;
			case FOCUSER_LOCK:
				process_lock();
				break;
			case FOCUSER_STOP:
				process_stop();
				break;
			case FOCUSER_SERIAL:
				process_serial();
				break;
			}
		}
		if (is_outgoing()) {
			switch (USB_ControlRequest.bRequest) {
			case FOCUSER_GET:
				process_get();
				break;
			case FOCUSER_RCVR:
				process_rcvr();
				break;
			case FOCUSER_SAVED:
				process_saved();
				break;
			}
		}
	}
}
int main(int argc, char *argv[]) {

	SRunner *sr;
	int_t failed = 0;
	time_t prog_start, test_start, test_end;

	if (process_kill(PLACER("magmad", 18), SIGTERM, 10) < 0) {
		log_unit("Another instance of the Magma Daemon is already running and refuses to die.");
		exit(EXIT_FAILURE);
	}

	// Setup
	prog_start = time(NULL);

	// Updates the location of the config file if it was specified on the command line.
	check_args_parse(argc, argv);

	if (do_virus_check && !virus_check_data_path) {
		virus_check_data_path = ns_dupe(VIRUS_CHECK_DATA_PATH);
	}

	if (do_tank_check && !tank_check_data_path) {
		tank_check_data_path = ns_dupe(TANK_CHECK_DATA_PATH);
	}

	if (do_dspam_check && !dspam_check_data_path) {
		dspam_check_data_path = ns_dupe(DSPAM_CHECK_DATA_PATH);
	}

	/*if (do_virus_check) printf("doing virus check: [%s]\n", !virus_check_data_path ? "NONE" : virus_check_data_path); else printf ("skipping virus check\n");
	if (do_tank_check) printf("doing tank check: [%s]\n", !tank_check_data_path ? "NONE" : tank_check_data_path); else printf ("skipping tank check\n");
	if (do_dspam_check) printf("doing dspam check: [%s]\n", !dspam_check_data_path ? "NONE" : dspam_check_data_path); else printf ("skipping dspam check\n");
	printf("config file: [%s]\n", magma.config.file);
	exit(EXIT_SUCCESS);*/

	if (!process_start()) {
		log_unit("Initialization error. Exiting.\n");
		status_set(-1);
		process_stop();
		exit(EXIT_FAILURE);
	}

	// Only during development...
	cache_flush();

	// Unit Test Config
	sr = srunner_create(suite_check_magma());

	// Add the suites.
	srunner_add_suite(sr, suite_check_core());
	srunner_add_suite(sr, suite_check_provide());
	srunner_add_suite(sr, suite_check_network());
	srunner_add_suite(sr, suite_check_objects());
	srunner_add_suite(sr, suite_check_users());

	// If were being run under Valgrind, we need to disable forking and increase the default timeout.
	// Under Valgrind, forked checks appear to improperly timeout.
	if (RUNNING_ON_VALGRIND == 0 && (failed = running_on_debugger()) == 0) {
		log_unit("Not being traced or profiled...\n");
		srunner_set_fork_status (sr, CK_FORK);
		case_timeout = RUN_TEST_CASE_TIMEOUT;
	}
	else {
		// Trace detection attempted was thwarted.
		if (failed == -1)	log_unit("Trace detection was thwarted.\n");
		else log_unit("Tracing or debugging is active...\n");
		srunner_set_fork_status (sr, CK_NOFORK);
		case_timeout = PROFILE_TEST_CASE_TIMEOUT;
	}

	// Execute
	log_unit("--------------------------------------------------------------------------\n");

	test_start = time(NULL);
	srunner_run_all(sr, CK_SILENT);
	test_end = time(NULL);

	// Output timing.
	log_unit("--------------------------------------------------------------------------\n");
	log_unit("%-63.63s %9lus\n", "TEST DURATION:", test_end - test_start);
	log_unit("%-63.63s %9lus\n", "TOTAL DURATION:", test_end - prog_start);

	// Summary
	log_unit("--------------------------------------------------------------------------\n");
	failed = srunner_ntests_failed(sr);
	srunner_print(sr, CK_NORMAL);

	// The Check Output Ending
	log_unit("--------------------------------------------------------------------------\n");

	// Cleanup and free the resources allocated by the check code.
	status_set(-1);
	srunner_free(sr);

	ns_cleanup(virus_check_data_path);
	ns_cleanup(tank_check_data_path);
	ns_cleanup(dspam_check_data_path);

	// Cleanup and free the resources allocated by the magma code.
	process_stop();
	system_init_umask();

	exit((failed == 0) ? EXIT_SUCCESS : EXIT_FAILURE);
}
Example #8
0
//
// 如何处理各种Command呢?
// 一般用于不同对象之间的通信,包括cross thread的通信
// 各种相关的函数实现已经定义好
//
void zmq::object_t::process_command(command_t &cmd_) {
    switch (cmd_.type) {

        case command_t::activate_read:
            process_activate_read();
            break;

        case command_t::activate_write:
            process_activate_write(cmd_.args.activate_write.msgs_read);
            break;

        case command_t::stop:
            process_stop();
            break;

        case command_t::plug:
            process_plug();
            process_seqnum();
            break;

        case command_t::own:
            process_own(cmd_.args.own.object);
            process_seqnum();
            break;

