Example #1
0
DeviceState *s5pc1xx_onedram_init(const char *name, target_phys_addr_t base,
                                  qemu_irq irq_ap)
{
    DeviceState *dev = qdev_create(NULL, name);
    ram_addr_t onedram_shared, onedram_ap;

    qdev_init_nofail(dev);
    onedram_ap = qemu_ram_alloc(ONEDRAM_AP_SIZE);
    cpu_register_physical_memory(base, ONEDRAM_AP_SIZE,
                                 onedram_ap | IO_MEM_RAM);
    onedram_shared = qemu_ram_alloc(ONEDRAM_SHARED_SIZE);
    cpu_register_physical_memory(base + ONEDRAM_AP_SIZE, ONEDRAM_SHARED_SIZE,
                                 onedram_shared | IO_MEM_RAM);
    sysbus_mmio_map(sysbus_from_qdev(dev), 0,
                    base + ONEDRAM_AP_SIZE + ONEDRAM_SFR);
    sysbus_connect_irq(sysbus_from_qdev(dev), 0, irq_ap);
    return dev;
}
static void dummy_ppc_init(ram_addr_t ram_size, int vga_ram_size,
                     const char *boot_device, DisplayState *ds,
                     const char *kernel_filename, const char *kernel_cmdline,
                     const char *initrd_filename, const char *cpu_model)
{
    CPUState *env;
    int kernel_size;
    uint64_t elf_entry;
    target_ulong entry;

    if (!cpu_model)
        cpu_model = "default";
    env = cpu_init(cpu_model);
    if (!env) {
        fprintf(stderr, "Unable to find ppc CPU definition\n");
        exit(1);
    }

    cpu_ppc_tb_init(env, 100UL * 1000UL * 1000UL);
    /* RAM at address zero */
    cpu_register_physical_memory(0x10000000, ram_size,
        qemu_ram_alloc(ram_size) | IO_MEM_RAM);

    /* Load kernel.  */
    if (kernel_filename) {
        kernel_size = load_elf(kernel_filename, 0, &elf_entry, NULL, NULL);
        entry = elf_entry;
        if (kernel_size < 0) {
            kernel_size = load_uimage(kernel_filename, &entry, NULL, NULL);
        }
        if (kernel_size < 0) {
            kernel_size = load_image(kernel_filename, phys_ram_base);
            entry = 0;
        }
        if (kernel_size < 0) {
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
                    kernel_filename);
            exit(1);
        }
    } else {
        entry = 0;
    }
    env->nip = entry;
    if (semihosting_enabled) {
        /* Setup initial stack.  */
        target_ulong *p;
        p = (target_ulong *)(phys_ram_base + ram_size);
        *(--p) = 0;
        *(--p) = 0;
        env->gpr[1] = 0x10000000 + ram_size - 2 * sizeof(target_ulong);
        /* Enable FPU.  */
        env->msr |= (1 << MSR_FP);
    }
}
Example #3
0
/* Add RAM.  */
static void create_ram(const void *dt)
{
    int node = -1;
    const struct fdt_property *p;
    int len;
    uint32_t base;
    uint32_t size;
    uint32_t *data;
    ram_addr_t offset;

    while (1) {
        node = fdt_node_offset_by_prop_value(dt, node, "device_type",
                                             "memory", 7);
        if (node < 0)
            break;


        check_cells(dt, node, 1, 1);
        p = fdt_get_property(dt, node, "reg", &len);
        if (!p || (len % 8) != 0) {
            fprintf(stderr, "bad memory section %s\n",
                    fdt_get_name(dt, node, NULL));
            exit(1);
        }
        data = (uint32_t *)p->data;
        while (len) {
            base = fdt32_to_cpu(data[0]);
            size = fdt32_to_cpu(data[1]);
            data += 2;
            len -= 8;
            /* Ignore zero size regions.  */
            if (size == 0)
                continue;
            offset = qemu_ram_alloc(size);
            cpu_register_physical_memory(base, size, offset | IO_MEM_RAM);

            devtree_ram_map_size++;
            devtree_ram_map = qemu_realloc(devtree_ram_map,
                devtree_ram_map_size * sizeof(devtree_ram_region));
            devtree_ram_map[devtree_ram_map_size - 1].base = base;
            devtree_ram_map[devtree_ram_map_size - 1].size = size;
        }
    }
    /* FIXME: Merge and sort memory map entries.  */
    /* Technically there's no reason we have to have RAM.  However in
       practice it indicates a busted machine description.  */
    if (!devtree_ram_map) {
        fprintf(stderr, "No memory regions found\n");
        exit(1);
    }
}
Example #4
0
static void dummy_m68k_init(ram_addr_t ram_size,
                     const char *boot_device,
                     const char *kernel_filename, const char *kernel_cmdline,
                     const char *initrd_filename, const char *cpu_model)
{
    CPUState *env;
    int kernel_size;
    uint64_t elf_entry;
    target_phys_addr_t entry;

    if (!cpu_model)
        cpu_model = "cfv4e";
    env = cpu_init(cpu_model);
    if (!env) {
        fprintf(stderr, "Unable to find m68k CPU definition\n");
        exit(1);
    }

    /* Initialize CPU registers.  */
    env->vbr = 0;

    /* RAM at address zero */
    cpu_register_physical_memory(0, ram_size,
        qemu_ram_alloc(ram_size) | IO_MEM_RAM);

    /* Load kernel.  */
    if (kernel_filename) {
        kernel_size = load_elf(kernel_filename, NULL, NULL, &elf_entry,
                               NULL, NULL, 1, ELF_MACHINE, 0);
        entry = elf_entry;
        if (kernel_size < 0) {
            kernel_size = load_uimage(kernel_filename, &entry, NULL, NULL);
        }
        if (kernel_size < 0) {
            kernel_size = load_image_targphys(kernel_filename,
                                              KERNEL_LOAD_ADDR,
                                              ram_size - KERNEL_LOAD_ADDR);
            entry = KERNEL_LOAD_ADDR;
        }
        if (kernel_size < 0) {
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
                    kernel_filename);
            exit(1);
        }
    } else {
        entry = 0;
    }
    env->pc = entry;
}
Example #5
0
static void verdex_init(ram_addr_t ram_size,
                const char *boot_device,
                const char *kernel_filename, const char *kernel_cmdline,
                const char *initrd_filename, const char *cpu_model)
{
    PXA2xxState *cpu;
    DriveInfo *dinfo;
    int be;

    uint32_t verdex_rom = 0x02000000;
    uint32_t verdex_ram = 0x10000000;

    cpu = pxa270_init(verdex_ram, cpu_model ?: "pxa270-c0");

    dinfo = drive_get(IF_PFLASH, 0, 0);
    if (!dinfo) {
        fprintf(stderr, "A flash image must be given with the "
                "'pflash' parameter\n");
        exit(1);
    }

#ifdef TARGET_WORDS_BIGENDIAN
    be = 1;
#else
    be = 0;
#endif
    if (!pflash_cfi01_register(0x00000000, qemu_ram_alloc(NULL, "verdex.rom",
                                                          verdex_rom),
                               dinfo->bdrv, sector_len, verdex_rom / sector_len,
                               2, 0, 0, 0, 0, be)) {
        fprintf(stderr, "qemu: Error registering flash memory.\n");
        exit(1);
    }

    /* Interrupt line of NIC is connected to GPIO line 99 */
    smc91c111_init(&nd_table[0], 0x04000300,
                    qdev_get_gpio_in(cpu->gpio, 99));
}
Example #6
0
static void palmte_init(ram_addr_t ram_size,
                        const char *boot_device,
                        const char *kernel_filename, const char *kernel_cmdline,
                        const char *initrd_filename, const char *cpu_model)
{
    struct omap_mpu_state_s *cpu;
    int flash_size = 0x00800000;
    int sdram_size = palmte_binfo.ram_size;
    int io;
    static uint32_t cs0val = 0xffffffff;
    static uint32_t cs1val = 0x0000e1a0;
    static uint32_t cs2val = 0x0000e1a0;
    static uint32_t cs3val = 0xe1a0e1a0;
    int rom_size, rom_loaded = 0;
    DisplayState *ds = get_displaystate();

    cpu = omap310_mpu_init(sdram_size, cpu_model);

