Example #1
0
int BaseFilter::start()
{   
	if (s_computing)
	{
		throwError(-32);
		return -1;
	}

	QProgressDialog progressCb("Operation in progress",QString(),0,0);

	if (m_show_progress)
    {
		progressCb.setWindowTitle(getFilterName());
		progressCb.show();
		QApplication::processEvents();
	}

	s_computeStatus = -1;
	s_filter = this;
	s_computing = true;
	int progress = 0;

	QFuture<void> future = QtConcurrent::run(doCompute);
	while (!future.isFinished())
	{
#if defined(CC_WINDOWS)
		::Sleep(500);
#else
		usleep(500 * 1000);
#endif
		if (m_show_progress)
			progressCb.setValue(++progress);
	}
	
	int is_ok = s_computeStatus;
	s_filter = 0;
	s_computing = false;

	if (m_show_progress)
	{
        progressCb.close();
        QApplication::processEvents();
	}

	if (is_ok < 0)
	{
		throwError(is_ok);
		return -1;
	}

	return 1;
}
void OdinPatcher::Impl::updateProgress(uint64_t bytes, uint64_t maxBytes)
{
    if (progressCb) {
        bool shouldCall = true;
        if (maxBytes > 0) {
            // Rate limit... call back only if percentage exceeds 0.01%
            double oldRatio = (double) oldBytes / maxBytes;
            double newRatio = (double) bytes / maxBytes;
            if (newRatio - oldRatio < 0.0001) {
                shouldCall = false;
            }
        }
        if (shouldCall) {
            progressCb(bytes, maxBytes, userData);
            oldBytes = bytes;
        }
    }
}
void MultiBootPatcher::Impl::updateProgress(uint64_t bytes, uint64_t maxBytes)
{
    if (progressCb) {
        progressCb(bytes, maxBytes, userData);
    }
}
Example #4
0
void qHPR::doAction()
{
	assert(m_app);
	if (!m_app)
		return;

	const ccHObject::Container& selectedEntities = m_app->getSelectedEntities();
	size_t selNum = selectedEntities.size();
	if (	selNum != 1
		||	!selectedEntities.front()->isA(CC_TYPES::POINT_CLOUD))
	{
		m_app->dispToConsole("Select only one cloud!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
		return;
	}

	ccPointCloud* cloud = static_cast<ccPointCloud*>(selectedEntities[0]);

	ccGLWindow* win = m_app->getActiveGLWindow();
	if (!win)
	{
		m_app->dispToConsole("No active window!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
		return;
	}

	//display parameters
	const ccViewportParameters& params =  win->getViewportParameters();
	if (!params.perspectiveView)
	{
		m_app->dispToConsole("Perspective mode only!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
		return;
	}

	ccHprDlg dlg(m_app->getMainWindow());
	if (!dlg.exec())
		return;

	//progress dialog
	ccProgressDialog progressCb(false,m_app->getMainWindow());

	//unique parameter: the octree subdivision level
	int octreeLevel = dlg.octreeLevelSpinBox->value();
	assert(octreeLevel >= 0 && octreeLevel <= CCLib::DgmOctree::MAX_OCTREE_LEVEL);

	//compute octree if cloud hasn't any
	ccOctree::Shared theOctree = cloud->getOctree();
	if (!theOctree)
	{
		theOctree = cloud->computeOctree(&progressCb);
		if (theOctree && cloud->getParent())
		{
			m_app->addToDB(cloud->getOctreeProxy());
		}
	}

	if (!theOctree)
	{
		m_app->dispToConsole("Couldn't compute octree!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
		return;
	}

	CCVector3d viewPoint = params.cameraCenter;
	if (params.objectCenteredView)
	{
		CCVector3d PC = params.cameraCenter - params.pivotPoint;
		params.viewMat.inverse().apply(PC);
		viewPoint = params.pivotPoint + PC;
	}

	//HPR
	CCLib::ReferenceCloud* visibleCells = 0;
	{
		QElapsedTimer eTimer;
		eTimer.start();

