Example #1
0
// do we need the carry bit
static int
needc(Prog *p)
{
	ProgInfo info;

	while(p != P) {
		proginfo(&info, p);
		if(info.flags & UseCarry)
			return 1;
		if(info.flags & (SetCarry|KillCarry))
			return 0;
		p = p->link;
	}
	return 0;
}
Example #2
0
// is reg guaranteed to be truncated by a previous L instruction?
static int
prevl(Flow *r0, int reg)
{
	Prog *p;
	Flow *r;
	ProgInfo info;

	for(r=uniqp(r0); r!=nil; r=uniqp(r)) {
		p = r->prog;
		if(p->to.type == reg) {
			proginfo(&info, p);
			if(info.flags & RightWrite) {
				if(info.flags & SizeL)
					return 1;
				return 0;
			}
		}
	}
	return 0;
}
Example #3
0
static void
nilwalkfwd(NilFlow *rcheck)
{
	NilFlow *r;
	Prog *p;
	ProgInfo info;
	
	// If the path down from rcheck dereferences the address
	// (possibly with a small offset) before writing to memory
	// and before any subsequent checks, it's okay to wait for
	// that implicit check. Only consider this basic block to
	// avoid problems like:
	//	_ = *x // should panic
	//	for {} // no writes but infinite loop may be considered visible
	for(r = (NilFlow*)uniqs(&rcheck->f); r != nil; r = (NilFlow*)uniqs(&r->f)) {
		p = r->f.prog;
		proginfo(&info, p);
		
		if((info.flags & LeftRead) && smallindir(&p->from, &rcheck->f.prog->from)) {
			rcheck->kill = 1;
			return;
		}
		if((info.flags & (RightRead|RightWrite)) && smallindir(&p->to, &rcheck->f.prog->from)) {
			rcheck->kill = 1;
			return;
		}
		
		// Stop if another nil check happens.
		if(p->as == ACHECKNIL)
			return;
		// Stop if value is lost.
		if((info.flags & RightWrite) && sameaddr(&p->to, &rcheck->f.prog->from))
			return;
		// Stop if memory write.
		if((info.flags & RightWrite) && !regtyp(&p->to))
			return;
	}
}
Example #4
0
void
regopt(Prog *firstp)
{
	Reg *r, *r1;
	Prog *p;
	Graph *g;
	ProgInfo info;
	int i, z;
	uint32 vreg;
	Bits bit;

	if(first) {
		fmtinstall('Q', Qconv);
		exregoffset = D_R15;
		first = 0;
	}

	mergetemp(firstp);

	/*
	 * control flow is more complicated in generated go code
	 * than in generated c code.  define pseudo-variables for
	 * registers, so we have complete register usage information.
	 */
	nvar = NREGVAR;
	memset(var, 0, NREGVAR*sizeof var[0]);
	for(i=0; i<NREGVAR; i++) {
		if(regnodes[i] == N)
			regnodes[i] = newname(lookup(regname[i]));
		var[i].node = regnodes[i];
	}

	regbits = RtoB(D_SP);
	for(z=0; z<BITS; z++) {
		externs.b[z] = 0;
		params.b[z] = 0;
		consts.b[z] = 0;
		addrs.b[z] = 0;
		ovar.b[z] = 0;
	}

	// build list of return variables
	setoutvar();

	/*
	 * pass 1
	 * build aux data structure
	 * allocate pcs
	 * find use and set of variables
	 */
	g = flowstart(firstp, sizeof(Reg));
	if(g == nil)
		return;
	firstr = (Reg*)g->start;

	for(r = firstr; r != R; r = (Reg*)r->f.link) {
		p = r->f.prog;
		if(p->as == AVARDEF)
			continue;
		proginfo(&info, p);

		// Avoid making variables for direct-called functions.
		if(p->as == ACALL && p->to.type == D_EXTERN)
			continue;

		r->use1.b[0] |= info.reguse | info.regindex;
		r->set.b[0] |= info.regset;

		bit = mkvar(r, &p->from);
		if(bany(&bit)) {
			if(info.flags & LeftAddr)
				setaddrs(bit);
			if(info.flags & LeftRead)
				for(z=0; z<BITS; z++)
					r->use1.b[z] |= bit.b[z];
			if(info.flags & LeftWrite)
				for(z=0; z<BITS; z++)
					r->set.b[z] |= bit.b[z];
		}

		bit = mkvar(r, &p->to);
		if(bany(&bit)) {	
			if(info.flags & RightAddr)
				setaddrs(bit);
			if(info.flags & RightRead)
				for(z=0; z<BITS; z++)
					r->use2.b[z] |= bit.b[z];
			if(info.flags & RightWrite)
				for(z=0; z<BITS; z++)
					r->set.b[z] |= bit.b[z];
		}
	}

	for(i=0; i<nvar; i++) {
		Var *v = var+i;
		if(v->addr) {
			bit = blsh(i);
			for(z=0; z<BITS; z++)
				addrs.b[z] |= bit.b[z];
		}

		if(debug['R'] && debug['v'])
			print("bit=%2d addr=%d et=%-6E w=%-2d s=%N + %lld\n",
				i, v->addr, v->etype, v->width, v->node, v->offset);
	}

	if(debug['R'] && debug['v'])
		dumpit("pass1", &firstr->f, 1);

	/*
	 * pass 2
	 * find looping structure
	 */
	flowrpo(g);

	if(debug['R'] && debug['v'])
		dumpit("pass2", &firstr->f, 1);