        case command_t::attach:
            process_attach(cmd_.args.attach.engine);
            process_seqnum();
            break;

        case command_t::bind:
            process_bind(cmd_.args.bind.pipe);
            process_seqnum();
            break;

        case command_t::hiccup:
            process_hiccup(cmd_.args.hiccup.pipe);
            break;

        case command_t::pipe_term:
            process_pipe_term();
            break;

        case command_t::pipe_term_ack:
            process_pipe_term_ack();
            break;

        case command_t::term_req:
            process_term_req(cmd_.args.term_req.object);
            break;

        case command_t::term:
            process_term(cmd_.args.term.linger);
            break;

        case command_t::term_ack:
            process_term_ack();
            break;

        case command_t::reap:
            process_reap(cmd_.args.reap.socket);
            break;

        case command_t::reaped:
            process_reaped();
            break;

        case command_t::inproc_connected:
            process_seqnum();
            break;

        case command_t::done:
        default:
            zmq_assert (false);
    }
}
Example #9
0
int main(int argc, char *argv[])
{
	uint8_t *tab_rp_bits;
	uint16_t *tab_rp_registers;
	uint16_t *rd_position_registers;
    uint16_t *tab_rp_registers_bad;
    modbus_t *ctx;

/***********************************************************************
* feedback is used to store the return value of every called function
* rc is used to store the return value of the modbus command 
* resend is used to define the resend times if the command is failed
* i is used for the loop parameter
* insert_bit is used to indicate the calibarate function if there is value to set
* num is used to store the number of data blocks in database 
* use_backend is used to indicate the modbus mode is rtu
* next_option is used to take the command options
* pre_step, curr_step are used to indicate the previous step number and current position step number
* pre_length and value indicate the latest posiotion in database and current position
* SLEN is a kind of struct used to store the database blocks
************************************************************************/
    int feedback,i; 
	int insert_bit, nb_points,num =0;
	int next_option;
	long curr_step;
	long pystep = -1;
	double value;
	double pdepth,pspacing,pdwell,pinterval;
	double profiled,stopped;
	double depth,dwell,spacing,interval;
	double last_position;
	int profilebit =0,feedback1,feedback2;
	int modbus=0;
	int motor_stop = 0;
	char * command_arg = "";
	char * return_value;
	double in_position = 0;
	SLEN *examp;
	ARF  *config, *profile,*off_set;
	modbus_mapping_t *mb_mapping;
	int   ShmID;      
	int *ShmPTR;
	int stop_indicator = 0;

	key_t MyKey;
	MyKey   = ftok(".", 's');    
    ShmID   = shmget(MyKey, sizeof(int), IPC_CREAT | 0666);
    ShmPTR  = (int *) shmat(ShmID, NULL, 0);

	tab_rp_registers = (uint16_t *) malloc(4 * sizeof(uint16_t));
	rd_position_registers = (uint16_t *) malloc(2 * sizeof(uint16_t));
	tab_rp_registers_bad = (uint16_t *) malloc(2 * sizeof(uint16_t));

	config = (ARF*)malloc( 10 * sizeof(ARF) );
	if ( config == NULL ) 
	{
		printf("Error: Out of Memory, use ./master reset to reset memory\n"); 
		exit(1);
	}
	const char *const short_options = "hd::u::l:p::cD::w::s::i::gSmt::";
	const struct option long_options[] = {
        { "help",              0,NULL, 'h'},
        { "down",              2,NULL, 'd'},
		{ "up",                2,NULL, 'u'},
		{ "length",            1,NULL, 'l'},
		{ "position",          2,NULL, 'p'},
		{ "count",             0,NULL, 'c'},
		{ "Depth",             2,NULL, 'D'},
		{ "well",              2,NULL, 'w'},
		{ "spacing",           2,NULL, 's'},
		{ "interval",          2,NULL, 'i'},
		{ "go",                0,NULL, 'g'},
		{ "System",            0,NULL, 'S'},
		{ "motor",             0,NULL, 'm'},
		{ "time",              2,NULL, 't'},
        { NULL, 0, NULL, 0  },

    };

	if (argc < 2) 
	{
		print_comusage (stderr, 1);
		return_value = json_option("status:",-1);
		return return_value;
	}
	program_name = argv[0];
	/*Get the first argument that passed through main function but does not contain*/
	command_name = argv[1];
	if(argc > 2)
	{
		command_arg  = argv[2];
	}
/*******************************************************************************************
* The next three command_name are used to control the motor through modbus	(need modbus)  *
********************************************************************************************/

	if ( strcmp(command_name, "go") == 0 ) {
		double curr_position;
		char *recd = (char*)malloc(10*sizeof(char));
		double offset;
		int re_send = 0;
		*ShmPTR = 0;
		modbus = 0;
		next_option = getopt_long (argc, argv, short_options, long_options, NULL);
		
