Example #1
0
/* calculates center of mass of selection index from all coordinates x */
void pull_calc_coms(t_commrec *cr,
                    t_pull *pull, t_mdatoms *md, t_pbc *pbc, double t,
                    rvec x[], rvec *xp)
{
    int           g, i, ii, m;
    real          mass, w, wm, twopi_box = 0;
    double        wmass, wwmass, invwmass;
    dvec          com, comp;
    double        cm, sm, cmp, smp, ccm, csm, ssm, csw, snw;
    rvec         *xx[2], x_pbc = {0, 0, 0}, dx;
    t_pull_group *pgrp;

    if (pull->rbuf == NULL)
    {
        snew(pull->rbuf, pull->ngroup);
    }
    if (pull->dbuf == NULL)
    {
        snew(pull->dbuf, 3*pull->ngroup);
    }

    if (pull->bRefAt)
    {
        pull_set_pbcatoms(cr, pull, md, x, pull->rbuf);
    }

    if (pull->cosdim >= 0)
    {
        for (m = pull->cosdim+1; m < pull->npbcdim; m++)
        {
            if (pbc->box[m][pull->cosdim] != 0)
            {
                gmx_fatal(FARGS, "Can not do cosine weighting for trilinic dimensions");
            }
        }
        twopi_box = 2.0*M_PI/pbc->box[pull->cosdim][pull->cosdim];
    }

    for (g = 0; g < pull->ngroup; g++)
    {
        pgrp = &pull->group[g];
        clear_dvec(com);
        clear_dvec(comp);
        wmass  = 0;
        wwmass = 0;
        cm     = 0;
        sm     = 0;
        cmp    = 0;
        smp    = 0;
        ccm    = 0;
        csm    = 0;
        ssm    = 0;
        if (!(g == 0 && PULL_CYL(pull)))
        {
            if (pgrp->epgrppbc == epgrppbcREFAT)
            {
                /* Set the pbc atom */
                copy_rvec(pull->rbuf[g], x_pbc);
            }
            w = 1;
            for (i = 0; i < pgrp->nat_loc; i++)
            {
                ii   = pgrp->ind_loc[i];
                mass = md->massT[ii];
                if (pgrp->epgrppbc != epgrppbcCOS)
                {
                    if (pgrp->weight_loc)
                    {
                        w = pgrp->weight_loc[i];
                    }
                    wm      = w*mass;
                    wmass  += wm;
                    wwmass += wm*w;
                    if (pgrp->epgrppbc == epgrppbcNONE)
                    {
                        /* Plain COM: sum the coordinates */
                        for (m = 0; m < DIM; m++)
                        {
                            com[m]    += wm*x[ii][m];
                        }
                        if (xp)
                        {
                            for (m = 0; m < DIM; m++)
                            {
                                comp[m] += wm*xp[ii][m];
                            }
                        }
                    }
                    else
                    {
                        /* Sum the difference with the reference atom */
                        pbc_dx(pbc, x[ii], x_pbc, dx);
                        for (m = 0; m < DIM; m++)
                        {
                            com[m]    += wm*dx[m];
                        }
                        if (xp)
                        {
                            /* For xp add the difference between xp and x to dx,
                             * such that we use the same periodic image,
                             * also when xp has a large displacement.
                             */
                            for (m = 0; m < DIM; m++)
                            {
                                comp[m] += wm*(dx[m] + xp[ii][m] - x[ii][m]);
                            }
                        }
                    }
                }
                else
                {
                    /* Determine cos and sin sums */
                    csw  = cos(x[ii][pull->cosdim]*twopi_box);
                    snw  = sin(x[ii][pull->cosdim]*twopi_box);
                    cm  += csw*mass;
                    sm  += snw*mass;
                    ccm += csw*csw*mass;
                    csm += csw*snw*mass;
                    ssm += snw*snw*mass;

                    if (xp)
                    {
                        csw  = cos(xp[ii][pull->cosdim]*twopi_box);
                        snw  = sin(xp[ii][pull->cosdim]*twopi_box);
                        cmp += csw*mass;
                        smp += snw*mass;
                    }
                }
            }
        }