    /* External Flash (EMIFS) */
    cpu_register_physical_memory(OMAP_CS0_BASE, flash_size,
                                 qemu_ram_alloc(NULL, "palmte.flash",
                                         flash_size) | IO_MEM_ROM);

    io = cpu_register_io_memory(static_readfn, static_writefn, &cs0val,
                                DEVICE_NATIVE_ENDIAN);
    cpu_register_physical_memory(OMAP_CS0_BASE + flash_size,
                                 OMAP_CS0_SIZE - flash_size, io);
    io = cpu_register_io_memory(static_readfn, static_writefn, &cs1val,
                                DEVICE_NATIVE_ENDIAN);
    cpu_register_physical_memory(OMAP_CS1_BASE, OMAP_CS1_SIZE, io);
    io = cpu_register_io_memory(static_readfn, static_writefn, &cs2val,
                                DEVICE_NATIVE_ENDIAN);
    cpu_register_physical_memory(OMAP_CS2_BASE, OMAP_CS2_SIZE, io);
    io = cpu_register_io_memory(static_readfn, static_writefn, &cs3val,
                                DEVICE_NATIVE_ENDIAN);
    cpu_register_physical_memory(OMAP_CS3_BASE, OMAP_CS3_SIZE, io);

    palmte_microwire_setup(cpu);

    qemu_add_kbd_event_handler(palmte_button_event, cpu);

    palmte_gpio_setup(cpu);

    /* Setup initial (reset) machine state */
    if (nb_option_roms) {
        rom_size = get_image_size(option_rom[0].name);
        if (rom_size > flash_size) {
            fprintf(stderr, "%s: ROM image too big (%x > %x)\n",
                    __FUNCTION__, rom_size, flash_size);
            rom_size = 0;
        }
        if (rom_size > 0) {
            rom_size = load_image_targphys(option_rom[0].name, OMAP_CS0_BASE,
                                           flash_size);
            rom_loaded = 1;
        }
        if (rom_size < 0) {
            fprintf(stderr, "%s: error loading '%s'\n",
                    __FUNCTION__, option_rom[0].name);
        }
    }

    if (!rom_loaded && !kernel_filename) {
        fprintf(stderr, "Kernel or ROM image must be specified\n");
        exit(1);
    }

    /* Load the kernel.  */
    if (kernel_filename) {
        palmte_binfo.kernel_filename = kernel_filename;
        palmte_binfo.kernel_cmdline = kernel_cmdline;
        palmte_binfo.initrd_filename = initrd_filename;
        arm_load_kernel(cpu->env, &palmte_binfo);
    }

    /* FIXME: We shouldn't really be doing this here.  The LCD controller
       will set the size once configured, so this just sets an initial
       size until the guest activates the display.  */
    ds->surface = qemu_resize_displaysurface(ds, 320, 320);
    dpy_resize(ds);
}
static void
petalogix_s3adsp1800_init(ram_addr_t ram_size,
                          const char *boot_device,
                          const char *kernel_filename,
                          const char *kernel_cmdline,
                          const char *initrd_filename, const char *cpu_model)
{
    DeviceState *dev;
    CPUState *env;
    int kernel_size;
    DriveInfo *dinfo;
    int i;
    target_phys_addr_t ddr_base = 0x90000000;
    ram_addr_t phys_lmb_bram;
    ram_addr_t phys_ram;
    ram_addr_t phys_flash;
    qemu_irq irq[32], *cpu_irq;

    /* init CPUs */
    if (cpu_model == NULL) {
        cpu_model = "microblaze";
    }
    env = cpu_init(cpu_model);

    env->pvr.regs[10] = 0x0c000000; /* spartan 3a dsp family.  */
    qemu_register_reset(main_cpu_reset, env);

    /* Attach emulated BRAM through the LMB.  */
    phys_lmb_bram = qemu_ram_alloc(LMB_BRAM_SIZE);
    cpu_register_physical_memory(0x00000000, LMB_BRAM_SIZE,
                                 phys_lmb_bram | IO_MEM_RAM);

    phys_ram = qemu_ram_alloc(ram_size);
    cpu_register_physical_memory(ddr_base, ram_size, phys_ram | IO_MEM_RAM);

    phys_flash = qemu_ram_alloc(FLASH_SIZE);
    dinfo = drive_get(IF_PFLASH, 0, 0);
    pflash_cfi02_register(0xa0000000, phys_flash,
                          dinfo ? dinfo->bdrv : NULL, (64 * 1024),
                          FLASH_SIZE >> 16,
                          1, 1, 0x0000, 0x0000, 0x0000, 0x0000,
                          0x555, 0x2aa);

    cpu_irq = microblaze_pic_init_cpu(env);
    dev = xilinx_intc_create(0x81800000, cpu_irq[0], 2);
    for (i = 0; i < 32; i++) {
        irq[i] = qdev_get_gpio_in(dev, i);
    }

    sysbus_create_simple("xilinx,uartlite", 0x84000000, irq[3]);
    /* 2 timers at irq 2 @ 62 Mhz.  */
    xilinx_timer_create(0x83c00000, irq[0], 2, 62 * 1000000);
    xilinx_ethlite_create(&nd_table[0], 0x81000000, irq[1], 0, 0);

    if (kernel_filename) {
        uint64_t entry, low, high;
        int kcmdline_len;
        uint32_t base32;

        /* Boots a kernel elf binary.  */
        kernel_size = load_elf(kernel_filename, 0,
                               &entry, &low, &high,
                               1, ELF_MACHINE, 0);
        base32 = entry;
        if (base32 == 0xc0000000) {
            kernel_size = load_elf(kernel_filename, -0x30000000LL,
                                   &entry, NULL, NULL,
                                   1, ELF_MACHINE, 0);
        }
        /* Always boot into physical ram.  */
        bootstrap_pc = ddr_base + (entry & 0x0fffffff);
        if (kernel_size < 0) {
            /* If we failed loading ELF's try a raw image.  */
            kernel_size = load_image_targphys(kernel_filename, ddr_base,
                                              ram_size);
            bootstrap_pc = ddr_base;
        }

        env->regs[5] = ddr_base + kernel_size + 8192;
        if (kernel_cmdline && (kcmdline_len = strlen(kernel_cmdline))) {
            pstrcpy_targphys("cmdline", env->regs[5], 256, kernel_cmdline);
        }
        env->regs[6] = 0;
        /* Provide a device-tree.  */
        env->regs[7] = ddr_base + kernel_size + 256;
        petalogix_load_device_tree(env->regs[7], ram_size,
                                   env->regs[6], 0,
                                   kernel_cmdline);
    }

    env->sregs[SR_PC] = bootstrap_pc;
}
Example #8
0
static void realview_init(ram_addr_t ram_size,
                     const char *boot_device,
                     const char *kernel_filename, const char *kernel_cmdline,
                     const char *initrd_filename, const char *cpu_model,
                     enum realview_board_type board_type)
{
    CPUState *env = NULL;
    ram_addr_t ram_offset;
    DeviceState *dev, *sysctl, *gpio2;
    SysBusDevice *busdev;
    qemu_irq *irqp;
    qemu_irq pic[64];
    qemu_irq mmc_irq[2];
    PCIBus *pci_bus;
    NICInfo *nd;
    i2c_bus *i2c;
    int n;
    int done_nic = 0;
    qemu_irq cpu_irq[4];
    int is_mpcore = 0;
    int is_pb = 0;
    uint32_t proc_id = 0;
    uint32_t sys_id;
    ram_addr_t low_ram_size;

    switch (board_type) {
    case BOARD_EB:
        break;
    case BOARD_EB_MPCORE:
        is_mpcore = 1;
        break;
    case BOARD_PB_A8:
        is_pb = 1;
        break;
    case BOARD_PBX_A9:
        is_mpcore = 1;
        is_pb = 1;
        break;
    }
    for (n = 0; n < smp_cpus; n++) {
        env = cpu_init(cpu_model);
        if (!env) {
            fprintf(stderr, "Unable to find CPU definition\n");
            exit(1);
        }
        irqp = arm_pic_init_cpu(env);
        cpu_irq[n] = irqp[ARM_PIC_CPU_IRQ];
    }
    if (arm_feature(env, ARM_FEATURE_V7)) {
        if (is_mpcore) {
            proc_id = 0x0c000000;
        } else {
            proc_id = 0x0e000000;
        }
    } else if (arm_feature(env, ARM_FEATURE_V6K)) {
        proc_id = 0x06000000;
    } else if (arm_feature(env, ARM_FEATURE_V6)) {
        proc_id = 0x04000000;
    } else {
        proc_id = 0x02000000;
    }