		if (next_option == -1) print_comusage (stderr, 1);
		while (next_option != -1) 
		{
			switch (next_option) 
			{
				case 'h':
						print_comusage(stdout, 0);
				case 'd':  
				godown:
						enable(0);
						initbus(1);
				/*		sleep(1);
						ctx = modbusconnection(ctx);
						modbus = 1;
						feedback = godown(ctx);
						if((feedback == -1)&&(re_send <1))
						{
							enable(0);
							initbus(0);
							re_send++;
							goto godown;
						}
						return_value = json_option("status",feedback);
						printf("%s\n",return_value);
				*/
						feedback = process_go_down(1);
						if((feedback == 0) && (re_send < 1))
						{
							printf("get false recycle power\n");
							enable(0);
							initbus(0);
							re_send++;
							goto godown;
						}
						return_value = json_option("status",feedback);
						printf("%s\n",return_value);
						break;	
				case 'u':
				goup: 
						enable(0);
						initbus(1);
				/*
						sleep(1);
						ctx = modbusconnection(ctx);
						modbus = 1;
						feedback = goup(ctx);
						if((feedback == -1)&&(re_send <1))
						{
							enable(0);
							initbus(0);
							re_send++;
							goto goup;
						}
				*/
						feedback = process_go_up(1);
						if((feedback == 0) && (re_send < 1))
						{
							printf("Get false recycle power\n");
							enable(0);
							initbus(0);
							re_send++;
							goto goup;
						}
						return_value = json_option("status",feedback);
						printf("%s\n",return_value);
						break;	
				case 'p':
						enable(0);
						initbus(1);
						sleep(1);
						ctx = modbusconnection(ctx);
						modbus = 1;
						in_position = atof(optarg);		
						off_set = (ARF*)malloc(15*sizeof(ARF));
	    				off_set = getconfig(&num,off_set);
						offset = off_set[10].value;
						in_position = in_position - offset;
						//printf("inposition is %f offset is %f\n",in_position,offset);
						free(off_set);
						//system("/home/sampler/kingkong.sh");
				gotoposition:
						if (in_position <= 0)
						{
							if( process_read_home_switch(1) == 0)
							{
								feedback = process_go_home(1);
							}
							else
								feedback = 1;
						}
						else 
						{
							pystep = process_read_step(1);
							curr_position = process_position(pystep);
							if ( !(( (in_position -0.1) <= curr_position ) && ( curr_position <= (in_position + 0.1) )) ) 
							{
								feedback = process_go_position(1,in_position);
								return_value = json_option("status",feedback);
							}
						}
						if((feedback == 0)&&(re_send <1))
						{
							printf("get false recycle power");
							enable(0);
							initbus(0);
							enable(0);
							initbus(1);
							re_send++;
							goto gotoposition;
						}
						break;	
					case '?':
						print_comusage (stderr, 1);
					default:
						abort ();
				}
			next_option = getopt_long (argc, argv, short_options, long_options, NULL);
		}	
		//If the go command is failed, then exit the current process and power off the controller 	
		if(feedback == 0)
		{
			printf("1\n");
			//*ShmPTR = 1;
			enable(0);
			initbus(0);
			return_value = json_option("status",-1);
			return return_value;
		}
		do{
			usleep(5000);
			stop_indicator = process_check(1);
		}while(stop_indicator != 0);
		//printf("stop\n");
		sleep(1);
		pystep = process_read_step(1);
		curr_position = process_position(pystep);
		//printf("cur position is %f\n",curr_position);
		if(curr_position != -1)
		{
			login("Go to command set last position");
			curr_position = curr_position + offset;
			setconfig(9,curr_position);
			// In order to avoid "Read status command shutdown the power by accident
			enable(0);
			initbus(0);		
			return_value = json_option("status",1);
		}
		else return_value = json_option("status",-1);
	}

	if ( strcmp(command_name, "stop") == 0 ) 
	{ 		
		if(check_power() == 1)
		{
			/*sleep(1);
			ctx = modbusconnection(ctx);
			modbus = 1;
			feedback = stop(ctx);
			if(feedback == -1)stop(ctx);
			*/
			process_stop(1);
		}
	}

    if ( strcmp(command_name, "position") == 0 ) 
	{ 
		login("Check position command");
		int resend = 0;
		double temp_position,offset;
		char *rec = (char*)malloc(10*sizeof(char));
		stop_indicator = *ShmPTR;
		uint16_t * position_registers = (uint16_t *) malloc(2 * sizeof(uint16_t));
		off_set = (ARF*)malloc(15*sizeof(ARF));
	    off_set = getconfig(&num,off_set);
		offset = off_set[10].value;
checkposition:
		if (check_power()== 1) 
		{
			ctx = modbusconnection(ctx);
			modbus = 1;
			temp_position = checkposition(ctx,position_registers);
			sprintf(rec,"The position read is %f",temp_position);
			login(rec);
			if(temp_position != -1)
			{
				login("Check position set last position");
				//This sentence is used to show the position with offset 
				temp_position = temp_position + offset;
				feedback = setconfig(9,temp_position);
			}
			else 
			{
				if(resend < 2)
				{
					resend++;					
					goto checkposition;
				}
				else return -100;
			}
		}
		else 
		{
			config = getconfig(&num,config);
			temp_position = config[8].value;
		}
		return_value = json_float_option("status",temp_position);
		printf("%s\n",return_value);
	}
/***********************************************************************
*         0: motor is stopped                                          *
*         1: motor is going down                                       *
*         2: motor is going up                                         *
*         3: motor is ramp up                                          *
*         4: motor is ramp down   									   *
*		   (need modbus)             						           *
*                                               	                   *
************************************************************************/
	if(strcmp(command_name, "status") == 0) 
	{
		stop_indicator = *ShmPTR;
		if (check_power()== 1) 
		{
			sleep(1);
			ctx = modbusconnection(ctx);
			modbus = 1;
			next_option = getopt_long (argc, argv, short_options, long_options, NULL);
			if(next_option == -1) print_comusage (stderr, 1);
			while(next_option != -1) 
			{
				switch (next_option) 
				{
					case 'h':
							print_comusage(stdout, 0);	
					case 'S':
							feedback = checksystemstatus(ctx,tab_rp_registers);
							return_value = json_option("status",feedback);
							break;	
					case 'm':
							feedback = checkmotorstatus(ctx,tab_rp_registers);
							return_value = json_option("status",feedback);
							break;
					case '?':
							print_comusage (stderr, 1);
					default:
							abort ();
				}
				next_option = getopt_long (argc, argv, short_options, long_options, NULL);
			}	
			if(feedback == -1)
			{
				return_value = json_option("status",0);
			}
		}
		else 
		{
			return_value = json_option("status",0);
			//login("Check status from database");
		}
		printf("%s\n",return_value);
	}