		CCLib::ReferenceCloud* theCellCenters = CCLib::CloudSamplingTools::subsampleCloudWithOctreeAtLevel(	cloud,
																											static_cast<unsigned char>(octreeLevel),
																											CCLib::CloudSamplingTools::NEAREST_POINT_TO_CELL_CENTER,
																											&progressCb,
																											theOctree.data());
		if (!theCellCenters)
		{
			m_app->dispToConsole("Error while simplifying point cloud with octree!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
			return;
		}

		visibleCells = removeHiddenPoints(theCellCenters,viewPoint,3.5);
	
		m_app->dispToConsole(QString("[HPR] Cells: %1 - Time: %2 s").arg(theCellCenters->size()).arg(eTimer.elapsed()/1.0e3));

		//warning: after this, visibleCells can't be used anymore as a
		//normal cloud (as it's 'associated cloud' has been deleted).
		//Only its indexes are valid! (they are corresponding to octree cells)
		delete theCellCenters;
		theCellCenters = 0;
	}

	if (visibleCells)
	{
		//DGM: we generate a new cloud now, instead of playing with the points visiblity! (too confusing for the user)
		/*if (!cloud->isVisibilityTableInstantiated() && !cloud->resetVisibilityArray())
		{
			m_app->dispToConsole("Visibility array allocation failed! (Not enough memory?)",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
			return;
		}

		ccPointCloud::VisibilityTableType* pointsVisibility = cloud->getTheVisibilityArray();
		assert(pointsVisibility);
		pointsVisibility->fill(POINT_HIDDEN);
		//*/

		CCLib::ReferenceCloud visiblePoints(theOctree->associatedCloud());

		unsigned visiblePointCount = 0;
		unsigned visibleCellsCount = visibleCells->size();

		CCLib::DgmOctree::cellIndexesContainer cellIndexes;
		if (!theOctree->getCellIndexes(static_cast<unsigned char>(octreeLevel), cellIndexes))
		{
			m_app->dispToConsole("Couldn't fetch the list of octree cell indexes! (Not enough memory?)",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
			delete visibleCells;
			return;
		}

		for (unsigned i=0; i<visibleCellsCount; ++i)
		{
			//cell index
			unsigned index = visibleCells->getPointGlobalIndex(i);

			//points in this cell...
			CCLib::ReferenceCloud Yk(theOctree->associatedCloud());
			theOctree->getPointsInCellByCellIndex(&Yk,cellIndexes[index],static_cast<unsigned char>(octreeLevel));
			//...are all visible
			/*unsigned count = Yk.size();
			for (unsigned j=0;j<count;++j)
				pointsVisibility->setValue(Yk.getPointGlobalIndex(j),POINT_VISIBLE);
			visiblePointCount += count;
			//*/
			if (!visiblePoints.add(Yk))
			{
				m_app->dispToConsole("Not enough memory!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
				delete visibleCells;
				return;
			}
		}

		delete visibleCells;
		visibleCells = 0;

		m_app->dispToConsole(QString("[HPR] Visible points: %1").arg(visiblePointCount));

		if (visiblePoints.size() == cloud->size())
		{
			m_app->dispToConsole("No points were removed!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
		}
		else
		{
			//create cloud from visibility selection
			ccPointCloud* newCloud = cloud->partialClone(&visiblePoints);
			if (newCloud)
			{			
				newCloud->setDisplay(newCloud->getDisplay());
				newCloud->setVisible(true);
				newCloud->setName(cloud->getName()+QString(".visible_points"));
				cloud->setEnabled(false);

				//add associated viewport object
				cc2DViewportObject* viewportObject = new cc2DViewportObject(QString("Viewport"));
				viewportObject->setParameters(params);
				newCloud->addChild(viewportObject);

				m_app->addToDB(newCloud);
				newCloud->redrawDisplay();
			}
			else
			{
				m_app->dispToConsole("Not enough memory!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
			}
		}
	}