	/*
	 * pass 3
	 * iterate propagating usage
	 * 	back until flow graph is complete
	 */
loop1:
	change = 0;
	for(r = firstr; r != R; r = (Reg*)r->f.link)
		r->f.active = 0;
	for(r = firstr; r != R; r = (Reg*)r->f.link)
		if(r->f.prog->as == ARET)
			prop(r, zbits, zbits);
loop11:
	/* pick up unreachable code */
	i = 0;
	for(r = firstr; r != R; r = r1) {
		r1 = (Reg*)r->f.link;
		if(r1 && r1->f.active && !r->f.active) {
			prop(r, zbits, zbits);
			i = 1;
		}
	}
	if(i)
		goto loop11;
	if(change)
		goto loop1;

	if(debug['R'] && debug['v'])
		dumpit("pass3", &firstr->f, 1);

	/*
	 * pass 4
	 * iterate propagating register/variable synchrony
	 * 	forward until graph is complete
	 */
loop2:
	change = 0;
	for(r = firstr; r != R; r = (Reg*)r->f.link)
		r->f.active = 0;
	synch(firstr, zbits);
	if(change)
		goto loop2;

	if(debug['R'] && debug['v'])
		dumpit("pass4", &firstr->f, 1);

	/*
	 * pass 4.5
	 * move register pseudo-variables into regu.
	 */
	for(r = firstr; r != R; r = (Reg*)r->f.link) {
		r->regu = (r->refbehind.b[0] | r->set.b[0]) & REGBITS;

		r->set.b[0] &= ~REGBITS;
		r->use1.b[0] &= ~REGBITS;
		r->use2.b[0] &= ~REGBITS;
		r->refbehind.b[0] &= ~REGBITS;
		r->refahead.b[0] &= ~REGBITS;
		r->calbehind.b[0] &= ~REGBITS;
		r->calahead.b[0] &= ~REGBITS;
		r->regdiff.b[0] &= ~REGBITS;
		r->act.b[0] &= ~REGBITS;
	}

	/*
	 * pass 5
	 * isolate regions
	 * calculate costs (paint1)
	 */
	r = firstr;
	if(r) {
		for(z=0; z<BITS; z++)
			bit.b[z] = (r->refahead.b[z] | r->calahead.b[z]) &
			  ~(externs.b[z] | params.b[z] | addrs.b[z] | consts.b[z]);
		if(bany(&bit) && !r->f.refset) {
			// should never happen - all variables are preset
			if(debug['w'])
				print("%L: used and not set: %Q\n", r->f.prog->lineno, bit);
			r->f.refset = 1;
		}
	}
	for(r = firstr; r != R; r = (Reg*)r->f.link)
		r->act = zbits;
	rgp = region;
	nregion = 0;
	for(r = firstr; r != R; r = (Reg*)r->f.link) {
		for(z=0; z<BITS; z++)
			bit.b[z] = r->set.b[z] &
			  ~(r->refahead.b[z] | r->calahead.b[z] | addrs.b[z]);
		if(bany(&bit) && !r->f.refset) {
			if(debug['w'])
				print("%L: set and not used: %Q\n", r->f.prog->lineno, bit);
			r->f.refset = 1;
			excise(&r->f);
		}
		for(z=0; z<BITS; z++)
			bit.b[z] = LOAD(r) & ~(r->act.b[z] | addrs.b[z]);
		while(bany(&bit)) {
			i = bnum(bit);
			rgp->enter = r;
			rgp->varno = i;
			change = 0;
			paint1(r, i);
			bit.b[i/32] &= ~(1L<<(i%32));
			if(change <= 0)
				continue;
			rgp->cost = change;
			nregion++;
			if(nregion >= NRGN) {
				if(debug['R'] && debug['v'])
					print("too many regions\n");
				goto brk;
			}
			rgp++;
		}
	}
brk:
	qsort(region, nregion, sizeof(region[0]), rcmp);

	if(debug['R'] && debug['v'])
		dumpit("pass5", &firstr->f, 1);

	/*
	 * pass 6
	 * determine used registers (paint2)
	 * replace code (paint3)
	 */
	rgp = region;
	for(i=0; i<nregion; i++) {
		bit = blsh(rgp->varno);
		vreg = paint2(rgp->enter, rgp->varno);
		vreg = allreg(vreg, rgp);
		if(rgp->regno != 0) {
			if(debug['R'] && debug['v']) {
				Var *v;

				v = var + rgp->varno;
				print("registerize %N+%lld (bit=%2d et=%2E) in %R\n",
						v->node, v->offset, rgp->varno, v->etype, rgp->regno);
			}
			paint3(rgp->enter, rgp->varno, vreg, rgp->regno);
		}
		rgp++;
	}

	if(debug['R'] && debug['v'])
		dumpit("pass6", &firstr->f, 1);
	
	/*
	 * free aux structures. peep allocates new ones.
	 */
	flowend(g);
	firstr = R;

	/*
	 * pass 7
	 * peep-hole on basic block
	 */
	if(!debug['R'] || debug['P'])
		peep(firstp);