/****************************************************************************************
*      The next three command_name are used to control the database through sqlite3	    *
*****************************************************************************************/
	if ( strcmp(command_name, "factory_default") == 0 ) 
	{
		feedback1 = reset(0);
		feedback2 = dbinit(0);
		if ( (feedback1 == 1) && (feedback2 == 1)) 
		{
			return_value = json_float_option("status",1);
			printf("%s\n",return_value);
		}
		else 
		{
			return_value = json_float_option("status",-1);
			printf("%s\n",return_value);		
		}
	}

	if ( strcmp(command_name, "reset") == 0 ) 
	{
		feedback = reset(0);
		if(feedback == 1)
		{
			feedback = expected_time_reset();
		}
		return_value = json_float_option("status",feedback);
		printf("%s\n",return_value);
	}

	if ( strcmp(command_name, "init") == 0 ) 
	{
		feedback = -1;
		if ( strcmp(command_arg, "all") == 0 ) 
		{
			feedback = dbinit(0);
			if(feedback == 1)
			{
				feedback = expected_time_init();
			}
		}
		if ( strcmp(command_arg, "calibrate" ) == 0 ) 
		{ 
			setconfig(6,0);
			feedback = dbinit(1); 
		}
		if ( strcmp(command_arg, "configure" ) == 0 ) 
		{
			feedback = dbinit(2);
		}
		if ( feedback == -1 ) 
		{
			return_value = json_float_option("status",-1);
			print_comusage (stderr, 1);
		}
		else return_value = json_float_option("status",feedback);
		printf("%s\n",return_value);
	}

	if ( strcmp(command_name,"get") == 0 ) 
	{
		examp = getall(&num,examp);
		return_value = json_array_option(num,examp);
		free(examp);
		printf("%s",return_value);
	}
	if ( strcmp(command_name,"set_offset") == 0 ) 
	{
		double offset;		
		next_option = getopt_long (argc, argv, short_options, long_options, NULL);
		if ( next_option == -1 ) print_comusage (stderr, 1);
		while( next_option != -1 ) 
		{
			switch (next_option) 
			{
				case 'h':
						print_comusage(stdout, 0);	
				case 'l':
						if(optarg!=0)offset = strtod(optarg,NULL);
						insert_bit = 1;
						break;	
				case '?':
						print_comusage (stderr, 1);
				default:
						abort ();
			}
			next_option = getopt_long (argc, argv, short_options, long_options, NULL);
		}	
		feedback = setconfig(11,offset);
		return_value = json_option("status",feedback);
		printf("%s",return_value);
	}
	if ( strcmp(command_name,"get_offset") == 0 ) 
	{
		double offset;		
		off_set = (ARF*)malloc(15*sizeof(ARF));
	    off_set = getconfig(&num,off_set);
		offset = off_set[10].value;
		return_value = json_float_option("status",offset);
		printf("%s",return_value);	
		free(off_set);
	}
/**************************************************************************
*      The next three command_name are used to calibrate (need modbus)     *                     
***************************************************************************/
	if ( strcmp(command_name, "calibrate") == 0 ) 
	{	
		double calibrate;
		enable(0);
		initbus(1);
		sleep(1);
		ctx = modbusconnection(ctx);	
		modbus = 1;	
		next_option = getopt_long (argc, argv, short_options, long_options, NULL);

		if ( next_option == -1 ) print_comusage (stderr, 1);
		config = getconfig(&num,config);
		calibrate = config[5].value;
		if ( calibrate == 0 ) 
		{
			reset(1);
			setconfig(6,1.0);
			set(num,0,0);
		}
		while( next_option != -1 ) 
		{
			switch (next_option) 
			{
				case 'h':
						print_comusage(stdout, 0);	
				case 'l':
						if(optarg!=0)value = atof(optarg);
						insert_bit = 1;
						break;	
				case 'c':
						getall(&num,examp);
						return_value = json_option("status",num);
						printf("%s\n",return_value);
						break;
				case '?':
						print_comusage (stderr, 1);
				default:
						abort ();
			}
			next_option = getopt_long (argc, argv, short_options, long_options, NULL);
		}	
		if ( insert_bit == 1 ) 
		{
			curr_step = checksteps(ctx,rd_position_registers);
			if ( curr_step < 0 ) curr_step =0;//do not need
			feedback = checkvalue(curr_step,value);
			if ( feedback == 1 ) 
			{
				feedback = set(num,curr_step,value);
				return_value = json_option("status",feedback);
			} 
			else 
			{
				return_value = json_option("status",-1);
			}	
		}
		/*if ( checkmotorstatus(ctx,tab_rp_registers) == 0 ) 
		{	
			enable(0);
			initbus(0);
		}*/
		printf("%s\n",return_value);
	}