        /* Copy local sums to a buffer for global summing */
        switch (pgrp->epgrppbc)
        {
            case epgrppbcNONE:
            case epgrppbcREFAT:
                copy_dvec(com, pull->dbuf[g*3]);
                copy_dvec(comp, pull->dbuf[g*3+1]);
                pull->dbuf[g*3+2][0] = wmass;
                pull->dbuf[g*3+2][1] = wwmass;
                pull->dbuf[g*3+2][2] = 0;
                break;
            case epgrppbcCOS:
                pull->dbuf[g*3  ][0] = cm;
                pull->dbuf[g*3  ][1] = sm;
                pull->dbuf[g*3  ][2] = 0;
                pull->dbuf[g*3+1][0] = ccm;
                pull->dbuf[g*3+1][1] = csm;
                pull->dbuf[g*3+1][2] = ssm;
                pull->dbuf[g*3+2][0] = cmp;
                pull->dbuf[g*3+2][1] = smp;
                pull->dbuf[g*3+2][2] = 0;
                break;
        }
    }

    if (cr && PAR(cr))
    {
        /* Sum the contributions over the nodes */
        gmx_sumd(pull->ngroup*3*DIM, pull->dbuf[0], cr);
    }

    for (g = 0; g < pull->ngroup; g++)
    {
        pgrp = &pull->group[g];
        if (pgrp->nat > 0 && !(g == 0 && PULL_CYL(pull)))
        {
            if (pgrp->epgrppbc != epgrppbcCOS)
            {
                /* Determine the inverse mass */
                wmass    = pull->dbuf[g*3+2][0];
                wwmass   = pull->dbuf[g*3+2][1];
                invwmass = 1/wmass;
                /* invtm==0 signals a frozen group, so then we should keep it zero */
                if (pgrp->invtm > 0)
                {
                    pgrp->wscale = wmass/wwmass;
                    pgrp->invtm  = 1.0/(pgrp->wscale*wmass);
                }
                /* Divide by the total mass */
                for (m = 0; m < DIM; m++)
                {
                    pgrp->x[m]    = pull->dbuf[g*3  ][m]*invwmass;
                    if (xp)
                    {
                        pgrp->xp[m] = pull->dbuf[g*3+1][m]*invwmass;
                    }
                    if (pgrp->epgrppbc == epgrppbcREFAT)
                    {
                        pgrp->x[m]    += pull->rbuf[g][m];
                        if (xp)
                        {
                            pgrp->xp[m] += pull->rbuf[g][m];
                        }
                    }
                }
            }
            else
            {
                /* Determine the optimal location of the cosine weight */
                csw                   = pull->dbuf[g*3][0];
                snw                   = pull->dbuf[g*3][1];
                pgrp->x[pull->cosdim] = atan2_0_2pi(snw, csw)/twopi_box;
                /* Set the weights for the local atoms */
                wmass  = sqrt(csw*csw + snw*snw);
                wwmass = (pull->dbuf[g*3+1][0]*csw*csw +
                          pull->dbuf[g*3+1][1]*csw*snw +
                          pull->dbuf[g*3+1][2]*snw*snw)/(wmass*wmass);
                pgrp->wscale = wmass/wwmass;
                pgrp->invtm  = 1.0/(pgrp->wscale*wmass);
                /* Set the weights for the local atoms */
                csw *= pgrp->invtm;
                snw *= pgrp->invtm;
                for (i = 0; i < pgrp->nat_loc; i++)
                {
                    ii                  = pgrp->ind_loc[i];
                    pgrp->weight_loc[i] = csw*cos(twopi_box*x[ii][pull->cosdim]) +
                        snw*sin(twopi_box*x[ii][pull->cosdim]);
                }
                if (xp)
                {
                    csw                    = pull->dbuf[g*3+2][0];
                    snw                    = pull->dbuf[g*3+2][1];
                    pgrp->xp[pull->cosdim] = atan2_0_2pi(snw, csw)/twopi_box;
                }
            }
            if (debug)
            {
                fprintf(debug, "Pull group %d wmass %f wwmass %f invtm %f\n",
                        g, wmass, wwmass, pgrp->invtm);
            }
        }
    }

    if (PULL_CYL(pull))
    {
        /* Calculate the COMs for the cyclinder reference groups */
        make_cyl_refgrps(cr, pull, md, pbc, t, x, xp);
    }
}
Example #2
0
/* calculates center of mass of selection index from all coordinates x */
void pull_calc_coms(t_commrec *cr,
                    struct pull_t *pull, t_mdatoms *md, t_pbc *pbc, double t,
                    rvec x[], rvec *xp)
{
    int          g;
    real         twopi_box = 0;
    pull_comm_t *comm;

    comm = &pull->comm;

    if (comm->rbuf == NULL)
    {
        snew(comm->rbuf, pull->ngroup);
    }
    if (comm->dbuf == NULL)
    {
        snew(comm->dbuf, 3*pull->ngroup);
    }

    if (pull->bRefAt && pull->bSetPBCatoms)
    {
        pull_set_pbcatoms(cr, pull, x, comm->rbuf);