	//currently selected entities appearance may have changed!
	m_app->refreshAll();
}
Example #5
0
void qRansacSD::doAction()
{
    assert(m_app);
    if (!m_app)
        return;

    const ccHObject::Container& selectedEntities = m_app->getSelectedEntities();
    size_t selNum = selectedEntities.size();
    if (selNum!=1)
    {
        m_app->dispToConsole("Select only one cloud!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
        return;
    }

    ccHObject* ent = selectedEntities[0];
    assert(ent);
    if (!ent || !ent->isA(CC_POINT_CLOUD))
    {
        m_app->dispToConsole("Select a real point cloud!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
        return;
    }

    ccPointCloud* pc = static_cast<ccPointCloud*>(ent);

    //input cloud
    size_t count = (size_t)pc->size();
    bool hasNorms = pc->hasNormals();
    PointCoordinateType bbMin[3],bbMax[3];
    pc->getBoundingBox(bbMin,bbMax);

    //Convert CC point cloud to RANSAC_SD type
    PointCloud cloud;
    {
        try
        {
            cloud.reserve(count);
        }
        catch(...)
        {
            m_app->dispToConsole("Not enough memory!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
            return;
        }

        //default point & normal
        Point Pt;
        Pt.normal[0] = 0.0;
        Pt.normal[1] = 0.0;
        Pt.normal[2] = 0.0;
        for (unsigned i=0; i<(unsigned)count; ++i)
        {
            const CCVector3* P = pc->getPoint(i);
            Pt.pos[0] = P->x;
            Pt.pos[1] = P->y;
            Pt.pos[2] = P->z;
            if (hasNorms)
            {
                const PointCoordinateType* N = pc->getPointNormal(i);
                Pt.normal[0] = N[0];
                Pt.normal[1] = N[1];
                Pt.normal[2] = N[2];
            }
            cloud.push_back(Pt);
        }

        //manually set bounding box!
        Vec3f cbbMin,cbbMax;
        cbbMin[0] = bbMin[0];
        cbbMin[1] = bbMin[1];
        cbbMin[2] = bbMin[2];
        cbbMax[0] = bbMax[0];
        cbbMax[1] = bbMax[1];
        cbbMax[2] = bbMax[2];
        cloud.setBBox(cbbMin,cbbMax);
    }

    //cloud scale (useful for setting several parameters
    const float scale = cloud.getScale();

    //init dialog with default values
    ccRansacSDDlg rsdDlg(m_app->getMainWindow());
    rsdDlg.epsilonDoubleSpinBox->setValue(.01f * scale);		// set distance threshold to .01f of bounding box width
    // NOTE: Internally the distance threshold is taken as 3 * ransacOptions.m_epsilon!!!
    rsdDlg.bitmapEpsilonDoubleSpinBox->setValue(.02f * scale);	// set bitmap resolution to .02f of bounding box width
    // NOTE: This threshold is NOT multiplied internally!
    rsdDlg.supportPointsSpinBox->setValue(s_supportPoints);
    rsdDlg.normThreshDoubleSpinBox->setValue(s_normThresh);
    rsdDlg.probaDoubleSpinBox->setValue(s_proba);
    rsdDlg.planeCheckBox->setChecked(s_primEnabled[0]);
    rsdDlg.sphereCheckBox->setChecked(s_primEnabled[1]);
    rsdDlg.cylinderCheckBox->setChecked(s_primEnabled[2]);
    rsdDlg.coneCheckBox->setChecked(s_primEnabled[3]);
    rsdDlg.torusCheckBox->setChecked(s_primEnabled[4]);

    if (!rsdDlg.exec())
        return;

    //for parameters persistence
    {
        s_supportPoints = rsdDlg.supportPointsSpinBox->value();
        s_normThresh = rsdDlg.normThreshDoubleSpinBox->value();
        s_proba = rsdDlg.probaDoubleSpinBox->value();

