Example #1
0
void toast::qarray::pow ( size_t n, double const * p, double const * q_in, double * q_out ) {

    toast::mem::simd_array<double> q_tmp(4*n);

    toast::qarray::ln ( n, q_in, q_tmp );

    for ( size_t i = 0; i < n; ++i ) {
        for ( size_t j = 0; j < 4; ++j ) {
            q_tmp[4*i + j] *= p[i];
        }
    }

    toast::qarray::exp ( n, q_tmp, q_out );

    return;
}
    void spin() {
        
        // initialize random seed
        srand(time(NULL));

        // dynamics model
        boost::shared_ptr<DynamicModel > dyn_model( new DynModelPlanar5() );

        std::string robot_description_str;
        std::string robot_semantic_description_str;
        nh_.getParam("/robot_description", robot_description_str);
        nh_.getParam("/robot_semantic_description", robot_semantic_description_str);

        //
        // collision model
        //
        boost::shared_ptr<self_collision::CollisionModel> col_model = self_collision::CollisionModel::parseURDF(robot_description_str);
	    col_model->parseSRDF(robot_semantic_description_str);
        col_model->generateCollisionPairs();

        // external collision objects - part of virtual link connected to the base link
        self_collision::Link::VecPtrCollision col_array;
        col_array.push_back( self_collision::createCollisionCapsule(0.2, 0.3, KDL::Frame(KDL::Rotation::RotX(90.0/180.0*PI), KDL::Vector(1, 0.5, 0))) );
        if (!col_model->addLink("env_link", "base", col_array)) {
            ROS_ERROR("ERROR: could not add external collision objects to the collision model");
            return;
        }
        col_model->generateCollisionPairs();

        //
        // robot state
        //
        std::vector<std::string > joint_names;
        joint_names.push_back("0_joint");
        joint_names.push_back("1_joint");
        joint_names.push_back("2_joint");
        joint_names.push_back("3_joint");
        joint_names.push_back("4_joint");

        int ndof = joint_names.size();

        Eigen::VectorXd q, dq, ddq, torque;
        q.resize( ndof );
        dq.resize( ndof );
        ddq.resize( ndof );
        torque.resize( ndof );
        for (int q_idx = 0; q_idx < ndof; q_idx++) {
            q[q_idx] = -0.1;
            dq[q_idx] = 0.0;
            ddq[q_idx] = 0.0;
            torque[q_idx] = 0.0;
        }

        std::string effector_name = "effector";
        int effector_idx = col_model->getLinkIndex(effector_name);

        //
        // kinematic model
        //
        boost::shared_ptr<KinematicModel> kin_model( new KinematicModel(robot_description_str, joint_names) );

        KinematicModel::Jacobian J_r_HAND_6, J_r_HAND;
        J_r_HAND_6.resize(6, ndof);
        J_r_HAND.resize(3, ndof);

        std::vector<KDL::Frame > links_fk(col_model->getLinksCount());

        // joint limits
        Eigen::VectorXd lower_limit(ndof), upper_limit(ndof), limit_range(ndof), max_trq(ndof);
        int q_idx = 0;
        for (std::vector<std::string >::const_iterator name_it = joint_names.begin(); name_it != joint_names.end(); name_it++, q_idx++) {
            lower_limit[q_idx] = kin_model->getLowerLimit(q_idx);
            upper_limit[q_idx] = kin_model->getUpperLimit(q_idx);
            limit_range[q_idx] = 10.0/180.0*PI;
            max_trq[q_idx] = 10.0;
        }

        Eigen::VectorXd max_q(ndof);
        max_q(0) = 10.0/180.0*PI;
        max_q(1) = 20.0/180.0*PI;
        max_q(2) = 20.0/180.0*PI;
        max_q(3) = 30.0/180.0*PI;
        max_q(4) = 40.0/180.0*PI;

        boost::shared_ptr<DynamicsSimulatorHandPose> sim( new DynamicsSimulatorHandPose(ndof, 6, effector_name, col_model, kin_model, dyn_model, joint_names, max_q) );
/*
        //
        // Tasks declaration
        //
        Task_JLC task_JLC(lower_limit, upper_limit, limit_range, max_trq);
        Task_WCC task_WCC(ndof, 3, 4);
        double activation_dist = 0.05;
        Task_COL task_COL(ndof, activation_dist, 10.0, kin_model, col_model);
        Task_HAND task_HAND(ndof, 3);
*/

/*
        while (ros::ok()) {

            //
            // wrist collision constraint
            //
            Eigen::VectorXd torque_WCC(ndof);
            Eigen::MatrixXd N_WCC(ndof, ndof);
            task_WCC.compute(q, dq, dyn_model->getM(), dyn_model->getInvM(), torque_WCC, N_WCC, markers_pub_);
            markers_pub_.publish();
            ros::spinOnce();

            char ch = getchar();
            if (ch == 'a') {
                q(3) -= 0.1;
            }
            else if (ch == 'd') {
                q(3) += 0.1;
            }
            else if (ch == 's') {
                q(4) -= 0.1;
            }
            else if (ch == 'w') {
                q(4) += 0.1;
            }
        }

        return;
*/
        // loop variables
        ros::Time last_time = ros::Time::now();
        KDL::Frame r_HAND_target;
        int loop_counter = 10000;
        ros::Rate loop_rate(100);

        while (true) {
            generatePossiblePose(r_HAND_target, q, ndof, effector_name, col_model, kin_model);
            sim->setState(q, dq, ddq);
            sim->setTarget(r_HAND_target);
            sim->oneStep();
            if (!sim->inCollision()) {
                break;
            }
        }

        while (ros::ok()) {

            if (loop_counter > 500) {
                Eigen::VectorXd q_tmp(ndof);
                generatePossiblePose(r_HAND_target, q_tmp, ndof, effector_name, col_model, kin_model);

                sim->setTarget(r_HAND_target);

                publishTransform(br, r_HAND_target, "effector_dest", "base");
                loop_counter = 0;
            }
            loop_counter += 1;

            sim->oneStep(&markers_pub_, 3000);
/*            if (sim->inCollision() && !collision_in_prev_step) {
                collision_in_prev_step = true;
                std::cout << "collision begin" << std::endl;
            }
            else if (!sim->inCollision() && collision_in_prev_step) {
                collision_in_prev_step = false;
                std::cout << "collision end" << std::endl;
            }
*/
            sim->getState(q, dq, ddq);

            // publish markers and robot state with limited rate
            ros::Duration time_elapsed = ros::Time::now() - last_time;
            if (time_elapsed.toSec() > 0.05) {
                // calculate forward kinematics for all links
                for (int l_idx = 0; l_idx < col_model->getLinksCount(); l_idx++) {
                    kin_model->calculateFk(links_fk[l_idx], col_model->getLinkName(l_idx), q);
                }

                publishJointState(joint_state_pub_, q, joint_names);
                int m_id = 0;
                m_id = addRobotModelVis(markers_pub_, m_id, col_model, links_fk);
                markers_pub_.publish();
                ros::Time last_time = ros::Time::now();
            }
            ros::spinOnce();
            loop_rate.sleep();
        }

    }