        if (cr != NULL && DOMAINDECOMP(cr))
        {
            /* We can keep these PBC reference coordinates fixed for nstlist
             * steps, since atoms won't jump over PBC.
             * This avoids a global reduction at the next nstlist-1 steps.
             * Note that the exact values of the pbc reference coordinates
             * are irrelevant, as long all atoms in the group are within
             * half a box distance of the reference coordinate.
             */
            pull->bSetPBCatoms = FALSE;
        }
    }

    if (pull->cosdim >= 0)
    {
        int m;

        assert(pull->npbcdim <= DIM);

        for (m = pull->cosdim+1; m < pull->npbcdim; m++)
        {
            if (pbc->box[m][pull->cosdim] != 0)
            {
                gmx_fatal(FARGS, "Can not do cosine weighting for trilinic dimensions");
            }
        }
        twopi_box = 2.0*M_PI/pbc->box[pull->cosdim][pull->cosdim];
    }

    for (g = 0; g < pull->ngroup; g++)
    {
        pull_group_work_t *pgrp;

        pgrp = &pull->group[g];

        if (pgrp->bCalcCOM)
        {
            if (pgrp->epgrppbc != epgrppbcCOS)
            {
                dvec   com, comp;
                double wmass, wwmass;
                rvec   x_pbc = { 0, 0, 0 };
                int    i;

                clear_dvec(com);
                clear_dvec(comp);
                wmass  = 0;
                wwmass = 0;

                if (pgrp->epgrppbc == epgrppbcREFAT)
                {
                    /* Set the pbc atom */
                    copy_rvec(comm->rbuf[g], x_pbc);
                }

                for (i = 0; i < pgrp->nat_loc; i++)
                {
                    int  ii, m;
                    real mass, wm;

                    ii   = pgrp->ind_loc[i];
                    mass = md->massT[ii];
                    if (pgrp->weight_loc == NULL)
                    {
                        wm     = mass;
                        wmass += wm;
                    }
                    else
                    {
                        real w;

                        w       = pgrp->weight_loc[i];
                        wm      = w*mass;
                        wmass  += wm;
                        wwmass += wm*w;
                    }
                    if (pgrp->epgrppbc == epgrppbcNONE)
                    {
                        /* Plain COM: sum the coordinates */
                        for (m = 0; m < DIM; m++)
                        {
                            com[m]    += wm*x[ii][m];
                        }
                        if (xp)
                        {
                            for (m = 0; m < DIM; m++)
                            {
                                comp[m] += wm*xp[ii][m];
                            }
                        }
                    }
                    else
                    {
                        rvec dx;

                        /* Sum the difference with the reference atom */
                        pbc_dx(pbc, x[ii], x_pbc, dx);
                        for (m = 0; m < DIM; m++)
                        {
                            com[m]    += wm*dx[m];
                        }
                        if (xp)
                        {
                            /* For xp add the difference between xp and x to dx,
                             * such that we use the same periodic image,
                             * also when xp has a large displacement.
                             */
                            for (m = 0; m < DIM; m++)
                            {
                                comp[m] += wm*(dx[m] + xp[ii][m] - x[ii][m]);
                            }
                        }
                    }
                }

                /* We do this check after the loop above to avoid more nesting.
                 * If we have a single-atom group the mass is irrelevant, so
                 * we can remove the mass factor to avoid division by zero.
                 * Note that with constraint pulling the mass does matter, but
                 * in that case a check group mass != 0 has been done before.
                 */
                if (pgrp->params.nat == 1 && pgrp->nat_loc == 1 && wmass == 0)
                {
                    int m;

                    /* Copy the single atom coordinate */
                    for (m = 0; m < DIM; m++)
                    {
                        com[m] = x[pgrp->ind_loc[0]][m];
                    }
                    /* Set all mass factors to 1 to get the correct COM */
                    wmass  = 1;
                    wwmass = 1;
                }

                if (pgrp->weight_loc == NULL)
                {
                    wwmass = wmass;
                }

                /* Copy local sums to a buffer for global summing */
                copy_dvec(com,  comm->dbuf[g*3]);
                copy_dvec(comp, comm->dbuf[g*3 + 1]);
                comm->dbuf[g*3 + 2][0] = wmass;
                comm->dbuf[g*3 + 2][1] = wwmass;
                comm->dbuf[g*3 + 2][2] = 0;
            }
            else
            {
                /* Cosine weighting geometry */
                double cm, sm, cmp, smp, ccm, csm, ssm, csw, snw;
                int    i;

                cm  = 0;
                sm  = 0;
                cmp = 0;
                smp = 0;
                ccm = 0;
                csm = 0;
                ssm = 0;

                for (i = 0; i < pgrp->nat_loc; i++)
                {
                    int  ii;
                    real mass;

                    ii   = pgrp->ind_loc[i];
                    mass = md->massT[ii];
                    /* Determine cos and sin sums */
                    csw  = cos(x[ii][pull->cosdim]*twopi_box);
                    snw  = sin(x[ii][pull->cosdim]*twopi_box);
                    cm  += csw*mass;
                    sm  += snw*mass;
                    ccm += csw*csw*mass;
                    csm += csw*snw*mass;
                    ssm += snw*snw*mass;

                    if (xp)
                    {
                        csw  = cos(xp[ii][pull->cosdim]*twopi_box);
                        snw  = sin(xp[ii][pull->cosdim]*twopi_box);
                        cmp += csw*mass;
                        smp += snw*mass;
                    }
                }