	/*
	 * eliminate nops
	 */
	for(p=firstp; p!=P; p=p->link) {
		while(p->link != P && p->link->as == ANOP)
			p->link = p->link->link;
		if(p->to.type == D_BRANCH)
			while(p->to.u.branch != P && p->to.u.branch->as == ANOP)
				p->to.u.branch = p->to.u.branch->link;
	}

	if(debug['R']) {
		if(ostats.ncvtreg ||
		   ostats.nspill ||
		   ostats.nreload ||
		   ostats.ndelmov ||
		   ostats.nvar ||
		   ostats.naddr ||
		   0)
			print("\nstats\n");

		if(ostats.ncvtreg)
			print("	%4d cvtreg\n", ostats.ncvtreg);
		if(ostats.nspill)
			print("	%4d spill\n", ostats.nspill);
		if(ostats.nreload)
			print("	%4d reload\n", ostats.nreload);
		if(ostats.ndelmov)
			print("	%4d delmov\n", ostats.ndelmov);
		if(ostats.nvar)
			print("	%4d var\n", ostats.nvar);
		if(ostats.naddr)
			print("	%4d addr\n", ostats.naddr);

		memset(&ostats, 0, sizeof(ostats));
	}
}
Example #5
0
/*
 * return
 * 1 if v only used (and substitute),
 * 2 if read-alter-rewrite
 * 3 if set
 * 4 if set and used
 * 0 otherwise (not touched)
 */
int
copyu(Prog *p, Adr *v, Adr *s)
{
	ProgInfo info;

	switch(p->as) {
	case AJMP:
		if(s != A) {
			if(copysub(&p->to, v, s, 1))
				return 1;
			return 0;
		}
		if(copyau(&p->to, v))
			return 1;
		return 0;

	case ARET:
		if(s != A)
			return 1;
		return 3;

	case ACALL:
		if(REGEXT && v->type <= REGEXT && v->type > exregoffset)
			return 2;
		if(REGARG >= 0 && v->type == (uchar)REGARG)
			return 2;
		if(v->type == p->from.type)
			return 2;

		if(s != A) {
			if(copysub(&p->to, v, s, 1))
				return 1;
			return 0;
		}
		if(copyau(&p->to, v))
			return 4;
		return 3;

	case ATEXT:
		if(REGARG >= 0 && v->type == (uchar)REGARG)
			return 3;
		return 0;
	}

	proginfo(&info, p);

	if((info.reguse|info.regset) & RtoB(v->type))
		return 2;
		
	if(info.flags & LeftAddr)
		if(copyas(&p->from, v))
			return 2;

	if((info.flags & (RightRead|RightWrite)) == (RightRead|RightWrite))
		if(copyas(&p->to, v))
			return 2;
	
	if(info.flags & RightWrite) {
		if(copyas(&p->to, v)) {
			if(s != A)
				return copysub(&p->from, v, s, 1);
			if(copyau(&p->from, v))
				return 4;
			return 3;
		}
	}
	
	if(info.flags & (LeftAddr|LeftRead|LeftWrite|RightAddr|RightRead|RightWrite)) {
		if(s != A) {
			if(copysub(&p->from, v, s, 1))
				return 1;
			return copysub(&p->to, v, s, 1);
		}
		if(copyau(&p->from, v))
			return 1;
		if(copyau(&p->to, v))
			return 1;
	}

	return 0;
}
Example #6
0
/*
 * the idea is to substitute
 * one register for another
 * from one MOV to another
 *	MOV	a, R0
 *	ADD	b, R0	/ no use of R1
 *	MOV	R0, R1
 * would be converted to
 *	MOV	a, R1
 *	ADD	b, R1
 *	MOV	R1, R0
 * hopefully, then the former or latter MOV
 * will be eliminated by copy propagation.
 */
static int
subprop(Flow *r0)
{
	Prog *p;
	ProgInfo info;
	Adr *v1, *v2;
	Flow *r;
	int t;

	if(debug['P'] && debug['v'])
		print("subprop %P\n", r0->prog);
	p = r0->prog;
	v1 = &p->from;
	if(!regtyp(v1)) {
		if(debug['P'] && debug['v'])
			print("\tnot regtype %D; return 0\n", v1);
		return 0;
	}
	v2 = &p->to;
	if(!regtyp(v2)) {
		if(debug['P'] && debug['v'])
			print("\tnot regtype %D; return 0\n", v2);
		return 0;
	}
	for(r=uniqp(r0); r!=nil; r=uniqp(r)) {
		if(debug['P'] && debug['v'])
			print("\t? %P\n", r->prog);
		if(uniqs(r) == nil) {
			if(debug['P'] && debug['v'])
				print("\tno unique successor\n");
			break;
		}
		p = r->prog;
		proginfo(&info, p);
		if(info.flags & Call) {
			if(debug['P'] && debug['v'])
				print("\tfound %P; return 0\n", p);
			return 0;
		}

		if(info.reguse | info.regset) {
			if(debug['P'] && debug['v'])
				print("\tfound %P; return 0\n", p);
			return 0;
		}

		if((info.flags & Move) && (info.flags & (SizeL|SizeQ|SizeF|SizeD)) && p->to.type == v1->type)
			goto gotit;

		if(copyau(&p->from, v2) ||
		   copyau(&p->to, v2)) {
		   	if(debug['P'] && debug['v'])
		   		print("\tcopyau %D failed\n", v2);
			break;
		}
		if(copysub(&p->from, v1, v2, 0) ||
		   copysub(&p->to, v1, v2, 0)) {
		   	if(debug['P'] && debug['v'])
		   		print("\tcopysub failed\n");
			break;
		}
	}
	if(debug['P'] && debug['v'])
		print("\tran off end; return 0\n");
	return 0;

gotit:
	copysub(&p->to, v1, v2, 1);
	if(debug['P']) {
		print("gotit: %D->%D\n%P", v1, v2, r->prog);
		if(p->from.type == v2->type)
			print(" excise");
		print("\n");
	}
	for(r=uniqs(r); r!=r0; r=uniqs(r)) {
		p = r->prog;
		copysub(&p->from, v1, v2, 1);
		copysub(&p->to, v1, v2, 1);
		if(debug['P'])
			print("%P\n", r->prog);
	}
	t = v1->type;
	v1->type = v2->type;
	v2->type = t;
	if(debug['P'])
		print("%P last\n", r->prog);
	return 1;
}
Example #7
0
void
regopt(Prog *firstp)
{
	Reg *r, *r1;
	Prog *p;
	Graph *g;
	int i, z;
	uint32 vreg;
	Bits bit;
	ProgInfo info;

	if(first) {
		fmtinstall('Q', Qconv);
		first = 0;
	}
	
	fixjmp(firstp);
	mergetemp(firstp);