    if (is_pb && ram_size > 0x20000000) {
        /* Core tile RAM.  */
        low_ram_size = ram_size - 0x20000000;
        ram_size = 0x20000000;
        ram_offset = qemu_ram_alloc(NULL, "realview.lowmem", low_ram_size);
        cpu_register_physical_memory(0x20000000, low_ram_size,
                                     ram_offset | IO_MEM_RAM);
    }

    ram_offset = qemu_ram_alloc(NULL, "realview.highmem", ram_size);
    low_ram_size = ram_size;
    if (low_ram_size > 0x10000000)
      low_ram_size = 0x10000000;
    /* SDRAM at address zero.  */
    cpu_register_physical_memory(0, low_ram_size, ram_offset | IO_MEM_RAM);
    if (is_pb) {
        /* And again at a high address.  */
        cpu_register_physical_memory(0x70000000, ram_size,
                                     ram_offset | IO_MEM_RAM);
    } else {
        ram_size = low_ram_size;
    }

    sys_id = is_pb ? 0x01780500 : 0xc1400400;
    sysctl = qdev_create(NULL, "realview_sysctl");
    qdev_prop_set_uint32(sysctl, "sys_id", sys_id);
    qdev_init_nofail(sysctl);
    qdev_prop_set_uint32(sysctl, "proc_id", proc_id);
    sysbus_mmio_map(sysbus_from_qdev(sysctl), 0, 0x10000000);

    if (is_mpcore) {
        dev = qdev_create(NULL, is_pb ? "a9mpcore_priv": "realview_mpcore");
        qdev_prop_set_uint32(dev, "num-cpu", smp_cpus);
        qdev_init_nofail(dev);
        busdev = sysbus_from_qdev(dev);
        if (is_pb) {
            realview_binfo.smp_priv_base = 0x1f000000;
        } else {
            realview_binfo.smp_priv_base = 0x10100000;
        }
        sysbus_mmio_map(busdev, 0, realview_binfo.smp_priv_base);
        for (n = 0; n < smp_cpus; n++) {
            sysbus_connect_irq(busdev, n, cpu_irq[n]);
        }
    } else {
        uint32_t gic_addr = is_pb ? 0x1e000000 : 0x10040000;
        /* For now just create the nIRQ GIC, and ignore the others.  */
        dev = sysbus_create_simple("realview_gic", gic_addr, cpu_irq[0]);
    }
    for (n = 0; n < 64; n++) {
        pic[n] = qdev_get_gpio_in(dev, n);
    }

    sysbus_create_simple("pl050_keyboard", 0x10006000, pic[20]);
    sysbus_create_simple("pl050_mouse", 0x10007000, pic[21]);

    sysbus_create_simple("pl011", 0x10009000, pic[12]);
    sysbus_create_simple("pl011", 0x1000a000, pic[13]);
    sysbus_create_simple("pl011", 0x1000b000, pic[14]);
    sysbus_create_simple("pl011", 0x1000c000, pic[15]);

    /* DMA controller is optional, apparently.  */
    sysbus_create_simple("pl081", 0x10030000, pic[24]);

    sysbus_create_simple("sp804", 0x10011000, pic[4]);
    sysbus_create_simple("sp804", 0x10012000, pic[5]);

    sysbus_create_simple("pl061", 0x10013000, pic[6]);
    sysbus_create_simple("pl061", 0x10014000, pic[7]);
    gpio2 = sysbus_create_simple("pl061", 0x10015000, pic[8]);

    sysbus_create_simple("pl110_versatile", 0x10020000, pic[23]);

    dev = sysbus_create_varargs("pl181", 0x10005000, pic[17], pic[18], NULL);
    /* Wire up MMC card detect and read-only signals. These have
     * to go to both the PL061 GPIO and the sysctl register.
     * Note that the PL181 orders these lines (readonly,inserted)
     * and the PL061 has them the other way about. Also the card
     * detect line is inverted.
     */
    mmc_irq[0] = qemu_irq_split(
        qdev_get_gpio_in(sysctl, ARM_SYSCTL_GPIO_MMC_WPROT),
        qdev_get_gpio_in(gpio2, 1));
    mmc_irq[1] = qemu_irq_split(
        qdev_get_gpio_in(sysctl, ARM_SYSCTL_GPIO_MMC_CARDIN),
        qemu_irq_invert(qdev_get_gpio_in(gpio2, 0)));
    qdev_connect_gpio_out(dev, 0, mmc_irq[0]);
    qdev_connect_gpio_out(dev, 1, mmc_irq[1]);

    sysbus_create_simple("pl031", 0x10017000, pic[10]);

    if (!is_pb) {
        dev = sysbus_create_varargs("realview_pci", 0x60000000,
                                    pic[48], pic[49], pic[50], pic[51], NULL);
        pci_bus = (PCIBus *)qdev_get_child_bus(dev, "pci");
        if (usb_enabled) {
            usb_ohci_init_pci(pci_bus, -1);
        }
        n = drive_get_max_bus(IF_SCSI);
        while (n >= 0) {
            pci_create_simple(pci_bus, -1, "lsi53c895a");
            n--;
        }
    }
    for(n = 0; n < nb_nics; n++) {
        nd = &nd_table[n];

        if (!done_nic && (!nd->model ||
                    strcmp(nd->model, is_pb ? "lan9118" : "smc91c111") == 0)) {
            if (is_pb) {
                lan9118_init(nd, 0x4e000000, pic[28]);
            } else {
                smc91c111_init(nd, 0x4e000000, pic[28]);
            }
            done_nic = 1;
        } else {
            pci_nic_init_nofail(nd, "rtl8139", NULL);
        }
    }

    dev = sysbus_create_simple("realview_i2c", 0x10002000, NULL);
    i2c = (i2c_bus *)qdev_get_child_bus(dev, "i2c");
    i2c_create_slave(i2c, "ds1338", 0x68);

    /* Memory map for RealView Emulation Baseboard:  */
    /* 0x10000000 System registers.  */
    /*  0x10001000 System controller.  */
    /* 0x10002000 Two-Wire Serial Bus.  */
    /* 0x10003000 Reserved.  */
    /*  0x10004000 AACI.  */
    /*  0x10005000 MCI.  */
    /* 0x10006000 KMI0.  */
    /* 0x10007000 KMI1.  */
    /*  0x10008000 Character LCD. (EB) */
    /* 0x10009000 UART0.  */
    /* 0x1000a000 UART1.  */
    /* 0x1000b000 UART2.  */
    /* 0x1000c000 UART3.  */
    /*  0x1000d000 SSPI.  */
    /*  0x1000e000 SCI.  */
    /* 0x1000f000 Reserved.  */
    /*  0x10010000 Watchdog.  */
    /* 0x10011000 Timer 0+1.  */
    /* 0x10012000 Timer 2+3.  */
    /*  0x10013000 GPIO 0.  */
    /*  0x10014000 GPIO 1.  */
    /*  0x10015000 GPIO 2.  */
    /*  0x10002000 Two-Wire Serial Bus - DVI. (PB) */
    /* 0x10017000 RTC.  */
    /*  0x10018000 DMC.  */
    /*  0x10019000 PCI controller config.  */
    /*  0x10020000 CLCD.  */
    /* 0x10030000 DMA Controller.  */
    /* 0x10040000 GIC1. (EB) */
    /*  0x10050000 GIC2. (EB) */
    /*  0x10060000 GIC3. (EB) */
    /*  0x10070000 GIC4. (EB) */
    /*  0x10080000 SMC.  */
    /* 0x1e000000 GIC1. (PB) */
    /*  0x1e001000 GIC2. (PB) */
    /*  0x1e002000 GIC3. (PB) */
    /*  0x1e003000 GIC4. (PB) */
    /*  0x40000000 NOR flash.  */
    /*  0x44000000 DoC flash.  */
    /*  0x48000000 SRAM.  */
    /*  0x4c000000 Configuration flash.  */
    /* 0x4e000000 Ethernet.  */
    /*  0x4f000000 USB.  */
    /*  0x50000000 PISMO.  */
    /*  0x54000000 PISMO.  */
    /*  0x58000000 PISMO.  */
    /*  0x5c000000 PISMO.  */
    /* 0x60000000 PCI.  */
    /* 0x61000000 PCI Self Config.  */
    /* 0x62000000 PCI Config.  */
    /* 0x63000000 PCI IO.  */
    /* 0x64000000 PCI mem 0.  */
    /* 0x68000000 PCI mem 1.  */
    /* 0x6c000000 PCI mem 2.  */