/***********************************************************************
*         The following functions are used for profile				   *
*                                               	                   *
************************************************************************/
	if ( strcmp(command_name, "profile") == 0 ) 
	{
		next_option = getopt_long (argc, argv, short_options, long_options, NULL);
		if ( next_option == -1 ) print_comusage (stderr, 1);
		while ( next_option != -1 ) 
		{
			switch (next_option) {
				case 'h':
						print_comusage(stdout, 0);	
				case 'd':
						if(optarg!=0)depth = atof(optarg);
						profilebit = 1;
						break;	
				case 's':
						if(optarg!=0)spacing = atof(optarg);
						profilebit = 1;
						break;
				case 'w':
						if(optarg!=0)dwell = atof(optarg);
						profilebit = 1;
						break;
				case 'i':
						//if(optarg!=0)interval = atof(optarg);
						if(optarg!=0)interval = strtod(optarg,NULL);
						profilebit = 1;
						break;
				case '?':
						print_comusage (stderr, 1);
				default:
						abort ();
				}
			next_option = getopt_long (argc, argv, short_options, long_options, NULL);
		}	

		if ( profilebit == 1 ) 
		{
			feedback = set_profile(depth,spacing,dwell,interval);
		}
		//Want to get the expected profile time and save it in database
		profile_time_check(interval);
		return_value = json_float_option("status",feedback);
		printf("%s\n",return_value);
	}

	if ( strcmp(command_name, "profileget" ) == 0) 
	{
		profile = getconfig(&num,config);
		return_value = json_profile_option(num-2,profile);
		free(profile);
		printf("%s",return_value);	
	}
	if ( strcmp(command_name, "profile_check" ) == 0) 
	{
		int *expected_profile_time;
		long remain_profile_time;
		config = getconfig(&num,config);
		pinterval = config[3].value;
		if(pinterval == 0)	
		{
			printf("-999\n");
			return -999;
		}
		expected_profile_time = (int*)malloc(10*sizeof(int));
		if(expected_profile_time == NULL){printf("error\n");exit(1);}
		expected_time_get(expected_profile_time);
		remain_profile_time = auto_run(0,expected_profile_time);
		if(remain_profile_time <=0 )remain_profile_time = 0;
		printf("%d\n",remain_profile_time);
		free(expected_profile_time);
		return remain_profile_time;
	}
	if ( strcmp(command_name, "profile_reset") == 0 ) 
	{
		//feedback = dbinit(2);
		//reading_hourly();
		system("ps aux | grep -e 'master profilego' | grep -v grep | awk '{print $2}' | xargs -i kill {}");
		feedback = set_profile(0,0,0,0);
		return_value = json_float_option("status",feedback);
		printf("%s\n",return_value);
	}