	/*
	 * control flow is more complicated in generated go code
	 * than in generated c code.  define pseudo-variables for
	 * registers, so we have complete register usage information.
	 */
	nvar = NREGVAR;
	memset(var, 0, NREGVAR*sizeof var[0]);
	for(i=0; i<NREGVAR; i++) {
		if(regnodes[i] == N)
			regnodes[i] = newname(lookup(regname[i]));
		var[i].node = regnodes[i];
	}

	regbits = RtoB(REGSP)|RtoB(REGLINK)|RtoB(REGPC);
	for(z=0; z<BITS; z++) {
		externs.b[z] = 0;
		params.b[z] = 0;
		consts.b[z] = 0;
		addrs.b[z] = 0;
		ovar.b[z] = 0;
	}

	// build list of return variables
	setoutvar();

	/*
	 * pass 1
	 * build aux data structure
	 * allocate pcs
	 * find use and set of variables
	 */
	g = flowstart(firstp, sizeof(Reg));
	if(g == nil)
		return;
	firstr = (Reg*)g->start;

	for(r = firstr; r != R; r = (Reg*)r->f.link) {
		p = r->f.prog;
		proginfo(&info, p);

		// Avoid making variables for direct-called functions.
		if(p->as == ABL && p->to.type == D_EXTERN)
			continue;

		bit = mkvar(r, &p->from);
		if(info.flags & LeftRead)
			for(z=0; z<BITS; z++)
				r->use1.b[z] |= bit.b[z];
		if(info.flags & LeftAddr)
			setaddrs(bit);

		if(info.flags & RegRead) {	
			if(p->from.type != D_FREG)
				r->use1.b[0] |= RtoB(p->reg);
			else
				r->use1.b[0] |= FtoB(p->reg);
		}

		if(info.flags & (RightAddr | RightRead | RightWrite)) {
			bit = mkvar(r, &p->to);
			if(info.flags & RightAddr)
				setaddrs(bit);
			if(info.flags & RightRead)
				for(z=0; z<BITS; z++)
					r->use2.b[z] |= bit.b[z];
			if(info.flags & RightWrite)
				for(z=0; z<BITS; z++)
					r->set.b[z] |= bit.b[z];
		}
	}
	if(firstr == R)
		return;

	for(i=0; i<nvar; i++) {
		Var *v = var+i;
		if(v->addr) {
			bit = blsh(i);
			for(z=0; z<BITS; z++)
				addrs.b[z] |= bit.b[z];
		}

		if(debug['R'] && debug['v'])
			print("bit=%2d addr=%d et=%-6E w=%-2d s=%N + %lld\n",
				i, v->addr, v->etype, v->width, v->node, v->offset);
	}

	if(debug['R'] && debug['v'])
		dumpit("pass1", &firstr->f, 1);

	/*
	 * pass 2
	 * find looping structure
	 */
	flowrpo(g);

	if(debug['R'] && debug['v'])
		dumpit("pass2", &firstr->f, 1);

	/*
	 * pass 3
	 * iterate propagating usage
	 * 	back until flow graph is complete
	 */
loop1:
	change = 0;
	for(r = firstr; r != R; r = (Reg*)r->f.link)
		r->f.active = 0;
	for(r = firstr; r != R; r = (Reg*)r->f.link)
		if(r->f.prog->as == ARET)
			prop(r, zbits, zbits);
loop11:
	/* pick up unreachable code */
	i = 0;
	for(r = firstr; r != R; r = r1) {
		r1 = (Reg*)r->f.link;
		if(r1 && r1->f.active && !r->f.active) {
			prop(r, zbits, zbits);
			i = 1;
		}
	}
	if(i)
		goto loop11;
	if(change)
		goto loop1;

	if(debug['R'] && debug['v'])
		dumpit("pass3", &firstr->f, 1);


	/*
	 * pass 4
	 * iterate propagating register/variable synchrony
	 * 	forward until graph is complete
	 */
loop2:
	change = 0;
	for(r = firstr; r != R; r = (Reg*)r->f.link)
		r->f.active = 0;
	synch(firstr, zbits);
	if(change)
		goto loop2;

	addsplits();

	if(debug['R'] && debug['v'])
		dumpit("pass4", &firstr->f, 1);

	if(debug['R'] > 1) {
		print("\nprop structure:\n");
		for(r = firstr; r != R; r = (Reg*)r->f.link) {
			print("%d:%P", r->f.loop, r->f.prog);
			for(z=0; z<BITS; z++) {
				bit.b[z] = r->set.b[z] |
					r->refahead.b[z] | r->calahead.b[z] |
					r->refbehind.b[z] | r->calbehind.b[z] |
					r->use1.b[z] | r->use2.b[z];
				bit.b[z] &= ~addrs.b[z];
			}

			if(bany(&bit)) {
				print("\t");
				if(bany(&r->use1))
					print(" u1=%Q", r->use1);
				if(bany(&r->use2))
					print(" u2=%Q", r->use2);
				if(bany(&r->set))
					print(" st=%Q", r->set);
				if(bany(&r->refahead))
					print(" ra=%Q", r->refahead);
				if(bany(&r->calahead))
					print(" ca=%Q", r->calahead);
				if(bany(&r->refbehind))
					print(" rb=%Q", r->refbehind);
				if(bany(&r->calbehind))
					print(" cb=%Q", r->calbehind);
			}
			print("\n");
		}
	}