    /* ??? Hack to map an additional page of ram for the secondary CPU
       startup code.  I guess this works on real hardware because the
       BootROM happens to be in ROM/flash or in memory that isn't clobbered
       until after Linux boots the secondary CPUs.  */
    ram_offset = qemu_ram_alloc(NULL, "realview.hack", 0x1000);
    cpu_register_physical_memory(SMP_BOOT_ADDR, 0x1000,
                                 ram_offset | IO_MEM_RAM);

    realview_binfo.ram_size = ram_size;
    realview_binfo.kernel_filename = kernel_filename;
    realview_binfo.kernel_cmdline = kernel_cmdline;
    realview_binfo.initrd_filename = initrd_filename;
    realview_binfo.nb_cpus = smp_cpus;
    realview_binfo.board_id = realview_board_id[board_type];
    realview_binfo.loader_start = (board_type == BOARD_PB_A8 ? 0x70000000 : 0);
    arm_load_kernel(first_cpu, &realview_binfo);
}
Example #9
0
static
void mips_r4k_init (ram_addr_t ram_size,
                    const char *boot_device,
                    const char *kernel_filename, const char *kernel_cmdline,
                    const char *initrd_filename, const char *cpu_model)
{
    char *filename;
    ram_addr_t ram_offset;
    ram_addr_t bios_offset;
    int bios_size;
    CPUState *env;
    ResetData *reset_info;
    int i;
    qemu_irq *i8259;
    DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
    DriveInfo *dinfo;
    int be;

    /* init CPUs */
    if (cpu_model == NULL) {
#ifdef TARGET_MIPS64
        cpu_model = "R4000";
#else
        cpu_model = "24Kf";
#endif
    }
    env = cpu_init(cpu_model);
    if (!env) {
        fprintf(stderr, "Unable to find CPU definition\n");
        exit(1);
    }
    reset_info = qemu_mallocz(sizeof(ResetData));
    reset_info->env = env;
    reset_info->vector = env->active_tc.PC;
    qemu_register_reset(main_cpu_reset, reset_info);

    /* allocate RAM */
    if (ram_size > (256 << 20)) {
        fprintf(stderr,
                "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
                ((unsigned int)ram_size / (1 << 20)));
        exit(1);
    }
    ram_offset = qemu_ram_alloc(NULL, "mips_r4k.ram", ram_size);

    cpu_register_physical_memory(0, ram_size, ram_offset | IO_MEM_RAM);

    if (!mips_qemu_iomemtype) {
        mips_qemu_iomemtype = cpu_register_io_memory(mips_qemu_read,
                                                     mips_qemu_write, NULL,
                                                     DEVICE_NATIVE_ENDIAN);
    }
    cpu_register_physical_memory(0x1fbf0000, 0x10000, mips_qemu_iomemtype);

    /* Try to load a BIOS image. If this fails, we continue regardless,
       but initialize the hardware ourselves. When a kernel gets
       preloaded we also initialize the hardware, since the BIOS wasn't
       run. */
    if (bios_name == NULL)
        bios_name = BIOS_FILENAME;
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
    if (filename) {
        bios_size = get_image_size(filename);
    } else {
        bios_size = -1;
    }
#ifdef TARGET_WORDS_BIGENDIAN
    be = 1;
#else
    be = 0;
#endif
    if ((bios_size > 0) && (bios_size <= BIOS_SIZE)) {
        bios_offset = qemu_ram_alloc(NULL, "mips_r4k.bios", BIOS_SIZE);
	cpu_register_physical_memory(0x1fc00000, BIOS_SIZE,
                                     bios_offset | IO_MEM_ROM);

        load_image_targphys(filename, 0x1fc00000, BIOS_SIZE);
    } else if ((dinfo = drive_get(IF_PFLASH, 0, 0)) != NULL) {
        uint32_t mips_rom = 0x00400000;
        bios_offset = qemu_ram_alloc(NULL, "mips_r4k.bios", mips_rom);
        if (!pflash_cfi01_register(0x1fc00000, bios_offset,
                                   dinfo->bdrv, sector_len,
                                   mips_rom / sector_len,
                                   4, 0, 0, 0, 0, be)) {
            fprintf(stderr, "qemu: Error registering flash memory.\n");
	}
    }
    else {
	/* not fatal */
        fprintf(stderr, "qemu: Warning, could not load MIPS bios '%s'\n",
		bios_name);
    }
    if (filename) {
        qemu_free(filename);
    }

    if (kernel_filename) {
        loaderparams.ram_size = ram_size;
        loaderparams.kernel_filename = kernel_filename;
        loaderparams.kernel_cmdline = kernel_cmdline;
        loaderparams.initrd_filename = initrd_filename;
        reset_info->vector = load_kernel();
    }

    /* Init CPU internal devices */
    cpu_mips_irq_init_cpu(env);
    cpu_mips_clock_init(env);

    /* The PIC is attached to the MIPS CPU INT0 pin */
    i8259 = i8259_init(env->irq[2]);
    isa_bus_new(NULL);
    isa_bus_irqs(i8259);

    rtc_init(2000, NULL);

    /* Register 64 KB of ISA IO space at 0x14000000 */
    isa_mmio_init(0x14000000, 0x00010000);
    isa_mem_base = 0x10000000;

    pit = pit_init(0x40, i8259[0]);

    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
        if (serial_hds[i]) {
            serial_isa_init(i, serial_hds[i]);
        }
    }

    isa_vga_init();

    if (nd_table[0].vlan)
        isa_ne2000_init(0x300, 9, &nd_table[0]);

    if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
        fprintf(stderr, "qemu: too many IDE bus\n");
        exit(1);
    }

    for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
        hd[i] = drive_get(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS);
    }

    for(i = 0; i < MAX_IDE_BUS; i++)
        isa_ide_init(ide_iobase[i], ide_iobase2[i], ide_irq[i],
                     hd[MAX_IDE_DEVS * i],
		     hd[MAX_IDE_DEVS * i + 1]);

    isa_create_simple("i8042");
}
Example #10
0
static void
mips_mipssim_init (ram_addr_t ram_size,
                   const char *boot_device,
                   const char *kernel_filename, const char *kernel_cmdline,
                   const char *initrd_filename, const char *cpu_model)
{
    char *filename;
    ram_addr_t ram_offset;
    ram_addr_t bios_offset;
    CPUState *env;
    ResetData *reset_info;
    int bios_size;

    /* Init CPUs. */
    if (cpu_model == NULL) {
#ifdef TARGET_MIPS64
        cpu_model = "5Kf";
#else
        cpu_model = "24Kf";
#endif
    }
    env = cpu_init(cpu_model);
    if (!env) {
        fprintf(stderr, "Unable to find CPU definition\n");
        exit(1);
    }
    reset_info = qemu_mallocz(sizeof(ResetData));
    reset_info->env = env;
    reset_info->vector = env->active_tc.PC;
    qemu_register_reset(main_cpu_reset, reset_info);

    /* Allocate RAM. */
    ram_offset = qemu_ram_alloc(NULL, "mips_mipssim.ram", ram_size);
    bios_offset = qemu_ram_alloc(NULL, "mips_mipssim.bios", BIOS_SIZE);

    cpu_register_physical_memory(0, ram_size, ram_offset | IO_MEM_RAM);

    /* Map the BIOS / boot exception handler. */
    cpu_register_physical_memory(0x1fc00000LL,
                                 BIOS_SIZE, bios_offset | IO_MEM_ROM);
    /* Load a BIOS / boot exception handler image. */
    if (bios_name == NULL)
        bios_name = BIOS_FILENAME;
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
    if (filename) {
        bios_size = load_image_targphys(filename, 0x1fc00000LL, BIOS_SIZE);
        qemu_free(filename);
    } else {
        bios_size = -1;
    }
    if ((bios_size < 0 || bios_size > BIOS_SIZE) && !kernel_filename) {
        /* Bail out if we have neither a kernel image nor boot vector code. */
        fprintf(stderr,
                "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n",
                filename);
        exit(1);
    } else {
        /* We have a boot vector start address. */
        env->active_tc.PC = (target_long)(int32_t)0xbfc00000;
    }

    if (kernel_filename) {
        loaderparams.ram_size = ram_size;
        loaderparams.kernel_filename = kernel_filename;
        loaderparams.kernel_cmdline = kernel_cmdline;
        loaderparams.initrd_filename = initrd_filename;
        reset_info->vector = load_kernel();
    }

