static PROJ_XY loc_for(PROJ_LP lp, PROJ *P, double *yc) { PROJ_XY xy; double xa, ya, xb, yb, xc, D, B, m, sp, t, R=0., C; sp = sin(lp.phi); m = proj_mdist(lp.phi, sp, cos(lp.phi), P->en); xa = P->Pp + P->Qp * m; ya = P->P + P->Q * m; if (lp.phi) { R = 1. / (tan(lp.phi) * sqrt(1. - P->es * sp * sp)); C = sqrt(R * R - xa * xa); if (lp.phi < 0.) C = - C; C += ya - R; } else C = 0.; if (P->mode < 0) { xb = lp.lam; yb = P->C2; } else { t = lp.lam * P->sphi_2; xb = P->R_2 * sin(t); yb = P->C2 + P->R_2 * (1. - cos(t)); } if (P->mode > 0) { xc = lp.lam; *yc = 0.; } else { t = lp.lam * P->sphi_1; xc = P->R_1 * sin(t); *yc = P->R_1 * (1. - cos(t)); } if (lp.phi) { D = (xb - xc)/(yb - *yc); B = xc + D * (C + R - *yc); xy.x = D * sqrt(R * R * (1. + D * D) - B * B); if (lp.phi > 0) xy.x = - xy.x; xy.x = (B + xy.x) / (1. + D * D); xy.y = sqrt(R * R - xy.x * xy.x); if (lp.phi > 0) xy.y = - xy.y; xy.y += C + R; } else { xy.x = lp.lam; xy.y = C; } return (xy); }
inline void fwd(geographic_type& lp_lon, geographic_type& lp_lat, cartesian_type& xy_x, cartesian_type& xy_y) const { double s, al, cp, sp, al2, s2; cp = cos(lp_lat); sp = sin(lp_lat); s = proj_mdist(lp_lat, sp, cp, this->m_proj_parm.en) - this->m_proj_parm.s0; s2 = s * s; al = lp_lon * cp / sqrt(1. - this->m_par.es * sp * sp); al2 = al * al; xy_x = this->m_par.k0 * al*(1.+s2*(this->m_proj_parm.A1+s2*this->m_proj_parm.A4)-al2*(this->m_proj_parm.A2+s*this->m_proj_parm.A3+s2*this->m_proj_parm.A5 +al2*this->m_proj_parm.A6)); xy_y = this->m_par.k0 * (al2*(this->m_proj_parm.B1+al2*this->m_proj_parm.B4)+ s*(1.+al2*(this->m_proj_parm.B3-al2*this->m_proj_parm.B6)+s2*(this->m_proj_parm.B2+s2*this->m_proj_parm.B8)+ s*al2*(this->m_proj_parm.B5+s*this->m_proj_parm.B7))); }
void setup_rouss(Parameters& par, par_rouss& proj_parm) { double N0, es2, t, t2, R_R0_2, R_R0_4; proj_mdist_ini(par.es, proj_parm.en); es2 = sin(par.phi0); proj_parm.s0 = proj_mdist(par.phi0, es2, cos(par.phi0), proj_parm.en); t = 1. - (es2 = par.es * es2 * es2); N0 = 1./sqrt(t); R_R0_2 = t * t / par.one_es; R_R0_4 = R_R0_2 * R_R0_2; t = tan(par.phi0); t2 = t * t; proj_parm.C1 = proj_parm.A1 = R_R0_2 / 4.; proj_parm.C2 = proj_parm.A2 = R_R0_2 * (2 * t2 - 1. - 2. * es2) / 12.; proj_parm.A3 = R_R0_2 * t * (1. + 4. * t2)/ ( 12. * N0); proj_parm.A4 = R_R0_4 / 24.; proj_parm.A5 = R_R0_4 * ( -1. + t2 * (11. + 12. * t2))/24.; proj_parm.A6 = R_R0_4 * ( -2. + t2 * (11. - 2. * t2))/240.; proj_parm.B1 = t / (2. * N0); proj_parm.B2 = R_R0_2 / 12.; proj_parm.B3 = R_R0_2 * (1. + 2. * t2 - 2. * es2)/4.; proj_parm.B4 = R_R0_2 * t * (2. - t2)/(24. * N0); proj_parm.B5 = R_R0_2 * t * (5. + 4.* t2)/(8. * N0); proj_parm.B6 = R_R0_4 * (-2. + t2 * (-5. + 6. * t2))/48.; proj_parm.B7 = R_R0_4 * (5. + t2 * (19. + 12. * t2))/24.; proj_parm.B8 = R_R0_4 / 120.; proj_parm.C3 = R_R0_2 * t * (1. + t2)/(3. * N0); proj_parm.C4 = R_R0_4 * (-3. + t2 * (34. + 22. * t2))/240.; proj_parm.C5 = R_R0_4 * (4. + t2 * (13. + 12. * t2))/24.; proj_parm.C6 = R_R0_4 / 16.; proj_parm.C7 = R_R0_4 * t * (11. + t2 * (33. + t2 * 16.))