	/*
	 * pass 4.5
	 * move register pseudo-variables into regu.
	 */
	for(r = firstr; r != R; r = (Reg*)r->f.link) {
		r->regu = (r->refbehind.b[0] | r->set.b[0]) & REGBITS;

		r->set.b[0] &= ~REGBITS;
		r->use1.b[0] &= ~REGBITS;
		r->use2.b[0] &= ~REGBITS;
		r->refbehind.b[0] &= ~REGBITS;
		r->refahead.b[0] &= ~REGBITS;
		r->calbehind.b[0] &= ~REGBITS;
		r->calahead.b[0] &= ~REGBITS;
		r->regdiff.b[0] &= ~REGBITS;
		r->act.b[0] &= ~REGBITS;
	}

	if(debug['R'] && debug['v'])
		dumpit("pass4.5", &firstr->f, 1);

	/*
	 * pass 5
	 * isolate regions
	 * calculate costs (paint1)
	 */
	r = firstr;
	if(r) {
		for(z=0; z<BITS; z++)
			bit.b[z] = (r->refahead.b[z] | r->calahead.b[z]) &
			  ~(externs.b[z] | params.b[z] | addrs.b[z] | consts.b[z]);
		if(bany(&bit) & !r->f.refset) {
			// should never happen - all variables are preset
			if(debug['w'])
				print("%L: used and not set: %Q\n", r->f.prog->lineno, bit);
			r->f.refset = 1;
		}
	}

	for(r = firstr; r != R; r = (Reg*)r->f.link)
		r->act = zbits;
	rgp = region;
	nregion = 0;
	for(r = firstr; r != R; r = (Reg*)r->f.link) {
		for(z=0; z<BITS; z++)
			bit.b[z] = r->set.b[z] &
			  ~(r->refahead.b[z] | r->calahead.b[z] | addrs.b[z]);
		if(bany(&bit) && !r->f.refset) {
			if(debug['w'])
				print("%L: set and not used: %Q\n", r->f.prog->lineno, bit);
			r->f.refset = 1;
			excise(&r->f);
		}
		for(z=0; z<BITS; z++)
			bit.b[z] = LOAD(r) & ~(r->act.b[z] | addrs.b[z]);
		while(bany(&bit)) {
			i = bnum(bit);
			rgp->enter = r;
			rgp->varno = i;
			change = 0;
			if(debug['R'] > 1)
				print("\n");
			paint1(r, i);
			bit.b[i/32] &= ~(1L<<(i%32));
			if(change <= 0) {
				if(debug['R'])
					print("%L $%d: %Q\n",
						r->f.prog->lineno, change, blsh(i));
				continue;
			}
			rgp->cost = change;
			nregion++;
			if(nregion >= NRGN) {
				if(debug['R'] > 1)
					print("too many regions\n");
				goto brk;
			}
			rgp++;
		}
	}
brk:
	qsort(region, nregion, sizeof(region[0]), rcmp);

	if(debug['R'] && debug['v'])
		dumpit("pass5", &firstr->f, 1);

	/*
	 * pass 6
	 * determine used registers (paint2)
	 * replace code (paint3)
	 */
	rgp = region;
	for(i=0; i<nregion; i++) {
		bit = blsh(rgp->varno);
		vreg = paint2(rgp->enter, rgp->varno);
		vreg = allreg(vreg, rgp);
		if(debug['R']) {
			if(rgp->regno >= NREG)
				print("%L $%d F%d: %Q\n",
					rgp->enter->f.prog->lineno,
					rgp->cost,
					rgp->regno-NREG,
					bit);
			else
				print("%L $%d R%d: %Q\n",
					rgp->enter->f.prog->lineno,
					rgp->cost,
					rgp->regno,
					bit);
		}
		if(rgp->regno != 0)
			paint3(rgp->enter, rgp->varno, vreg, rgp->regno);
		rgp++;
	}

	if(debug['R'] && debug['v'])
		dumpit("pass6", &firstr->f, 1);

	/*
	 * pass 7
	 * peep-hole on basic block
	 */
	if(!debug['R'] || debug['P']) {
		peep(firstp);
	}

	if(debug['R'] && debug['v'])
		dumpit("pass7", &firstr->f, 1);

	/*
	 * last pass
	 * eliminate nops
	 * free aux structures
	 * adjust the stack pointer
	 *	MOVW.W 	R1,-12(R13)			<<- start
	 *	MOVW   	R0,R1
	 *	MOVW   	R1,8(R13)
	 *	MOVW   	$0,R1
	 *	MOVW   	R1,4(R13)
	 *	BL     	,runtime.newproc+0(SB)
	 *	MOVW   	&ft+-32(SP),R7			<<- adjust
	 *	MOVW   	&j+-40(SP),R6			<<- adjust
	 *	MOVW   	autotmp_0003+-24(SP),R5		<<- adjust
	 *	MOVW   	$12(R13),R13			<<- finish
	 */
	vreg = 0;
	for(p = firstp; p != P; p = p->link) {
		while(p->link != P && p->link->as == ANOP)
			p->link = p->link->link;
		if(p->to.type == D_BRANCH)
			while(p->to.u.branch != P && p->to.u.branch->as == ANOP)
				p->to.u.branch = p->to.u.branch->link;
		if(p->as == AMOVW && p->to.reg == 13) {
			if(p->scond & C_WBIT) {
				vreg = -p->to.offset;		// in adjust region
//				print("%P adjusting %d\n", p, vreg);
				continue;
			}
			if(p->from.type == D_CONST && p->to.type == D_REG) {
				if(p->from.offset != vreg)
					print("in and out different\n");
//				print("%P finish %d\n", p, vreg);
				vreg = 0;	// done adjust region
				continue;
			}