        //consistency check
        {
            unsigned char primCount = 0;
            for (unsigned char k=0; k<5; ++k)
                primCount += (unsigned)s_primEnabled[k];
            if (primCount==0)
            {
                m_app->dispToConsole("No primitive type selected!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
                return;
            }
        }

        s_primEnabled[0] = rsdDlg.planeCheckBox->isChecked();
        s_primEnabled[1] = rsdDlg.sphereCheckBox->isChecked();
        s_primEnabled[2] = rsdDlg.cylinderCheckBox->isChecked();
        s_primEnabled[3] = rsdDlg.coneCheckBox->isChecked();
        s_primEnabled[4] = rsdDlg.torusCheckBox->isChecked();
    }

    //import parameters from dialog
    RansacShapeDetector::Options ransacOptions;
    {
        ransacOptions.m_epsilon = rsdDlg.epsilonDoubleSpinBox->value();
        ransacOptions.m_bitmapEpsilon = rsdDlg.bitmapEpsilonDoubleSpinBox->value();
        ransacOptions.m_normalThresh = rsdDlg.normThreshDoubleSpinBox->value();
        ransacOptions.m_minSupport = rsdDlg.supportPointsSpinBox->value();
        ransacOptions.m_probability = rsdDlg.probaDoubleSpinBox->value();
    }

    //progress dialog
    ccProgressDialog progressCb(false,m_app->getMainWindow());
    progressCb.setRange(0,0);

    if (!hasNorms)
    {
        progressCb.setInfo("Computing normals (please wait)");
        progressCb.start();
        QApplication::processEvents();

        cloud.calcNormals(.01f * scale);

        if (pc->reserveTheNormsTable())
        {
            for (size_t i=0; i<count; ++i)
            {
                CCVector3 N(cloud[i].normal);
                N.normalize();
                pc->addNorm(N.u);
            }
            pc->showNormals(true);

            //currently selected entities appearance may have changed!
            pc->prepareDisplayForRefresh_recursive();
        }
        else
        {
            m_app->dispToConsole("Not enough memory to compute normals!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
            return;
        }
    }

    // set which primitives are to be detected by adding the respective constructors
    RansacShapeDetector detector(ransacOptions); // the detector object

    if (rsdDlg.planeCheckBox->isChecked())
        detector.Add(new PlanePrimitiveShapeConstructor());
    if (rsdDlg.sphereCheckBox->isChecked())
        detector.Add(new SpherePrimitiveShapeConstructor());
    if (rsdDlg.cylinderCheckBox->isChecked())
        detector.Add(new CylinderPrimitiveShapeConstructor());
    if (rsdDlg.coneCheckBox->isChecked())
        detector.Add(new ConePrimitiveShapeConstructor());
    if (rsdDlg.torusCheckBox->isChecked())
        detector.Add(new TorusPrimitiveShapeConstructor());

    size_t remaining = count;
    typedef std::pair< MiscLib::RefCountPtr< PrimitiveShape >, size_t > DetectedShape;
    MiscLib::Vector< DetectedShape > shapes; // stores the detected shapes

    // run detection
    // returns number of unassigned points
    // the array shapes is filled with pointers to the detected shapes
    // the second element per shapes gives the number of points assigned to that primitive (the support)
    // the points belonging to the first shape (shapes[0]) have been sorted to the end of pc,
    // i.e. into the range [ pc.size() - shapes[0].second, pc.size() )
    // the points of shape i are found in the range
    // [ pc.size() - \sum_{j=0..i} shapes[j].second, pc.size() - \sum_{j=0..i-1} shapes[j].second )

    {
        progressCb.setInfo("Operation in progress");
        progressCb.setMethodTitle("Ransac Shape Detection");
        progressCb.start();