	if ( strcmp(command_name, "profilego") == 0 ) 
	{	
		double stayposition, curr_position,tmp,cal_position;
		double sdl_read,offset;
		long wait_time,motor_status;
		int year;
		time_t fail_time;
		int stop_check = -1;
		int count,fini_count,re_try1 = 0,re_power1 =0,re_try = 0,re_send=0;
		int i=1,sample = 0,profile_times,sample_indicator;
		int * expected_tm, *curr_time,inter_val;
		setconfig(10,0);
	profile:
		/* The following eight lines are used to get profile arguments from database */
		config = getconfig(&num,config);
		pdepth = config[0].value;
		pspacing = config[1].value;
		pdwell = config[2].value;
		pinterval = config[3].value;	
		profiled = config[4].value;
		sample = config[9].value;
		offset = config[10].value;
		profile_times = 1+(pdepth - offset)/pspacing;		// Caculate the profile times
		inter_val = (int)pinterval;
		if(pinterval == 0){schedule_reading();goto profile;}
	   	if(profiled == 0 )
		{
			config = getconfig(&num,config);
			pdepth = config[0].value;
			pspacing = config[1].value;
			pdwell = config[2].value;
			pinterval = config[3].value;	
			profiled = config[4].value;
			sample = config[9].value;
			/* 
				The following part are used to get the expected profile time and 
				compare with current time
			*/
			expected_tm = (int*)malloc(10*sizeof(int));
			curr_time = (int*)malloc(10*sizeof(int));
			if(curr_time == NULL){printf("error\n");exit(1);}
			if(expected_tm == NULL){printf("error\n");exit(1);}
			do{
				config = getconfig(&num,config);
				sample = config[9].value;
				expected_time_get(expected_tm);
				wait_time= auto_run(0,expected_tm);
				curr_time = check_time(curr_time);
				sample_indicator = curr_time[3]%inter_val;
				printf("Wait for next profile\n");
				//because the board will boot up 3 minutes after clock time
				if(wait_time < -600)
				{
					profile_time_check(pinterval);
					goto profile;
				}					
				sleep(1);
			}while(wait_time>0);
			free(expected_tm);	
		four_minute_delay:
			sleep(1);
			curr_time = check_time(curr_time);
			if((curr_time[4]>=4) &&(curr_time[4]<=10))goto start_profile;
			if(curr_time[4]<4)goto four_minute_delay;
			if(curr_time[4]>10)goto profile;
		}
	start_profile:
		enable(0);
		initbus(1);
		sleep(1);
		ctx = modbusconnection(ctx);
		if(ctx == NULL)goto profile;
		modbus = 1;
		sleep(9);
		if ( profiled == 0 ) 
		{
			if (process_syncclock() == 0) 
			{
				login("Failed in connectting with SDL");
				return;
			}
			if (process_expression(3,1,profile_times,0) == 0)
			{	
				login("Failed in send profile to SDL");
				return;
			}		
			login("Start Profiling");
			if( process_read_home_switch(1) == 0)
			{
				gotoposition(ctx, 0,rd_position_registers);   //Do not need to check if it is home because we want it home anyway
				do{
					usleep(5000);
					stop_check = process_check(1);
				}while(stop_check != 0);
				if(process_pass_through_check() == 0)initbus(0); 
				setconfig(5,1);		//Set the profile flag 
				sleep(pdwell);
			}
			else
			{
				setconfig(5,1);
				sleep(pdwell);
			}
		}	
		enable(0);
		initbus(1);
		sleep(1);
		ctx = modbusconnection(ctx);
		/* This following part is used to determine where is destination  */
		curr_position = checkposition(ctx,tab_rp_registers) + offset;
		cal_position = i*pspacing + offset;
		if ( cal_position < pdepth )
		{
			stayposition = cal_position;
		}
		else 
			stayposition = pdepth;
		i++;
		stayposition = stayposition - offset;
		gotoposition(ctx,stayposition,tab_rp_registers);
position1:
			sleep(1);		
			ctx = modbusconnection(ctx);
			curr_position = checkposition(ctx,tab_rp_registers) + offset;
			if(curr_position == -1)
			{
				if(re_power1 < 3)
				{		
					if(re_try1 < 2)
					{
						sleep(3);
						re_try1++;
						goto position1;
					}
					else
					{
						re_try1 = 0;
						enable(0);
						initbus(0);
						sleep(3);
						initbus(1);
						sleep(1);
						re_power1++;
						goto position1;
					}
				}
				else
				{
					enable(0);
					initbus(0);
					enable(1);
					re_power1 = 0;
					return -1;
				}
			}
			if (!((stayposition -0.1) <= curr_position ) && (curr_position <= (stayposition + 0.1)))goto position1;
		wait_for_stop(ctx, tab_rp_registers);
		//Here check position in order to determine if it is destination now 
		curr_position = checkposition(ctx,tab_rp_registers)+offset;
		setconfig(9,curr_position);
		printf("Go to sleep for dwell time\n");
		if(process_pass_through_check() == 0)initbus(0);	// Add this part to check if it is passing command
		sleep(pdwell);
		if (((pdepth -0.1) <= curr_position) && (curr_position <= (pdepth + 0.1))) 
		{ 
			setconfig(5,0);	//Set profile flag here to avoid reprofile if something wrong happens during following
			profile_time_check(pinterval);		// Set next profile time
			enable(0);
			initbus(1);
			ctx = modbusconnection(ctx);
			gotoposition(ctx,0,rd_position_registers);		// After finish profile, go home
			wait_for_stop(ctx, tab_rp_registers);
			sleep(1);
			enable(0);
			if(process_pass_through_check() == 0) initbus(0);	//Check is pass through
			enable(1);
			setconfig(9,offset); //Save the position 0
			sleep(40);
			goto profile;
		}
		goto profile;

	}
/***********************************************************************
*          The next three command_name are used                        *
*             to control the date and time         	                   *
************************************************************************/
	if ( strcmp(command_name, "checktime") == 0 ) 
	{
	/*
		char *sdate;
		if ( (sdate = malloc( 80 * sizeof(char) ) )== NULL)return NULL; 
		sdate = current_time(sdate);
		return_value = json_option_string("status",sdate);
		printf("%s\n",return_value);
		free(sdate);
	*/
		//long pystep = process_read_step(1);
		//process_position(pystep);
		//process_expression(3,1,3,1);
		//process_pass_through_check();
		//process_syncclock();
		process_expression(3,1,3,0);
		process_read_home_switch(1);
    }
	if ( strcmp(command_name, "settime") == 0 ) 
	{
    	if ( argc < 4 ) 
		{ 
			print_comusage (stderr, 1); 
		}
        char *date = argv[2];
        char *time = argv[3];
        int *buf = (int*)malloc(6*sizeof(int)); 
		parse(buf,date,time);
        int i,m_buf[6];
        for(i=0;i<=5;i++) 
		{ 
			m_buf[i]=*(buf+i); 
		}
		feedback = set_time(&m_buf);
        return_value = json_option("status:",feedback);
        printf("%s\n",return_value);
		login("Set local time");
		login(return_value);
		sleep(5);
	}
	if ( strcmp(command_name, "voltage") == 0 ) 
	{
		double voltage;	
		voltage = voltage_read();
		return_value = json_float_option("status",voltage);
		printf("%s\n",return_value);
	}
	if ( strcmp(command_name, "temp") == 0 ) 
	{
		double temp;
		temp = temp_read();
		return_value = json_float_option("status",temp);
		printf("%s\n",return_value);
	}
	if(strcmp(command_name, "enable_power") == 0)
	{
		enable(0);
		initbus(1);
		return_value = json_option("status:",1);
	}