//			print("%P %d %d from type\n", p, p->from.type, D_CONST);
//			print("%P %d %d to type\n\n", p, p->to.type, D_REG);
		}

		if(p->as == AMOVW && vreg != 0) {
			if(p->from.sym != S)
			if(p->from.name == D_AUTO || p->from.name == D_PARAM) {
				p->from.offset += vreg;
//				print("%P adjusting from %d %d\n", p, vreg, p->from.type);
			}
			if(p->to.sym != S)
			if(p->to.name == D_AUTO || p->to.name == D_PARAM) {
				p->to.offset += vreg;
//				print("%P adjusting to %d %d\n", p, vreg, p->from.type);
			}
		}
	}

	flowend(g);
}
Example #8
0
/*
 * the idea is to substitute
 * one register for another
 * from one MOV to another
 *	MOV	a, R0
 *	ADD	b, R0	/ no use of R1
 *	MOV	R0, R1
 * would be converted to
 *	MOV	a, R1
 *	ADD	b, R1
 *	MOV	R1, R0
 * hopefully, then the former or latter MOV
 * will be eliminated by copy propagation.
 */
static int
subprop(Flow *r0)
{
	Prog *p;
	Adr *v1, *v2;
	Flow *r;
	int t;
	ProgInfo info;

	p = r0->prog;
	v1 = &p->from;
	if(!regtyp(v1))
		return 0;
	v2 = &p->to;
	if(!regtyp(v2))
		return 0;
	for(r=uniqp(r0); r!=nil; r=uniqp(r)) {
		if(debug['P'] && debug['v'])
			print("\t? %P\n", r->prog);
		if(uniqs(r) == nil)
			break;
		p = r->prog;
		proginfo(&info, p);
		if(info.flags & Call)
			return 0;

		if(info.reguse | info.regset)
			return 0;

		if((info.flags & Move) && (info.flags & (SizeL|SizeQ|SizeF|SizeD)) && p->to.type == v1->type)
			goto gotit;

		if(copyau(&p->from, v2) || copyau(&p->to, v2))
			break;
		if(copysub(&p->from, v1, v2, 0) || copysub(&p->to, v1, v2, 0))
			break;
	}
	return 0;

gotit:
	copysub(&p->to, v1, v2, 1);
	if(debug['P']) {
		print("gotit: %D->%D\n%P", v1, v2, r->prog);
		if(p->from.type == v2->type)
			print(" excise");
		print("\n");
	}
	for(r=uniqs(r); r!=r0; r=uniqs(r)) {
		p = r->prog;
		copysub(&p->from, v1, v2, 1);
		copysub(&p->to, v1, v2, 1);
		if(debug['P'])
			print("%P\n", r->prog);
	}
	t = v1->type;
	v1->type = v2->type;
	v2->type = t;
	if(debug['P'])
		print("%P last\n", r->prog);
	return 1;
}
Example #9
0
static void
nilwalkback(NilFlow *rcheck)
{
	Prog *p;
	ProgInfo info;
	NilFlow *r;
	
	for(r = rcheck; r != nil; r = (NilFlow*)uniqp(&r->f)) {
		p = r->f.prog;
		proginfo(&info, p);
		if((info.flags & RightWrite) && sameaddr(&p->to, &rcheck->f.prog->from)) {
			// Found initialization of value we're checking for nil.
			// without first finding the check, so this one is unchecked.
			return;
		}
		if(r != rcheck && p->as == ACHECKNIL && sameaddr(&p->from, &rcheck->f.prog->from)) {
			rcheck->kill = 1;
			return;
		}
	}

	// Here is a more complex version that scans backward across branches.
	// It assumes rcheck->kill = 1 has been set on entry, and its job is to find a reason
	// to keep the check (setting rcheck->kill = 0).
	// It doesn't handle copying of aggregates as well as I would like,
	// nor variables with their address taken,
	// and it's too subtle to turn on this late in Go 1.2. Perhaps for Go 1.3.
	/*
	for(r1 = r0; r1 != nil; r1 = (NilFlow*)r1->f.p1) {
		if(r1->f.active == gen)
			break;
		r1->f.active = gen;
		p = r1->f.prog;
		
		// If same check, stop this loop but still check
		// alternate predecessors up to this point.
		if(r1 != rcheck && p->as == ACHECKNIL && sameaddr(&p->from, &rcheck->f.prog->from))
			break;

		proginfo(&info, p);
		if((info.flags & RightWrite) && sameaddr(&p->to, &rcheck->f.prog->from)) {
			// Found initialization of value we're checking for nil.
			// without first finding the check, so this one is unchecked.
			rcheck->kill = 0;
			return;
		}
		
		if(r1->f.p1 == nil && r1->f.p2 == nil) {
			print("lost pred for %P\n", rcheck->f.prog);
			for(r1=r0; r1!=nil; r1=(NilFlow*)r1->f.p1) {
				proginfo(&info, r1->f.prog);
				print("\t%P %d %d %D %D\n", r1->f.prog, info.flags&RightWrite, sameaddr(&r1->f.prog->to, &rcheck->f.prog->from), &r1->f.prog->to, &rcheck->f.prog->from);
			}
			fatal("lost pred trail");
		}
	}

	for(r = r0; r != r1; r = (NilFlow*)r->f.p1)
		for(r2 = (NilFlow*)r->f.p2; r2 != nil; r2 = (NilFlow*)r2->f.p2link)
			nilwalkback(rcheck, r2, gen);
	*/
}
Example #10
0
void
mergetemp(Prog *firstp)
{
	int i, j, nvar, ninuse, nfree, nkill;
	TempVar *var, *v, *v1, **bystart, **inuse;
	TempFlow *r;
	NodeList *l, **lp;
	Node *n;
	Prog *p, *p1;
	Type *t;
	ProgInfo info, info1;
	int32 gen;
	Graph *g;

	enum { Debug = 0 };

	g = flowstart(firstp, sizeof(TempFlow));
	if(g == nil)
		return;