        //run in a separate thread
        s_detector = &detector;
        s_shapes = &shapes;
        s_cloud = &cloud;
        QFuture<void> future = QtConcurrent::run(doDetection);

        unsigned progress = 0;
        while (!future.isFinished())
        {
#if defined(_WIN32) || defined(WIN32)
            ::Sleep(500);
#else
            sleep(500);
#endif
            progressCb.update(++progress);
            //Qtconcurrent::run can't be canceled!
            /*if (progressCb.isCancelRequested())
            {
            	future.cancel();
            	future.waitForFinished();
            	s_remainingPoints = count;
            	break;
            }
            //*/
        }

        remaining = s_remainingPoints;

        progressCb.stop();
        QApplication::processEvents();
    }
    //else
    //{
    //	remaining = detector.Detect(cloud, 0, cloud.size(), &shapes);
    //}

#ifdef _DEBUG
    FILE* fp = fopen("RANS_SD_trace.txt","wt");

    fprintf(fp,"[Options]\n");
    fprintf(fp,"epsilon=%f\n",ransacOptions.m_epsilon);
    fprintf(fp,"bitmap epsilon=%f\n",ransacOptions.m_bitmapEpsilon);
    fprintf(fp,"normal thresh=%f\n",ransacOptions.m_normalThresh);
    fprintf(fp,"min support=%i\n",ransacOptions.m_minSupport);
    fprintf(fp,"probability=%f\n",ransacOptions.m_probability);

    fprintf(fp,"\n[Statistics]\n");
    fprintf(fp,"input points=%i\n",count);
    fprintf(fp,"segmented=%i\n",count-remaining);
    fprintf(fp,"remaining=%i\n",remaining);

    if (shapes.size()>0)
    {
        fprintf(fp,"\n[Shapes]\n");
        for (unsigned i=0; i<shapes.size(); ++i)
        {
            PrimitiveShape* shape = shapes[i].first;
            unsigned shapePointsCount = shapes[i].second;

            std::string desc;
            shape->Description(&desc);
            fprintf(fp,"#%i - %s - %i points\n",i+1,desc.c_str(),shapePointsCount);
        }
    }
    fclose(fp);
#endif

    if (remaining == count)
    {
        m_app->dispToConsole("Segmentation failed...",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
        return;
    }

    if (shapes.size() > 0)
    {
        ccHObject* group = 0;
        for (MiscLib::Vector<DetectedShape>::const_iterator it = shapes.begin(); it != shapes.end(); ++it)
        {
            const PrimitiveShape* shape = it->first;
            size_t shapePointsCount = it->second;

            //too many points?!
            if (shapePointsCount > count)
            {
                m_app->dispToConsole("Inconsistent result!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
                break;
            }

            std::string desc;
            shape->Description(&desc);

            //new cloud for sub-part
            ccPointCloud* pcShape = new ccPointCloud(desc.c_str());

            //we fill cloud with sub-part points
            if (!pcShape->reserve((unsigned)shapePointsCount))
            {
                m_app->dispToConsole("Not enough memory!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
                delete pcShape;
                break;
            }
            bool saveNormals = pcShape->reserveTheNormsTable();

            for (size_t j=0; j<shapePointsCount; ++j)
            {
                pcShape->addPoint(CCVector3(cloud[count-1-j].pos));
                if (saveNormals)
                    pcShape->addNorm(cloud[count-1-j].normal);
            }

            //random color
            unsigned char col[3]= { (unsigned char)(255.0*(float)rand()/(float)RAND_MAX),
                                    (unsigned char)(255.0*(float)rand()/(float)RAND_MAX),
                                    0
                                  };
            col[2]=255-(col[1]+col[2])/2;
            pcShape->setRGBColor(col);
            pcShape->showColors(true);
            pcShape->showNormals(saveNormals);
            pcShape->setVisible(true);

            //convert detected primitive into a CC primitive type
            ccGenericPrimitive* prim = 0;
            switch(shape->Identifier())
            {
            case 0: //plane
            {
                const PlanePrimitiveShape* plane = static_cast<const PlanePrimitiveShape*>(shape);
                Vec3f G = plane->Internal().getPosition();
                Vec3f N = plane->Internal().getNormal();
                Vec3f X = plane->getXDim();
                Vec3f Y = plane->getYDim();