    /* Init CPU internal devices. */
    cpu_mips_irq_init_cpu(env);
    cpu_mips_clock_init(env);

    /* Register 64 KB of ISA IO space at 0x1fd00000. */
    isa_mmio_init(0x1fd00000, 0x00010000);

    /* A single 16450 sits at offset 0x3f8. It is attached to
       MIPS CPU INT2, which is interrupt 4. */
    if (serial_hds[0])
        serial_init(0x3f8, env->irq[4], 115200, serial_hds[0]);

    if (nd_table[0].vlan)
        /* MIPSnet uses the MIPS CPU INT0, which is interrupt 2. */
        mipsnet_init(0x4200, env->irq[2], &nd_table[0]);
}
Example #11
0
static void android_arm_init_(ram_addr_t ram_size,
    const char *boot_device,
    const char *kernel_filename,
    const char *kernel_cmdline,
    const char *initrd_filename,
    const char *cpu_model)
{
    CPUState *env;
    qemu_irq *cpu_pic;
    qemu_irq *goldfish_pic;
    int i;
    struct arm_boot_info  info;
    ram_addr_t ram_offset;
    DisplayState*  ds = get_displaystate();

    if (!cpu_model)
        cpu_model = "arm926";

    env = cpu_init(cpu_model);
    register_savevm( "cpu", 0, ARM_CPU_SAVE_VERSION, cpu_save, cpu_load, env );

    ram_offset = qemu_ram_alloc(ram_size);
    cpu_register_physical_memory(0, ram_size, ram_offset | IO_MEM_RAM);

    cpu_pic = arm_pic_init_cpu(env);
    goldfish_pic = goldfish_interrupt_init(0xff000000, cpu_pic[ARM_PIC_CPU_IRQ], cpu_pic[ARM_PIC_CPU_FIQ]);
    goldfish_device_init(goldfish_pic, 0xff010000, 0x7f0000, 10, 22);

    goldfish_device_bus_init(0xff001000, 1);

    goldfish_timer_and_rtc_init(0xff003000, 3);

    goldfish_tty_add(serial_hds[0], 0, 0xff002000, 4);
    for(i = 1; i < MAX_SERIAL_PORTS; i++) {
        //printf("android_arm_init serial %d %x\n", i, serial_hds[i]);
        if(serial_hds[i]) {
            goldfish_tty_add(serial_hds[i], i, 0, 0);
        }
    }

    for(i = 0; i < MAX_NICS; i++) {
        if (nd_table[i].vlan) {
            if (nd_table[i].model == NULL
                || strcmp(nd_table[i].model, "smc91c111") == 0) {
                struct goldfish_device *smc_device;
                smc_device = qemu_mallocz(sizeof(*smc_device));
                smc_device->name = "smc91x";
                smc_device->id = i;
                smc_device->size = 0x1000;
                smc_device->irq_count = 1;
                goldfish_add_device_no_io(smc_device);
                smc91c111_init(&nd_table[i], smc_device->base, goldfish_pic[smc_device->irq]);
            } else {
                fprintf(stderr, "qemu: Unsupported NIC: %s\n", nd_table[0].model);
                exit (1);
            }
        }
    }

    goldfish_fb_init(ds, 0);
#ifdef HAS_AUDIO
    goldfish_audio_init(0xff004000, 0, audio_input_source);
#endif
    {
        int  idx = drive_get_index( IF_IDE, 0, 0 );
        if (idx >= 0)
            goldfish_mmc_init(0xff005000, 0, drives_table[idx].bdrv);
    }

    goldfish_memlog_init(0xff006000);

    if (android_hw->hw_battery)
        goldfish_battery_init();

    goldfish_sensor_init();

    goldfish_add_device_no_io(&event0_device);
    events_dev_init(event0_device.base, goldfish_pic[event0_device.irq]);

#ifdef CONFIG_NAND
    goldfish_add_device_no_io(&nand_device);
    nand_dev_init(nand_device.base);
#endif
#ifdef CONFIG_TRACE
    extern const char *trace_filename;
    /* Init trace device if either tracing, or memory checking is enabled. */
    if (trace_filename != NULL
#ifdef CONFIG_MEMCHECK
        || memcheck_enabled
#endif  // CONFIG_MEMCHECK
       ) {
        trace_dev_init();
    }
    if (trace_filename != NULL) {
        D( "Trace file name is set to %s\n", trace_filename );
    } else  {
        D("Trace file name is not set\n");
    }
#endif

#if TEST_SWITCH
    {
        void *sw;
        sw = goldfish_switch_add("test", NULL, NULL, 0);
        goldfish_switch_set_state(sw, 1);
        goldfish_switch_add("test2", switch_test_write, sw, 1);
    }
#endif

    memset(&info, 0, sizeof info);
    info.ram_size        = ram_size;
    info.kernel_filename = kernel_filename;
    info.kernel_cmdline  = kernel_cmdline;
    info.initrd_filename = initrd_filename;
    info.nb_cpus         = 1;
    info.board_id        = 1441;

    arm_load_kernel(env, &info);
}
Example #12
0
static
void mips_jazz_init (ram_addr_t ram_size,
                     const char *cpu_model,
                     enum jazz_model_e jazz_model)
{
    char *filename;
    int bios_size, n;
    CPUState *env;
    qemu_irq *rc4030, *i8259;
    rc4030_dma *dmas;
    void* rc4030_opaque;
    int s_rtc, s_dma_dummy;
    NICInfo *nd;
    PITState *pit;
    DriveInfo *fds[MAX_FD];
    qemu_irq esp_reset;
    ram_addr_t ram_offset;
    ram_addr_t bios_offset;

    /* init CPUs */
    if (cpu_model == NULL) {
#ifdef TARGET_MIPS64
        cpu_model = "R4000";
#else
        /* FIXME: All wrong, this maybe should be R3000 for the older JAZZs. */
        cpu_model = "24Kf";
#endif
    }
    env = cpu_init(cpu_model);
    if (!env) {
        fprintf(stderr, "Unable to find CPU definition\n");
        exit(1);
    }
    qemu_register_reset(main_cpu_reset, env);

    /* allocate RAM */
    ram_offset = qemu_ram_alloc(ram_size);
    cpu_register_physical_memory(0, ram_size, ram_offset | IO_MEM_RAM);

    bios_offset = qemu_ram_alloc(MAGNUM_BIOS_SIZE);
    cpu_register_physical_memory(0x1fc00000LL,
                                 MAGNUM_BIOS_SIZE, bios_offset | IO_MEM_ROM);
    cpu_register_physical_memory(0xfff00000LL,
                                 MAGNUM_BIOS_SIZE, bios_offset | IO_MEM_ROM);

    /* load the BIOS image. */
    if (bios_name == NULL)
        bios_name = BIOS_FILENAME;
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
    if (filename) {
        bios_size = load_image_targphys(filename, 0xfff00000LL,
                                        MAGNUM_BIOS_SIZE);
        qemu_free(filename);
    } else {
        bios_size = -1;
    }
    if (bios_size < 0 || bios_size > MAGNUM_BIOS_SIZE) {
        fprintf(stderr, "qemu: Could not load MIPS bios '%s'\n",
                bios_name);
        exit(1);
    }

    /* Init CPU internal devices */
    cpu_mips_irq_init_cpu(env);
    cpu_mips_clock_init(env);

    /* Chipset */
    rc4030_opaque = rc4030_init(env->irq[6], env->irq[3], &rc4030, &dmas);
    s_dma_dummy = cpu_register_io_memory(dma_dummy_read, dma_dummy_write, NULL);
    cpu_register_physical_memory(0x8000d000, 0x00001000, s_dma_dummy);

    /* ISA devices */
    i8259 = i8259_init(env->irq[4]);
    isa_bus_new(NULL);
    isa_bus_irqs(i8259);
    DMA_init(0);
    pit = pit_init(0x40, i8259[0]);
    pcspk_init(pit);