/(48. * N0); proj_parm.C8 = R_R0_4 * t * (1. + t2 * 4.)/(36. * N0); proj_parm.D1 = t / (2. * N0); proj_parm.D2 = R_R0_2 / 12.; proj_parm.D3 = R_R0_2 * (2 * t2 + 1. - 2. * es2) / 4.; proj_parm.D4 = R_R0_2 * t * (1. + t2)/(8. * N0); proj_parm.D5 = R_R0_2 * t * (1. + t2 * 2.)/(4. * N0); proj_parm.D6 = R_R0_4 * (1. + t2 * (6. + t2 * 6.))/16.; proj_parm.D7 = R_R0_4 * t2 * (3. + t2 * 4.)/8.; proj_parm.D8 = R_R0_4 / 80.; proj_parm.D9 = R_R0_4 * t * (-21. + t2 * (178. - t2 * 26.))/720.; proj_parm.D10 = R_R0_4 * t * (29. + t2 * (86. + t2 * 48.))/(96. * N0); proj_parm.D11 = R_R0_4 * t * (37. + t2 * 44.)/(96. * N0); // par.fwd = e_forward; // par.inv = e_inverse; }
double proj_inv_mdist(projCtx ctx, double dist, const void *b) { double s, t, phi, k; int i; k = 1. / (1. - B->es); i = MAX_ITER; phi = dist; while (i--) { s = sin(phi); t = 1. - B->es * s * s; phi -= t = (proj_mdist(phi, s, cos(phi), b) - dist) * (t * sqrt(t)) * k; if (fabs(t) < TOL) /* that is no change */ return phi; } /* convergence failed */ pj_ctx_set_errno(ctx, -17); return phi; }
inline double proj_inv_mdist(double dist, const MDIST& b) { static const double TOL = 1e-14; double s, t, phi, k; int i; k = 1./(1.- b.es); i = MDIST_MAX_ITER; phi = dist; while ( i-- ) { s = sin(phi); t = 1. - b.es * s * s; phi -= t = (proj_mdist(phi, s, cos(phi), b) - dist) * (t * sqrt(t)) * k; if (geometry::math::abs(t) < TOL) /* that is no change */ return phi; } /* convergence failed */ throw proj_exception(-17); }
void *en; \ double m, n, C_x, C_y; #define PROJ_LIB__ #include <lib_proj.h> PROJ_HEAD(gn_sinu, "General Sinusoidal Series") "\n\tPCyl, Sph.\n\tm= n="; PROJ_HEAD(sinu, "Sinusoidal (Sanson-Flamsteed)") "\n\tPCyl, Sph&Ell"; PROJ_HEAD(eck6, "Eckert VI") "\n\tPCyl, Sph."; PROJ_HEAD(mbtfps, "McBryde-Thomas Flat-Polar Sinusoidal") "\n\tPCyl, Sph."; #define EPS10 1e-10 #define MAX_ITER 8 #define LOOP_TOL 1e-7 /* Ellipsoidal Sinusoidal only */ FORWARD(e_forward); /* ellipsoid */ double s, c; xy.y = proj_mdist(lp.phi, s = sin(lp.phi), c = cos(lp.phi), P->en); xy.x = lp.lam * proj_msfn(s, c, P->es); return (xy); } INVERSE(e_inverse); /* ellipsoid */ double s; if ((s = fabs(lp.phi = proj_inv_mdist(xy.y, P->en))) < HALFPI) lp.lam = xy.x / proj_msfn(sin(lp.phi), cos(lp.phi), P->es); else if ((s - EPS10) < HALFPI) lp.lam = 0.; else I_ERROR; return (lp); } /* General spherical sinusoidals */ FORWARD(s_forward); /* sphere */
#define PROJ_PARMS__ \ double s0; \ double A1, A2, A3, A4, A5, A6; \ double B1, B2, B3, B4, B5, B6, B7, B8; \ double C1, C2, C3, C4, C5, C6, C7, C8; \ double D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11; \ void *en; #define PROJ_LIB__ # include <lib_proj.h> PROJ_HEAD(rouss, "Roussilhe Stereographic") "\n\tAzi., Ellps."; FORWARD(e_forward); /* ellipsoid */ double s, al, cp, sp, al2, s2; cp = cos(lp.phi); sp = sin(lp.phi); s = proj_mdist(lp.phi, sp, cp, P->en) - P->s0; s2 = s * s; al = lp.lam * cp / sqrt(1. - P->es * sp * sp); al2 = al * al; xy.x = P->k0 * al*(1.+s2*(P->A1+s2*P->A4)-al2*(P->A2+s*P->A3+s2*P->A5 +al2*P->A6)); xy.y = P->k0 * (al2*(P->B1+al2*P->B4)+ s*(1.+al2*(P->B3-al2*P->B6)+s2*(P->B2+s2*P->B8)+ s*al2*(P->B5+s*P->B7))); return (xy); } INVERSE(e_inverse); /* ellipsoid */ double s, al, x = xy.x / P->k0, y = xy.y / P->k0, x2, y2;; x2 = x * x; y2 = y * y;