	if(strcmp(command_name, "disable_power") == 0)
	{
		enable(0);
		initbus(0);
		return_value = json_option("status:",1);
	}
	if ( strcmp(command_name, "backup") == 0 ) 
	{
		feedback = system("cp /home/sampler/lr.sl3   /home/sampler/lr_default.sl3");
		if(feedback == -1)
		{
			return_value = json_float_option("status",-1);
		}
		else return_value = json_float_option("status",1);
		printf("%s\n",return_value);
	}
	if ( strcmp(command_name, "restore") == 0 ) 
	{
		feedback = system("cp /home/sampler/lr_default.sl3  /home/sampler/lr.sl3");
		if(feedback == -1)
		{
			return_value = json_float_option("status",-1);
		}
		else return_value = json_float_option("status",1);
		printf("%s\n",return_value);
	}
	if ( strcmp(command_name, "debug") == 0 ) 
	{
		long return_steps;
		char *debug_result;
		enable(0);
		initbus(1);
		sleep(1);
		ctx = modbusconnection(ctx);
		modbus = 1;
		uint16_t *debug_position_registers = (uint16_t*)malloc(2*sizeof(uint16_t));
		debug_result = (char*)malloc(50*sizeof(char));
		return_steps = checksteps(ctx,debug_position_registers);
		sprintf(debug_result,"%x,%x,%x\n",debug_position_registers[0],debug_position_registers[1],return_steps);
		json_option_string("status",debug_result);
		printf("%s\n",debug_result);
		initbus(0);
		
	}
	if ( strcmp(command_name, "power_check") == 0 ) 
	{
		int power_status = check_power();
		printf("Power is %d\n",power_status);
	}
	if ( strcmp(command_name, "sdl") == 0 ) 
	{
		modbus_t * sdl;
		sdl = sdl_connection(sdl);	
		if(sdl != NULL)
		{
			double vol = sdltest(sdl);
			return_value = json_float_option("status",vol);
			printf("%s\n",return_value);
			setsdl(30000,vol);
			login("Read SDL");
			login(return_value);
		}
		else setsdl(30000,-100000);
		modbus_close(sdl);
  		modbus_free(sdl);
	}
	if ( strcmp(command_name, "sdl_reset") == 0 ) 
	{
		resetsdl();
	}
	if ( strcmp(command_name, "sdl_get") == 0 ) 
	{
		int num_records;		
		SLEN * sdl_records;
		sdl_records = (SLEN*)malloc(100*sizeof(SLEN));
		sdl_records = getsdl(&num_records, sdl_records);
		return_value = json_sdl_option(num_records,sdl_records);
		printf("%s\n",return_value);
		free(sdl_records);
	}
	if ( strcmp(command_name, "sdl_uploadtime") == 0 ) 
	{	
		modbus_t * sdl;
		sdl = sdl_connection(sdl);	
		if(sdl == NULL)
		{
			setsdl(30000,-100000);
		}
		else sdl_setuploadtime(sdl,12,5,21,12,50,0);
	}
	if ( strcmp(command_name, "sdl_settime") == 0 ) 
	{	
		modbus_t * sdl;
		sdl = sdl_connection(sdl);	
		if(sdl == NULL)
		{
			setsdl(30000,-100000);
		}
		else  sdl_rtc_time(sdl,12,5,25,7,58,0);
	}
	if ( strcmp(command_name, "sdl_readsize") == 0 )
	{
		modbus_t * sdl;
		sdl = sdl_connection(sdl);	
		if(sdl == NULL)
		{
			setsdl(30000,-100000);
		}
		else sdl_readbuffsize(sdl);
	} 
	if ( strcmp(command_name, "sdl_readsensor") == 0 ) 
	{	
		modbus_t * sdl;
		sdl = sdl_connection(sdl);	
		if(sdl == NULL)
		{
			setsdl(30000,-100000);
		}
		else sdl_read_sensor(sdl,1,1);
	}
	if ( strcmp(command_name, "sdl_upload") == 0 ) 
	{
		//sdl_read_log_data(16);
		int number;
		modbus_t * sdl;
		sdl = sdl_connection(sdl);	
		if(sdl == NULL)
		{
			setsdl(30000,-100000);
		}
		else 
		{
			profile_save_data(sdl);
		}
		modbus_close(sdl);
	}
	if ( strcmp(command_name, "sdl_sample") == 0 ) 
	{
		int number;
		modbus_t * sdl;
		sdl = sdl_connection(sdl);	
		if(sdl == NULL)
		{
			setsdl(30000,-100000);
		}
		else 
		{
			sdl_read_sensor(sdl,1,1);
			sleep(60);
			sample_save_data(sdl);
			//sdl_start_profile(sdl,2);
		}
		modbus_close(sdl);
	}
	if ( strcmp(command_name, "shutdown") == 0 ) 
	{
		feedback = system("/sbin/shutdown now");
	}
	if ( strcmp(command_name, "maxstep") == 0 ) 
	{
		enable(0);
		initbus(1);		
		sleep(1);
		ctx = modbusconnection(ctx);
		modbus = 1;
		feedback = set_max_step(ctx,rd_position_registers);
		return_value = json_option("status",feedback);
		initbus(0);
	}
	if(strcmp(command_name, "slave") == 0)
	{
		slave();
	} 
	if(strcmp(command_name, "motor_status") == 0) 
	{
		if (check_power()== 1) 
		{
			sleep(1);
			ctx = modbusconnection(ctx);
			modbus = 1;
			feedback = checkmotorstatus(ctx,tab_rp_registers);
			if(feedback == -1)
			{
				printf("0\n");				
				return 0;
			}
			else 
			{
				printf("%d\n",feedback);
				return feedback;
			}
		}
		else
		{
			printf("0\n");
			return 0;
		}		
	}
close:
	/* Free the memory */
	free(config);
    free(tab_rp_registers);
	free(rd_position_registers);
	//modbus_mapping_free(mb_mapping);
    /* Close the connection */
	if (modbus == 1)	
	{
    	modbus_close(ctx);
	}
	if (motor_stop == 1) 
	{
		printf("stop setting\n");
		setconfig(9,last_position);
	}
    return return_value;
}
Example #10
0
void host_stopApplication(Host* host, Process* application) {
	MAGIC_ASSERT(host);
	process_stop(application);
}
Example #11
0
void zmq::object_t::process_command (command_t &cmd_)
{
    switch (cmd_.type) {