	// Build list of all mergeable variables.
	nvar = 0;
	for(l = curfn->dcl; l != nil; l = l->next)
		if(canmerge(l->n))
			nvar++;
	
	var = calloc(nvar*sizeof var[0], 1);
	nvar = 0;
	for(l = curfn->dcl; l != nil; l = l->next) {
		n = l->n;
		if(canmerge(n)) {
			v = &var[nvar++];
			n->opt = v;
			v->node = n;
		}
	}
	
	// Build list of uses.
	// We assume that the earliest reference to a temporary is its definition.
	// This is not true of variables in general but our temporaries are all
	// single-use (that's why we have so many!).
	for(r = (TempFlow*)g->start; r != nil; r = (TempFlow*)r->f.link) {
		p = r->f.prog;
		proginfo(&info, p);

		if(p->from.node != N && p->from.node->opt && p->to.node != N && p->to.node->opt)
			fatal("double node %P", p);
		if((n = p->from.node) != N && (v = n->opt) != nil ||
		   (n = p->to.node) != N && (v = n->opt) != nil) {
		   	if(v->def == nil)
		   		v->def = r;
			r->uselink = v->use;
			v->use = r;
			if(n == p->from.node && (info.flags & LeftAddr))
				v->addr = 1;
		}
	}
	
	if(Debug > 1)
		dumpit("before", g->start, 0);
	
	nkill = 0;

	// Special case.
	for(v = var; v < var+nvar; v++) {
		if(v->addr)
			continue;
		// Used in only one instruction, which had better be a write.
		if((r = v->use) != nil && r->uselink == nil) {
			p = r->f.prog;
			proginfo(&info, p);
			if(p->to.node == v->node && (info.flags & RightWrite) && !(info.flags & RightRead)) {
				p->as = ANOP;
				p->to = zprog.to;
				v->removed = 1;
				if(Debug)
					print("drop write-only %S\n", v->node->sym);
			} else
				fatal("temp used and not set: %P", p);
			nkill++;
			continue;
		}
		
		// Written in one instruction, read in the next, otherwise unused,
		// no jumps to the next instruction. Happens mainly in 386 compiler.
		if((r = v->use) != nil && r->f.link == &r->uselink->f && r->uselink->uselink == nil && uniqp(r->f.link) == &r->f) {
			p = r->f.prog;
			proginfo(&info, p);
			p1 = r->f.link->prog;
			proginfo(&info1, p1);
			enum {
				SizeAny = SizeB | SizeW | SizeL | SizeQ | SizeF | SizeD,
			};
			if(p->from.node == v->node && p1->to.node == v->node && (info.flags & Move) &&
			   !((info.flags|info1.flags) & (LeftAddr|RightAddr)) &&
			   (info.flags & SizeAny) == (info1.flags & SizeAny)) {
				p1->from = p->from;
				excise(&r->f);
				v->removed = 1;
				if(Debug)
					print("drop immediate-use %S\n", v->node->sym);
			}
			nkill++;
			continue;
		}			   
	}

	// Traverse live range of each variable to set start, end.
	// Each flood uses a new value of gen so that we don't have
	// to clear all the r->f.active words after each variable.
	gen = 0;
	for(v = var; v < var+nvar; v++) {
		gen++;
		for(r = v->use; r != nil; r = r->uselink)
			mergewalk(v, r, gen);
	}

	// Sort variables by start.
	bystart = malloc(nvar*sizeof bystart[0]);
	for(i=0; i<nvar; i++)
		bystart[i] = &var[i];
	qsort(bystart, nvar, sizeof bystart[0], startcmp);

	// List of in-use variables, sorted by end, so that the ones that
	// will last the longest are the earliest ones in the array.
	// The tail inuse[nfree:] holds no-longer-used variables.
	// In theory we should use a sorted tree so that insertions are
	// guaranteed O(log n) and then the loop is guaranteed O(n log n).
	// In practice, it doesn't really matter.
	inuse = malloc(nvar*sizeof inuse[0]);
	ninuse = 0;
	nfree = nvar;
	for(i=0; i<nvar; i++) {
		v = bystart[i];
		if(v->addr || v->removed)
			continue;

		// Expire no longer in use.
		while(ninuse > 0 && inuse[ninuse-1]->end < v->start) {
			v1 = inuse[--ninuse];
			inuse[--nfree] = v1;
		}

		// Find old temp to reuse if possible.
		t = v->node->type;
		for(j=nfree; j<nvar; j++) {
			v1 = inuse[j];
			if(eqtype(t, v1->node->type)) {
				inuse[j] = inuse[nfree++];
				if(v1->merge)
					v->merge = v1->merge;
				else
					v->merge = v1;
				nkill++;
				break;
			}
		}