                //we look for real plane extents
                float minX,maxX,minY,maxY;
                for (size_t j=0; j<shapePointsCount; ++j)
                {
                    std::pair<float,float> param;
                    plane->Parameters(cloud[count-1-j].pos,&param);
                    if (j!=0)
                    {
                        if (minX<param.first)
                            minX=param.first;
                        else if (maxX>param.first)
                            maxX=param.first;
                        if (minY<param.second)
                            minY=param.second;
                        else if (maxY>param.second)
                            maxY=param.second;
                    }
                    else
                    {
                        minX=maxX=param.first;
                        minY=maxY=param.second;
                    }
                }

                //we recenter plane (as it is not always the case!)
                float dX = maxX-minX;
                float dY = maxY-minY;
                G += X * (minX+dX*0.5);
                G += Y * (minY+dY*0.5);

                //we build matrix from these vecctors
                ccGLMatrix glMat(CCVector3(X.getValue()),
                                 CCVector3(Y.getValue()),
                                 CCVector3(N.getValue()),
                                 CCVector3(G.getValue()));

                //plane primitive
                prim = new ccPlane(dX,dY,&glMat);

            }
            break;

            case 1: //sphere
            {
                const SpherePrimitiveShape* sphere = static_cast<const SpherePrimitiveShape*>(shape);
                float radius = sphere->Internal().Radius();
                Vec3f CC = sphere->Internal().Center();

                pcShape->setName(QString("Sphere (r=%1)").arg(radius,0,'f'));

                //we build matrix from these vecctors
                ccGLMatrix glMat;
                glMat.setTranslation(CCVector3(CC.getValue()));
                //sphere primitive
                prim = new ccSphere(radius,&glMat);
                prim->setEnabled(false);

            }
            break;

            case 2: //cylinder
            {
                const CylinderPrimitiveShape* cyl = static_cast<const CylinderPrimitiveShape*>(shape);
                Vec3f G = cyl->Internal().AxisPosition();
                Vec3f N = cyl->Internal().AxisDirection();
                Vec3f X = cyl->Internal().AngularDirection();
                Vec3f Y = N.cross(X);
                float r = cyl->Internal().Radius();
                float hMin = cyl->MinHeight();
                float hMax = cyl->MaxHeight();
                float h = hMax-hMin;
                G += N * (hMin+h*0.5);

                pcShape->setName(QString("Cylinder (r=%1/h=%2)").arg(r,0,'f').arg(h,0,'f'));

                //we build matrix from these vecctors
                ccGLMatrix glMat(CCVector3(X.getValue()),
                                 CCVector3(Y.getValue()),
                                 CCVector3(N.getValue()),
                                 CCVector3(G.getValue()));

                //cylinder primitive
                prim = new ccCylinder(r,h,&glMat);
                prim->setEnabled(false);

            }
            break;

            case 3: //cone
            {
                const ConePrimitiveShape* cone = static_cast<const ConePrimitiveShape*>(shape);
                Vec3f CC = cone->Internal().Center();
                Vec3f CA = cone->Internal().AxisDirection();
                float alpha = cone->Internal().Angle();

                //compute max height
                CCVector3 maxP(CC.getValue());
                float maxHeight = 0;
                for (size_t j=0; j<shapePointsCount; ++j)
                {
                    float h = cone->Internal().Height(cloud[count-1-j].pos);
                    if (h>maxHeight)
                    {
                        maxHeight=h;
                        maxP = CCVector3(cloud[count-1-j].pos);
                    }
                }

                pcShape->setName(QString("Cone (alpha=%1/h=%2)").arg(alpha,0,'f').arg(maxHeight,0,'f'));

                float radius = tan(alpha)*maxHeight;
                CCVector3 Z = CCVector3(CA.getValue());
                CCVector3 C = CCVector3(CC.getValue()); //cone apex

                //construct remaining of base
                Z.normalize();
                CCVector3 X = maxP - (C + maxHeight * Z);
                X.normalize();
                CCVector3 Y = Z * X;