    case command_t::revive:
        process_revive ();
        break;

    case command_t::stop:
        process_stop ();
        break;

    case command_t::plug:
        process_plug ();
        process_seqnum ();
        return;

    case command_t::own:
        process_own (cmd_.args.own.object);
        process_seqnum ();
        break;

    case command_t::attach:
        process_attach (cmd_.args.attach.engine,
            blob_t (cmd_.args.attach.peer_identity,
            cmd_.args.attach.peer_identity_size));
        process_seqnum ();
        break;

    case command_t::bind:
        process_bind (cmd_.args.bind.in_pipe, cmd_.args.bind.out_pipe,
            cmd_.args.bind.peer_identity ? blob_t (cmd_.args.bind.peer_identity,
            cmd_.args.bind.peer_identity_size) : blob_t ());
        process_seqnum ();
        break;

    case command_t::reader_info:
        process_reader_info (cmd_.args.reader_info.msgs_read);
        break;

    case command_t::pipe_term:
        process_pipe_term ();
        return;

    case command_t::pipe_term_ack:
        process_pipe_term_ack ();
        break;

    case command_t::term_req:
        process_term_req (cmd_.args.term_req.object);
        break;
    
    case command_t::term:
        process_term ();
        break;

    case command_t::term_ack:
        process_term_ack ();
        break;

    default:
        zmq_assert (false);
    }

    //  The assumption here is that each command is processed once only,
    //  so deallocating it after processing is all right.
    deallocate_command (&cmd_);
}
Example #12
0
void zmq::object_t::process_command (command_t &cmd_)
{
    switch (cmd_.type) {

    case command_t::activate_read:
        process_activate_read ();
        break;

    case command_t::activate_write:
        process_activate_write (cmd_.args.activate_write.msgs_read);
        break;

    case command_t::stop:
        process_stop ();
        break;

    case command_t::plug:
        process_plug ();
        process_seqnum ();
        break;

    case command_t::own:
        process_own (cmd_.args.own.object);
        process_seqnum ();
        break;

    case command_t::attach:
        process_attach (cmd_.args.attach.engine,
            cmd_.args.attach.peer_identity ?
            blob_t (cmd_.args.attach.peer_identity,
            cmd_.args.attach.peer_identity_size) : blob_t ());
        process_seqnum ();
        break;

    case command_t::bind:
        process_bind (cmd_.args.bind.pipe, cmd_.args.bind.peer_identity ?
            blob_t (cmd_.args.bind.peer_identity,
            cmd_.args.bind.peer_identity_size) : blob_t ());
        process_seqnum ();
        break;

    case command_t::hiccup:
        process_hiccup (cmd_.args.hiccup.pipe);
        break;

    case command_t::pipe_term:
        process_pipe_term ();
        break;

    case command_t::pipe_term_ack:
        process_pipe_term_ack ();
        break;

    case command_t::term_req:
        process_term_req (cmd_.args.term_req.object);
        break;
    
    case command_t::term:
        process_term (cmd_.args.term.linger);
        break;

    case command_t::term_ack:
        process_term_ack ();
        break;

    case command_t::reap:
        process_reap (cmd_.args.reap.socket);
        break;

    case command_t::reaped:
        process_reaped ();
        break;

    default:
        zmq_assert (false);
    }

    //  The assumption here is that each command is processed once only,
    //  so deallocating it after processing is all right.
    deallocate_command (&cmd_);
}