    /* ISA IO space at 0x90000000 */
    isa_mmio_init(0x90000000, 0x01000000);
    isa_mem_base = 0x11000000;

    /* Video card */
    switch (jazz_model) {
    case JAZZ_MAGNUM:
        g364fb_mm_init(0x40000000, 0x60000000, 0, rc4030[3]);
        break;
    case JAZZ_PICA61:
        isa_vga_mm_init(0x40000000, 0x60000000, 0);
        break;
    default:
        break;
    }

    /* Network controller */
    for (n = 0; n < nb_nics; n++) {
        nd = &nd_table[n];
        if (!nd->model)
            nd->model = qemu_strdup("dp83932");
        if (strcmp(nd->model, "dp83932") == 0) {
            dp83932_init(nd, 0x80001000, 2, rc4030[4],
                         rc4030_opaque, rc4030_dma_memory_rw);
            break;
        } else if (strcmp(nd->model, "?") == 0) {
            fprintf(stderr, "qemu: Supported NICs: dp83932\n");
            exit(1);
        } else {
            fprintf(stderr, "qemu: Unsupported NIC: %s\n", nd->model);
            exit(1);
        }
    }

    /* SCSI adapter */
    esp_init(0x80002000, 0,
             rc4030_dma_read, rc4030_dma_write, dmas[0],
             rc4030[5], &esp_reset);

    /* Floppy */
    if (drive_get_max_bus(IF_FLOPPY) >= MAX_FD) {
        fprintf(stderr, "qemu: too many floppy drives\n");
        exit(1);
    }
    for (n = 0; n < MAX_FD; n++) {
        fds[n] = drive_get(IF_FLOPPY, 0, n);
    }
    fdctrl_init_sysbus(rc4030[1], 0, 0x80003000, fds);

    /* Real time clock */
    rtc_init(1980);
    s_rtc = cpu_register_io_memory(rtc_read, rtc_write, NULL);
    cpu_register_physical_memory(0x80004000, 0x00001000, s_rtc);

    /* Keyboard (i8042) */
    i8042_mm_init(rc4030[6], rc4030[7], 0x80005000, 0x1000, 0x1);

    /* Serial ports */
    if (serial_hds[0])
        serial_mm_init(0x80006000, 0, rc4030[8], 8000000/16, serial_hds[0], 1);
    if (serial_hds[1])
        serial_mm_init(0x80007000, 0, rc4030[9], 8000000/16, serial_hds[1], 1);

    /* Parallel port */
    if (parallel_hds[0])
        parallel_mm_init(0x80008000, 0, rc4030[0], parallel_hds[0]);

    /* Sound card */
    /* FIXME: missing Jazz sound at 0x8000c000, rc4030[2] */
#ifdef HAS_AUDIO
    audio_init(i8259);
#endif

    /* NVRAM: Unprotected at 0x9000, Protected at 0xa000, Read only at 0xb000 */
    ds1225y_init(0x80009000, "nvram");

    /* LED indicator */
    jazz_led_init(0x8000f000);
}
Example #13
0
static void mainstone_common_init(ram_addr_t ram_size,
                const char *kernel_filename,
                const char *kernel_cmdline, const char *initrd_filename,
                const char *cpu_model, enum mainstone_model_e model, int arm_id)
{
    uint32_t sector_len = 256 * 1024;
    target_phys_addr_t mainstone_flash_base[] = { MST_FLASH_0, MST_FLASH_1 };
    PXA2xxState *cpu;
    qemu_irq *mst_irq;
    DriveInfo *dinfo;
    int i;
    int be;

    if (!cpu_model)
        cpu_model = "pxa270-c5";

    /* Setup CPU & memory */
    cpu = pxa270_init(mainstone_binfo.ram_size, cpu_model);
    cpu_register_physical_memory(0, MAINSTONE_ROM,
                    qemu_ram_alloc(MAINSTONE_ROM) | IO_MEM_ROM);

    /* Setup initial (reset) machine state */
    cpu->env->regs[15] = mainstone_binfo.loader_start;

#ifdef TARGET_WORDS_BIGENDIAN
    be = 1;
#else
    be = 0;
#endif
    /* There are two 32MiB flash devices on the board */
    for (i = 0; i < 2; i ++) {
        dinfo = drive_get(IF_PFLASH, 0, i);
        if (!dinfo) {
            fprintf(stderr, "Two flash images must be given with the "
                    "'pflash' parameter\n");
            exit(1);
        }

        if (!pflash_cfi01_register(mainstone_flash_base[i],
                                   qemu_ram_alloc(MAINSTONE_FLASH),
                                   dinfo->bdrv, sector_len,
                                   MAINSTONE_FLASH / sector_len, 4, 0, 0, 0, 0,
                                   be)) {
            fprintf(stderr, "qemu: Error registering flash memory.\n");
            exit(1);
        }
    }

    mst_irq = mst_irq_init(cpu, MST_FPGA_PHYS, PXA2XX_PIC_GPIO_0);

    /* setup keypad */
    printf("map addr %p\n", &map);
    pxa27x_register_keypad(cpu->kp, map, 0xe0);

    /* MMC/SD host */
    pxa2xx_mmci_handlers(cpu->mmc, NULL, mst_irq[MMC_IRQ]);

    smc91c111_init(&nd_table[0], MST_ETH_PHYS, mst_irq[ETHERNET_IRQ]);

    mainstone_binfo.kernel_filename = kernel_filename;
    mainstone_binfo.kernel_cmdline = kernel_cmdline;
    mainstone_binfo.initrd_filename = initrd_filename;
    mainstone_binfo.board_id = arm_id;
    arm_load_kernel(cpu->env, &mainstone_binfo);
}
Example #14
0
static void r2d_init(ram_addr_t ram_size,
              const char *boot_device,
	      const char *kernel_filename, const char *kernel_cmdline,
	      const char *initrd_filename, const char *cpu_model)
{
    CPUState *env;
    struct SH7750State *s;
    ram_addr_t sdram_addr;
    qemu_irq *irq;
    DriveInfo *dinfo;
    int i;

    if (!cpu_model)
        cpu_model = "SH7751R";

    env = cpu_init(cpu_model);
    if (!env) {
        fprintf(stderr, "Unable to find CPU definition\n");
        exit(1);
    }

    /* Allocate memory space */
    sdram_addr = qemu_ram_alloc(NULL, "r2d.sdram", SDRAM_SIZE);
    cpu_register_physical_memory(SDRAM_BASE, SDRAM_SIZE, sdram_addr);
    /* Register peripherals */
    s = sh7750_init(env);
    irq = r2d_fpga_init(0x04000000, sh7750_irl(s));
    sh_pci_register_bus(r2d_pci_set_irq, r2d_pci_map_irq, irq, 0, 4);

    sm501_init(0x10000000, SM501_VRAM_SIZE, irq[SM501], serial_hds[2]);

    /* onboard CF (True IDE mode, Master only). */
    dinfo = drive_get(IF_IDE, 0, 0);
    mmio_ide_init(0x14001000, 0x1400080c, irq[CF_IDE], 1,
                  dinfo, NULL);

    /* onboard flash memory */
    dinfo = drive_get(IF_PFLASH, 0, 0);
    pflash_cfi02_register(0x0, qemu_ram_alloc(NULL, "r2d.flash", FLASH_SIZE),
                          dinfo ? dinfo->bdrv : NULL, (16 * 1024),
                          FLASH_SIZE >> 16,
                          1, 4, 0x0000, 0x0000, 0x0000, 0x0000,
                          0x555, 0x2aa, 0);

    /* NIC: rtl8139 on-board, and 2 slots. */
    for (i = 0; i < nb_nics; i++)
        pci_nic_init_nofail(&nd_table[i], "rtl8139", i==0 ? "2" : NULL);

    /* USB keyboard */
    usbdevice_create("keyboard");

    /* Todo: register on board registers */
    memset(&boot_params, 0, sizeof(boot_params));

    if (kernel_filename) {
        int kernel_size;

        kernel_size = load_image_targphys(kernel_filename,
                                          SDRAM_BASE + LINUX_LOAD_OFFSET,
                                          INITRD_LOAD_OFFSET - LINUX_LOAD_OFFSET);
        if (kernel_size < 0) {
          fprintf(stderr, "qemu: could not load kernel '%s'\n", kernel_filename);
          exit(1);
        }