                //we build matrix from these vecctors
                ccGLMatrix glMat(X,Y,Z,C+(maxHeight*0.5)*Z);

                //cone primitive
                prim = new ccCone(0,radius,maxHeight,0,0,&glMat);
                prim->setEnabled(false);

            }
            break;

            case 4: //torus
            {
                const TorusPrimitiveShape* torus = static_cast<const TorusPrimitiveShape*>(shape);
                if (torus->Internal().IsAppleShaped())
                {
                    m_app->dispToConsole("[qRansacSD] Apple-shaped torus are not handled by CloudCompare!",ccMainAppInterface::WRN_CONSOLE_MESSAGE);
                }
                else
                {
                    Vec3f CC = torus->Internal().Center();
                    Vec3f CA = torus->Internal().AxisDirection();
                    float minRadius = torus->Internal().MinorRadius();
                    float maxRadius = torus->Internal().MajorRadius();

                    pcShape->setName(QString("Torus (r=%1/R=%2)").arg(minRadius,0,'f').arg(maxRadius,0,'f'));

                    CCVector3 Z = CCVector3(CA.getValue());
                    CCVector3 C = CCVector3(CC.getValue());
                    //construct remaining of base
                    CCVector3 X = Z.orthogonal();
                    CCVector3 Y = Z * X;

                    //we build matrix from these vecctors
                    ccGLMatrix glMat(X,Y,Z,C);

                    //torus primitive
                    prim = new ccTorus(maxRadius-minRadius,maxRadius+minRadius,M_PI*2.0,false,0,&glMat);
                    prim->setEnabled(false);
                }

            }
            break;
            }

            //is there a primitive to add to part cloud?
            if (prim)
            {
                prim->applyGLTransformation_recursive();
                pcShape->addChild(prim);
                prim->setDisplay(pcShape->getDisplay());
                prim->setColor(col);
                prim->showColors(true);
                prim->setVisible(true);
            }

            if (!group)
            {
                group = new ccHObject(QString("Ransac Detected Shapes (%1)").arg(ent->getName()));
                m_app->addToDB(group,true,0,false);
            }
            group->addChild(pcShape);
            m_app->addToDB(pcShape,true,0,false);

            count -= shapePointsCount;

            QApplication::processEvents();
        }

        if (group)
        {
            assert(group->getChildrenNumber()!=0);

            //we hide input cloud
            pc->setEnabled(false);
            m_app->dispToConsole("[qRansacSD] Input cloud has been automtically hidden!",ccMainAppInterface::WRN_CONSOLE_MESSAGE);

            //we add new group to DB/display
            group->setVisible(true);
            group->setDisplay_recursive(pc->getDisplay());
            group->prepareDisplayForRefresh_recursive();
            m_app->refreshAll();
        }
    }
}
Example #6
0
void qPCV::doAction()
{
	assert(m_app);
	if (!m_app)
		return;

	const ccHObject::Container& selectedEntities = m_app->getSelectedEntities();
	unsigned selNum = selectedEntities.size();
    if (selNum!=1)
	{
		m_app->dispToConsole("Select only one cloud or one mesh!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
        return;
	}

    ccHObject* ent = selectedEntities[0];

    ccGenericPointCloud* cloud = NULL;
    ccGenericMesh* mesh = NULL;
    if (ent->isKindOf(CC_POINT_CLOUD))
    {
        cloud = static_cast<ccGenericPointCloud*>(ent);
    }
    else if (ent->isKindOf(CC_MESH))
    {
        mesh = static_cast<ccGenericMesh*>(ent);
        cloud = mesh->getAssociatedCloud();
    }
    else
    {
		m_app->dispToConsole("Select a point cloud or a mesh!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
		return;
	}

    if (!cloud->isA(CC_POINT_CLOUD)) //TODO
	{
		m_app->dispToConsole("Select a real point cloud (or a mesh associated to a real point cloud)!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
        return;
	}
    ccPointCloud* pc = static_cast<ccPointCloud*>(cloud);

	ccPcvDlg dlg(m_app->getMainWindow());
    