		// Sort v into inuse.
		j = ninuse++;
		while(j > 0 && inuse[j-1]->end < v->end) {
			inuse[j] = inuse[j-1];
			j--;
		}
		inuse[j] = v;
	}

	if(Debug) {
		print("%S [%d - %d]\n", curfn->nname->sym, nvar, nkill);
		for(v=var; v<var+nvar; v++) {
			print("var %#N %T %lld-%lld", v->node, v->node->type, v->start, v->end);
			if(v->addr)
				print(" addr=1");
			if(v->removed)
				print(" dead=1");
			if(v->merge)
				print(" merge %#N", v->merge->node);
			if(v->start == v->end)
				print(" %P", v->def->f.prog);
			print("\n");
		}
	
		if(Debug > 1)
			dumpit("after", g->start, 0);
	}

	// Update node references to use merged temporaries.
	for(r = (TempFlow*)g->start; r != nil; r = (TempFlow*)r->f.link) {
		p = r->f.prog;
		if((n = p->from.node) != N && (v = n->opt) != nil && v->merge != nil)
			p->from.node = v->merge->node;
		if((n = p->to.node) != N && (v = n->opt) != nil && v->merge != nil)
			p->to.node = v->merge->node;
	}

	// Delete merged nodes from declaration list.
	for(lp = &curfn->dcl; (l = *lp); ) {
		curfn->dcl->end = l;
		n = l->n;
		v = n->opt;
		if(v && (v->merge || v->removed)) {
			*lp = l->next;
			continue;
		}
		lp = &l->next;
	}

	// Clear aux structures.
	for(v=var; v<var+nvar; v++)
		v->node->opt = nil;
	free(var);
	free(bystart);
	free(inuse);
	flowend(g);
}
Example #11
0
Graph*
flowstart(Prog *firstp, int size)
{
	int nf;
	Flow *f, *f1, *start, *last;
	Graph *graph;
	Prog *p;
	ProgInfo info;

	// Count and mark instructions to annotate.
	nf = 0;
	for(p = firstp; p != P; p = p->link) {
		p->opt = nil; // should be already, but just in case
		proginfo(&info, p);
		if(info.flags & Skip)
			continue;
		p->opt = (void*)1;
		nf++;
	}
	
	if(nf == 0)
		return nil;

	if(nf >= 20000) {
		// fatal("%S is too big (%d instructions)", curfn->nname->sym, nf);
		return nil;
	}

	// Allocate annotations and assign to instructions.
	graph = calloc(sizeof *graph + size*nf, 1);
	if(graph == nil)
		fatal("out of memory");
	start = (Flow*)(graph+1);
	last = nil;
	f = start;
	for(p = firstp; p != P; p = p->link) {
		if(p->opt == nil)
			continue;
		p->opt = f;
		f->prog = p;
		if(last)
			last->link = f;
		last = f;
		
		f = (Flow*)((uchar*)f + size);
	}

	// Fill in pred/succ information.
	for(f = start; f != nil; f = f->link) {
		p = f->prog;
		proginfo(&info, p);
		if(!(info.flags & Break)) {
			f1 = f->link;
			f->s1 = f1;
			f1->p1 = f;
		}
		if(p->to.type == D_BRANCH) {
			if(p->to.u.branch == P)
				fatal("pnil %P", p);
			f1 = p->to.u.branch->opt;
			if(f1 == nil)
				fatal("fnil %P / %P", p, p->to.u.branch);
			if(f1 == f) {
				//fatal("self loop %P", p);
				continue;
			}
			f->s2 = f1;
			f->p2link = f1->p2;
			f1->p2 = f;
		}
	}
	
	graph->start = start;
	graph->num = nf;
	return graph;
}
Example #12
0
/*
 * the idea is to substitute
 * one register for another
 * from one MOV to another
 *	MOV	a, R0
 *	ADD	b, R0	/ no use of R1
 *	MOV	R0, R1
 * would be converted to
 *	MOV	a, R1
 *	ADD	b, R1
 *	MOV	R1, R0
 * hopefully, then the former or latter MOV
 * will be eliminated by copy propagation.
 */
static int
subprop(Flow *r0)
{
	Prog *p;
	Adr *v1, *v2;
	Flow *r;
	int t;
	ProgInfo info;

	p = r0->prog;
	v1 = &p->from;
	if(!regtyp(v1))
		return 0;
	v2 = &p->to;
	if(!regtyp(v2))
		return 0;
	for(r=uniqp(r0); r!=nil; r=uniqp(r)) {
		if(uniqs(r) == nil)
			break;
		p = r->prog;
		proginfo(&info, p);
		if(info.flags & Call)
			return 0;

		if((info.flags & CanRegRead) && p->to.type == D_REG) {
			info.flags |= RegRead;
			info.flags &= ~(CanRegRead | RightRead);
			p->reg = p->to.reg;
		}

		switch(p->as) {
		case AMULLU:
		case AMULA:
		case AMVN:
			return 0;
		}
		
		if((info.flags & (RightRead|RightWrite)) == RightWrite) {
			if(p->to.type == v1->type)
			if(p->to.reg == v1->reg)
			if(p->scond == C_SCOND_NONE)
				goto gotit;
		}

		if(copyau(&p->from, v2) ||
		   copyau1(p, v2) ||
		   copyau(&p->to, v2))
			break;
		if(copysub(&p->from, v1, v2, 0) ||
		   copysub1(p, v1, v2, 0) ||
		   copysub(&p->to, v1, v2, 0))
			break;
	}
	return 0;

gotit:
	copysub(&p->to, v1, v2, 1);
	if(debug['P']) {
		print("gotit: %D->%D\n%P", v1, v2, r->prog);
		if(p->from.type == v2->type)
			print(" excise");
		print("\n");
	}
	for(r=uniqs(r); r!=r0; r=uniqs(r)) {
		p = r->prog;
		copysub(&p->from, v1, v2, 1);
		copysub1(p, v1, v2, 1);
		copysub(&p->to, v1, v2, 1);
		if(debug['P'])
			print("%P\n", r->prog);
	}
	t = v1->reg;
	v1->reg = v2->reg;
	v2->reg = t;
	if(debug['P'])
		print("%P last\n", r->prog);
	return 1;
}