        /* initialization which should be done by firmware */
        stl_phys(SH7750_BCR1, 1<<3); /* cs3 SDRAM */
        stw_phys(SH7750_BCR2, 3<<(3*2)); /* cs3 32bit */
        env->pc = (SDRAM_BASE + LINUX_LOAD_OFFSET) | 0xa0000000; /* Start from P2 area */
    }

    if (initrd_filename) {
        int initrd_size;

        initrd_size = load_image_targphys(initrd_filename,
                                          SDRAM_BASE + INITRD_LOAD_OFFSET,
                                          SDRAM_SIZE - INITRD_LOAD_OFFSET);

        if (initrd_size < 0) {
          fprintf(stderr, "qemu: could not load initrd '%s'\n", initrd_filename);
          exit(1);
        }

        /* initialization which should be done by firmware */
        boot_params.loader_type = 1;
        boot_params.initrd_start = INITRD_LOAD_OFFSET;
        boot_params.initrd_size = initrd_size;
    }

    if (kernel_cmdline) {
        strncpy(boot_params.kernel_cmdline, kernel_cmdline,
                sizeof(boot_params.kernel_cmdline));
    }

    rom_add_blob_fixed("boot_params", &boot_params, sizeof(boot_params),
                       SDRAM_BASE + BOOT_PARAMS_OFFSET);
}
Example #15
0
static void z2_init(ram_addr_t ram_size,
                    const char *boot_device,
                    const char *kernel_filename, const char *kernel_cmdline,
                    const char *initrd_filename, const char *cpu_model)
{
    uint32_t sector_len = 0x10000;
    PXA2xxState *cpu;
    DriveInfo *dinfo;
    int be;
    void *z2_lcd;
    i2c_bus *bus;
    DeviceState *wm;

    if (!cpu_model) {
        cpu_model = "pxa270-c5";
    }

    /* Setup CPU & memory */
    cpu = pxa270_init(z2_binfo.ram_size, cpu_model);

#ifdef TARGET_WORDS_BIGENDIAN
    be = 1;
#else
    be = 0;
#endif
    dinfo = drive_get(IF_PFLASH, 0, 0);
    if (!dinfo) {
        fprintf(stderr, "Flash image must be given with the "
                "'pflash' parameter\n");
        exit(1);
    }

    if (!pflash_cfi01_register(Z2_FLASH_BASE,
                               qemu_ram_alloc(NULL, "z2.flash0", Z2_FLASH_SIZE),
                               dinfo->bdrv, sector_len,
                               Z2_FLASH_SIZE / sector_len, 4, 0, 0, 0, 0,
                               be)) {
        fprintf(stderr, "qemu: Error registering flash memory.\n");
        exit(1);
    }

    /* setup keypad */
    pxa27x_register_keypad(cpu->kp, map, 0x100);

    /* MMC/SD host */
    pxa2xx_mmci_handlers(cpu->mmc,
                         NULL,
                         qdev_get_gpio_in(cpu->gpio, Z2_GPIO_SD_DETECT));

    ssi_register_slave(&zipit_lcd_info);
    i2c_register_slave(&aer915_info);
    z2_lcd = ssi_create_slave(cpu->ssp[1], "zipit-lcd");
    bus = pxa2xx_i2c_bus(cpu->i2c[0]);
    i2c_create_slave(bus, "aer915", 0x55);
    wm = i2c_create_slave(bus, "wm8750", 0x1b);
    cpu->i2s->opaque = wm;
    cpu->i2s->codec_out = wm8750_dac_dat;
    cpu->i2s->codec_in = wm8750_adc_dat;
    wm8750_data_req_set(wm, cpu->i2s->data_req, cpu->i2s);

    qdev_connect_gpio_out(cpu->gpio, Z2_GPIO_LCD_CS,
                          qemu_allocate_irqs(z2_lcd_cs, z2_lcd, 1)[0]);

    if (kernel_filename) {
        z2_binfo.kernel_filename = kernel_filename;
        z2_binfo.kernel_cmdline = kernel_cmdline;
        z2_binfo.initrd_filename = initrd_filename;
        z2_binfo.board_id = 0x6dd;
        arm_load_kernel(cpu->env, &z2_binfo);
    }
}
Example #16
0
void tcx_init(target_phys_addr_t addr, int vram_size, int width, int height,
              int depth)
{
    TCXState *s;
    int io_memory, dummy_memory;
    ram_addr_t vram_offset;
    int size;
    uint8_t *vram_base;

    vram_offset = qemu_ram_alloc(vram_size * (1 + 4 + 4));
    vram_base = qemu_get_ram_ptr(vram_offset);

    s = qemu_mallocz(sizeof(TCXState));
    s->addr = addr;
    s->vram_offset = vram_offset;
    s->width = width;
    s->height = height;
    s->depth = depth;

    // 8-bit plane
    s->vram = vram_base;
    size = vram_size;
    cpu_register_physical_memory(addr + 0x00800000ULL, size, vram_offset);
    vram_offset += size;
    vram_base += size;

    io_memory = cpu_register_io_memory(0, tcx_dac_read, tcx_dac_write, s);
    cpu_register_physical_memory(addr + 0x00200000ULL, TCX_DAC_NREGS,
                                 io_memory);

    dummy_memory = cpu_register_io_memory(0, tcx_dummy_read, tcx_dummy_write,
                                          s);
    cpu_register_physical_memory(addr + 0x00700000ULL, TCX_TEC_NREGS,
                                 dummy_memory);
    if (depth == 24) {
        // 24-bit plane
        size = vram_size * 4;
        s->vram24 = (uint32_t *)vram_base;
        s->vram24_offset = vram_offset;
        cpu_register_physical_memory(addr + 0x02000000ULL, size, vram_offset);
        vram_offset += size;
        vram_base += size;

        // Control plane
        size = vram_size * 4;
        s->cplane = (uint32_t *)vram_base;
        s->cplane_offset = vram_offset;
        cpu_register_physical_memory(addr + 0x0a000000ULL, size, vram_offset);
        s->ds = graphic_console_init(tcx24_update_display,
                                     tcx24_invalidate_display,
                                     tcx24_screen_dump, NULL, s);
    } else {
        cpu_register_physical_memory(addr + 0x00300000ULL, TCX_THC_NREGS_8,
                                     dummy_memory);
        s->ds = graphic_console_init(tcx_update_display,
                                     tcx_invalidate_display,
                                     tcx_screen_dump, NULL, s);
    }
    // NetBSD writes here even with 8-bit display
    cpu_register_physical_memory(addr + 0x00301000ULL, TCX_THC_NREGS_24,
                                 dummy_memory);

    register_savevm("tcx", addr, 4, tcx_save, tcx_load, s);
    qemu_register_reset(tcx_reset, s);
    tcx_reset(s);
    qemu_console_resize(s->ds, width, height);
}
Example #17
0
static void mpc8544ds_init(ram_addr_t ram_size,
                         const char *boot_device,
                         const char *kernel_filename,
                         const char *kernel_cmdline,
                         const char *initrd_filename,
                         const char *cpu_model)
{
    PCIBus *pci_bus;
    CPUState *env;
    uint64_t elf_entry;
    uint64_t elf_lowaddr;
    target_phys_addr_t entry=0;
    target_phys_addr_t loadaddr=UIMAGE_LOAD_BASE;
    target_long kernel_size=0;
    target_ulong dt_base = 0;
    target_ulong initrd_base = 0;
    target_long initrd_size=0;
    int i=0;
    unsigned int pci_irq_nrs[4] = {1, 2, 3, 4};
    qemu_irq *irqs, *mpic, *pci_irqs;
    SerialState * serial[2];

    /* Setup CPU */
    env = cpu_ppc_init("e500v2_v30");
    if (!env) {
        fprintf(stderr, "Unable to initialize CPU!\n");
        exit(1);
    }

    /* Fixup Memory size on a alignment boundary */
    ram_size &= ~(RAM_SIZES_ALIGN - 1);

    /* Register Memory */
    cpu_register_physical_memory(0, ram_size, qemu_ram_alloc(NULL,
                                 "mpc8544ds.ram", ram_size));