	//for meshes only
	if (!mesh)
        dlg.closedMeshCheckBox->setEnabled(false);
	
	//for using clouds normals as rays
	std::vector<ccGenericPointCloud*> cloudsWithNormals;
	if (m_app->dbRoot())
	{
		ccHObject* root = m_app->dbRoot();
		if (root)
		{
			ccHObject::Container clouds;
			root->filterChildren(clouds,true,CC_POINT_CLOUD);
			for (unsigned i=0;i<clouds.size();++i)
			{
				//we keep only clouds with normals
				ccGenericPointCloud* cloud = static_cast<ccGenericPointCloud*>(clouds[i]);
				if (cloud && cloud->hasNormals())
				{
					cloudsWithNormals.push_back(cloud);
					QString cloudTitle = QString("%1 - %2 points").arg(cloud->getName()).arg(cloud->size());
					if (cloud->getParent() && cloud->getParent()->isKindOf(CC_MESH))
						cloudTitle.append(QString(" (%1)").arg(cloud->getParent()->getName()));

					dlg.cloudsComboBox->addItem(cloudTitle);
				}
			}
		}
	}
	if (cloudsWithNormals.empty())
		dlg.useCloudRadioButton->setEnabled(false);

	if (!dlg.exec())
        return;

    //on récupère le champ PCV s'il existe déjà, et on le créé sinon
    int sfIdx = pc->getScalarFieldIndexByName(CC_PCV_FIELD_LABEL_NAME);
    if (sfIdx<0)
        sfIdx=pc->addScalarField(CC_PCV_FIELD_LABEL_NAME,true);
    if (sfIdx<0)
	{
		m_app->dispToConsole("Couldn't allocate a new scalar field for computing PCV field ! Try to free some memory ...",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
        return;
	}

	pc->setCurrentScalarField(sfIdx);

	unsigned raysNumber = dlg.raysSpinBox->value();
	unsigned res = dlg.resSpinBox->value();
    bool meshIsClosed = (mesh ? dlg.closedMeshCheckBox->checkState()==Qt::Checked : false);
    bool mode360 = !dlg.mode180CheckBox->isChecked();

	//progress dialog
	ccProgressDialog progressCb(true,m_app->getMainWindow());

	//PCV type ShadeVis
	bool success = false;
	if (!cloudsWithNormals.empty() && dlg.useCloudRadioButton->isChecked())
	{
		//Version with cloud normals as light rays
		assert(dlg.cloudsComboBox->currentIndex() < (int)cloudsWithNormals.size());
		ccGenericPointCloud* pc = cloudsWithNormals[dlg.cloudsComboBox->currentIndex()];
		std::vector<CCVector3> rays;
		unsigned count = pc->size();
		rays.resize(count);
		for (unsigned i=0;i<count;++i)
			rays[i]=CCVector3(pc->getPointNormal(i));

		success = PCV::Launch(rays,cloud,mesh,meshIsClosed,res,res,&progressCb);
	}
	else
	{
		//Version with rays sampled on a sphere
		success = (PCV::Launch(raysNumber,cloud,mesh,meshIsClosed,mode360,res,res,&progressCb)>0);
	}
    
	if (!success)
    {
        pc->deleteScalarField(sfIdx);
		m_app->dispToConsole("En error occured during the PCV field computation!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
        return;
    }
    else
    {
        pc->getCurrentInScalarField()->computeMinAndMax();
        pc->setCurrentDisplayedScalarField(sfIdx);
        ccScalarField* sf = static_cast<ccScalarField*>(pc->getScalarField(sfIdx));
        if (sf)
            sf->setColorRamp(GREY);
        ent->showSF(true);
        ent->showNormals(false);
        ent->prepareDisplayForRefresh_recursive();
    }

    //currently selected entities parameters may have changed!
	m_app->updateUI();
    //currently selected entities appearance may have changed!
	m_app->refreshAll();
}