                /* Copy local sums to a buffer for global summing */
                comm->dbuf[g*3  ][0] = cm;
                comm->dbuf[g*3  ][1] = sm;
                comm->dbuf[g*3  ][2] = 0;
                comm->dbuf[g*3+1][0] = ccm;
                comm->dbuf[g*3+1][1] = csm;
                comm->dbuf[g*3+1][2] = ssm;
                comm->dbuf[g*3+2][0] = cmp;
                comm->dbuf[g*3+2][1] = smp;
                comm->dbuf[g*3+2][2] = 0;
            }
        }
    }

    pull_reduce_double(cr, comm, pull->ngroup*3*DIM, comm->dbuf[0]);

    for (g = 0; g < pull->ngroup; g++)
    {
        pull_group_work_t *pgrp;

        pgrp = &pull->group[g];
        if (pgrp->params.nat > 0 && pgrp->bCalcCOM)
        {
            if (pgrp->epgrppbc != epgrppbcCOS)
            {
                double wmass, wwmass;
                int    m;

                /* Determine the inverse mass */
                wmass             = comm->dbuf[g*3+2][0];
                wwmass            = comm->dbuf[g*3+2][1];
                pgrp->mwscale     = 1.0/wmass;
                /* invtm==0 signals a frozen group, so then we should keep it zero */
                if (pgrp->invtm != 0)
                {
                    pgrp->wscale  = wmass/wwmass;
                    pgrp->invtm   = wwmass/(wmass*wmass);
                }
                /* Divide by the total mass */
                for (m = 0; m < DIM; m++)
                {
                    pgrp->x[m]      = comm->dbuf[g*3  ][m]*pgrp->mwscale;
                    if (xp)
                    {
                        pgrp->xp[m] = comm->dbuf[g*3+1][m]*pgrp->mwscale;
                    }
                    if (pgrp->epgrppbc == epgrppbcREFAT)
                    {
                        pgrp->x[m]      += comm->rbuf[g][m];
                        if (xp)
                        {
                            pgrp->xp[m] += comm->rbuf[g][m];
                        }
                    }
                }
            }
            else
            {
                /* Cosine weighting geometry */
                double csw, snw, wmass, wwmass;
                int    i, ii;

                /* Determine the optimal location of the cosine weight */
                csw                   = comm->dbuf[g*3][0];
                snw                   = comm->dbuf[g*3][1];
                pgrp->x[pull->cosdim] = atan2_0_2pi(snw, csw)/twopi_box;
                /* Set the weights for the local atoms */
                wmass  = sqrt(csw*csw + snw*snw);
                wwmass = (comm->dbuf[g*3+1][0]*csw*csw +
                          comm->dbuf[g*3+1][1]*csw*snw +
                          comm->dbuf[g*3+1][2]*snw*snw)/(wmass*wmass);

                pgrp->mwscale = 1.0/wmass;
                pgrp->wscale  = wmass/wwmass;
                pgrp->invtm   = wwmass/(wmass*wmass);
                /* Set the weights for the local atoms */
                csw *= pgrp->invtm;
                snw *= pgrp->invtm;
                for (i = 0; i < pgrp->nat_loc; i++)
                {
                    ii                  = pgrp->ind_loc[i];
                    pgrp->weight_loc[i] = csw*cos(twopi_box*x[ii][pull->cosdim]) +
                        snw*sin(twopi_box*x[ii][pull->cosdim]);
                }
                if (xp)
                {
                    csw                    = comm->dbuf[g*3+2][0];
                    snw                    = comm->dbuf[g*3+2][1];
                    pgrp->xp[pull->cosdim] = atan2_0_2pi(snw, csw)/twopi_box;
                }
            }
            if (debug)
            {
                fprintf(debug, "Pull group %d wmass %f invtm %f\n",
                        g, 1.0/pgrp->mwscale, pgrp->invtm);
            }
        }
    }

    if (pull->bCylinder)
    {
        /* Calculate the COMs for the cyclinder reference groups */
        make_cyl_refgrps(cr, pull, md, pbc, t, x);
    }
}