double al, als, n, cosphi, sinphi, t; sinphi = sin(lp.phi); cosphi = cos(lp.phi); t = fabs(cosphi) > 1e-10 ? sinphi/cosphi : 0.; t *= t; al = cosphi * lp.lam; als = al * al; al /= sqrt(1. - P->es * sinphi * sinphi); n = P->esp * cosphi * cosphi; xy.x = P->k0 * al * (FC1 + FC3 * als * (1. - t + n + FC5 * als * (5. + t * (t - 18.) + n * (14. - 58. * t + n * (13. - 64. * t + n * (4. - 24 * t))) + FC7 * als * (61. + t * ( t * (179. - t) - 479. ) ) ))); xy.y = P->k0 * (proj_mdist(lp.phi, sinphi, cosphi, P->en) - P->ml0 + sinphi * al * lp.lam * FC2 * ( 1. + FC4 * als * (5. - t + n * (9. + 4. * n) + FC6 * als * (61. + t * (t - 58.) + n * (270. - 330 * t + n * (445. - 680. * t + n * (324. - 600. * t + n * (88. - 192. * t)))) + FC8 * als * (1385. + t * ( t * (543. - t) - 3111.) ) )))); return (xy); } FORWARD(s_forward); /* sphere */ double b, cosphi; b = (cosphi = cos(lp.phi)) * sin(lp.lam); if (fabs(fabs(b) - 1.) <= EPS10) F_ERROR; xy.x = aks5 * log((1. + b) / (1. - b)); if ((b = fabs( xy.y = cosphi * cos(lp.lam) / sqrt(1. - b * b) )) >= 1.) {
#define PROJ_PARMS__ \ double phi1; \ double phi2; \ double n; \ double rho; \ double rho0; \ double c; \ void *en; \ int ellips; #define PROJ_LIB__ #include <lib_proj.h> PROJ_HEAD(eqdc, "Equidistant Conic") "\n\tConic, Sph&Ell\n\tlat_1= lat_2="; # define EPS10 1.e-10 FORWARD(e_forward); /* sphere & ellipsoid */ P->rho = P->c - (P->ellips ? proj_mdist(lp.phi, sin(lp.phi), cos(lp.phi), P->en) : lp.phi); xy.x = P->rho * sin( lp.lam *= P->n ); xy.y = P->rho0 - P->rho * cos(lp.lam); return (xy); } INVERSE(e_inverse); /* sphere & ellipsoid */ if ((P->rho = hypot(xy.x, xy.y = P->rho0 - xy.y))) { if (P->n < 0.) { P->rho = -P->rho; xy.x = -xy.x; xy.y = -xy.y; } lp.phi = P->c - P->rho; if (P->ellips) lp.phi = proj_inv_mdist(lp.phi, P->en); lp.lam = atan2(xy.x, xy.y) / P->n;
*/ #define PROJ_PARMS__ \ double phi1; \ double cphi1; \ double am1; \ double m1; \ void *en; #define PROJ_LIB__ #include <lib_proj.h> PROJ_HEAD(bonne, "Bonne (Werner lat_1=90)") "\n\tConic Sph&Ell\n\tlat_1="; #define EPS10 1e-10 FORWARD(e_forward); /* ellipsoid */ double rh, E, c; rh = P->am1 + P->m1 - proj_mdist(lp.phi, E = sin(lp.phi), c = cos(lp.phi), P->en); E = c * lp.lam / (rh * sqrt(1. - P->es * E * E)); xy.x = rh * sin(E); xy.y = P->am1 - rh * cos(E); return (xy); } FORWARD(s_forward); /* spheroid */ double E, rh; rh = P->cphi1 + P->phi1 - lp.phi; if (fabs(rh) > EPS10) { xy.x = rh * sin(E = lp.lam * cos(lp.phi) / rh); xy.y = P->cphi1 - rh * cos(E); } else xy.x = xy.y = 0.; return (xy);