    /* MPIC */
    irqs = qemu_mallocz(sizeof(qemu_irq) * OPENPIC_OUTPUT_NB);
    irqs[OPENPIC_OUTPUT_INT] = ((qemu_irq *)env->irq_inputs)[PPCE500_INPUT_INT];
    irqs[OPENPIC_OUTPUT_CINT] = ((qemu_irq *)env->irq_inputs)[PPCE500_INPUT_CINT];
    mpic = mpic_init(MPC8544_MPIC_REGS_BASE, 1, &irqs, NULL);

    /* Serial */
    if (serial_hds[0]) {
        serial[0] = serial_mm_init(MPC8544_SERIAL0_REGS_BASE,
                                   0, mpic[12+26], 399193,
                                   serial_hds[0], 1, 1);
    }

    if (serial_hds[1]) {
        serial[0] = serial_mm_init(MPC8544_SERIAL1_REGS_BASE,
                                   0, mpic[12+26], 399193,
                                   serial_hds[0], 1, 1);
    }

    /* PCI */
    pci_irqs = qemu_malloc(sizeof(qemu_irq) * 4);
    pci_irqs[0] = mpic[pci_irq_nrs[0]];
    pci_irqs[1] = mpic[pci_irq_nrs[1]];
    pci_irqs[2] = mpic[pci_irq_nrs[2]];
    pci_irqs[3] = mpic[pci_irq_nrs[3]];
    pci_bus = ppce500_pci_init(pci_irqs, MPC8544_PCI_REGS_BASE);
    if (!pci_bus)
        printf("couldn't create PCI controller!\n");

    isa_mmio_init(MPC8544_PCI_IO, MPC8544_PCI_IOLEN, 1);

    if (pci_bus) {
        /* Register network interfaces. */
        for (i = 0; i < nb_nics; i++) {
            pci_nic_init_nofail(&nd_table[i], "virtio", NULL);
        }
    }

    /* Load kernel. */
    if (kernel_filename) {
        kernel_size = load_uimage(kernel_filename, &entry, &loadaddr, NULL);
        if (kernel_size < 0) {
            kernel_size = load_elf(kernel_filename, NULL, NULL, &elf_entry,
                                   &elf_lowaddr, NULL, 1, ELF_MACHINE, 0);
            entry = elf_entry;
            loadaddr = elf_lowaddr;
        }
        /* XXX try again as binary */
        if (kernel_size < 0) {
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
                    kernel_filename);
            exit(1);
        }
    }

    /* Load initrd. */
    if (initrd_filename) {
        initrd_base = (kernel_size + INITRD_LOAD_PAD) & ~INITRD_PAD_MASK;
        initrd_size = load_image_targphys(initrd_filename, initrd_base,
                                          ram_size - initrd_base);

        if (initrd_size < 0) {
            fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
                    initrd_filename);
            exit(1);
        }
    }

    /* If we're loading a kernel directly, we must load the device tree too. */
    if (kernel_filename) {
        dt_base = (kernel_size + DTC_LOAD_PAD) & ~DTC_PAD_MASK;
        if (mpc8544_load_device_tree(dt_base, ram_size,
                    initrd_base, initrd_size, kernel_cmdline) < 0) {
            fprintf(stderr, "couldn't load device tree\n");
            exit(1);
        }

        cpu_synchronize_state(env);

        /* Set initial guest state. */
        env->gpr[1] = (16<<20) - 8;
        env->gpr[3] = dt_base;
        env->nip = entry;
        /* XXX we currently depend on KVM to create some initial TLB entries. */
    }

    if (kvm_enabled())
        kvmppc_init();

    return;
}
static void lm32_uclinux_init(ram_addr_t ram_size_not_used,
                          const char *boot_device,
                          const char *kernel_filename,
                          const char *kernel_cmdline,
                          const char *initrd_filename, const char *cpu_model)
{
    CPUState *env;
    DriveInfo *dinfo;
    ram_addr_t phys_ram;
    ram_addr_t phys_flash;
    qemu_irq *cpu_irq, irq[32];
    HWSetup *hw;
    ResetInfo *reset_info;
    int i;

    /* memory map */
    target_phys_addr_t flash_base   = 0x04000000;
    size_t flash_sector_size        = 256 * 1024;
    size_t flash_size               = 32 * 1024 * 1024;
    target_phys_addr_t ram_base     = 0x08000000;
    size_t ram_size                 = 64 * 1024 * 1024;
    target_phys_addr_t uart0_base   = 0x80000000;
    target_phys_addr_t timer0_base  = 0x80002000;
    target_phys_addr_t timer1_base  = 0x80010000;
    target_phys_addr_t timer2_base  = 0x80012000;
    int uart0_irq                   = 0;
    int timer0_irq                  = 1;
    int timer1_irq                  = 20;
    int timer2_irq                  = 21;
    target_phys_addr_t hwsetup_base = 0x0bffe000;
    target_phys_addr_t cmdline_base = 0x0bfff000;
    target_phys_addr_t initrd_base  = 0x08400000;
    size_t initrd_max               = 0x01000000;

    reset_info = qemu_mallocz(sizeof(ResetInfo));

    if (cpu_model == NULL) {
        cpu_model = "lm32-full";
    }
    env = cpu_init(cpu_model);
    reset_info->env = env;

    reset_info->flash_base = flash_base;

    phys_ram = qemu_ram_alloc(NULL, "lm32_uclinux.sdram", ram_size);
    cpu_register_physical_memory(ram_base, ram_size, phys_ram | IO_MEM_RAM);

    phys_flash = qemu_ram_alloc(NULL, "lm32_uclinux.flash", flash_size);
    dinfo = drive_get(IF_PFLASH, 0, 0);
    /* Spansion S29NS128P */
    pflash_cfi02_register(flash_base, phys_flash,
                          dinfo ? dinfo->bdrv : NULL, flash_sector_size,
                          flash_size / flash_sector_size, 1, 2,
                          0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa, 1);

    /* create irq lines */
    cpu_irq = qemu_allocate_irqs(cpu_irq_handler, env, 1);
    env->pic_state = lm32_pic_init(*cpu_irq);
    for (i = 0; i < 32; i++) {
        irq[i] = qdev_get_gpio_in(env->pic_state, i);
    }

    sysbus_create_simple("lm32-uart", uart0_base, irq[uart0_irq]);
    sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]);
    sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]);
    sysbus_create_simple("lm32-timer", timer2_base, irq[timer2_irq]);

    /* make sure juart isn't the first chardev */
    env->juart_state = lm32_juart_init();

    reset_info->bootstrap_pc = flash_base;

    if (kernel_filename) {
        uint64_t entry;
        int kernel_size;

        kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
                               1, ELF_MACHINE, 0);
        reset_info->bootstrap_pc = entry;

        if (kernel_size < 0) {
            kernel_size = load_image_targphys(kernel_filename, ram_base,
                                              ram_size);
            reset_info->bootstrap_pc = ram_base;
        }

        if (kernel_size < 0) {
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
                    kernel_filename);
            exit(1);
        }
    }

    /* generate a rom with the hardware description */
    hw = hwsetup_init();
    hwsetup_add_cpu(hw, "LM32", 75000000);
    hwsetup_add_flash(hw, "flash", flash_base, flash_size);
    hwsetup_add_ddr_sdram(hw, "ddr_sdram", ram_base, ram_size);
    hwsetup_add_timer(hw, "timer0", timer0_base, timer0_irq);
    hwsetup_add_timer(hw, "timer1_dev_only", timer1_base, timer1_irq);
    hwsetup_add_timer(hw, "timer2_dev_only", timer2_base, timer2_irq);
    hwsetup_add_uart(hw, "uart", uart0_base, uart0_irq);
    hwsetup_add_trailer(hw);
    hwsetup_create_rom(hw, hwsetup_base);
    hwsetup_free(hw);

    reset_info->hwsetup_base = hwsetup_base;

    if (kernel_cmdline && strlen(kernel_cmdline)) {
        pstrcpy_targphys("cmdline", cmdline_base, TARGET_PAGE_SIZE,
                kernel_cmdline);
        reset_info->cmdline_base = cmdline_base;
    }

    if (initrd_filename) {
        size_t initrd_size;
        initrd_size = load_image_targphys(initrd_filename, initrd_base,
                initrd_max);
        reset_info->initrd_base = initrd_base;
        reset_info->initrd_size = initrd_size;
    }

    qemu_register_reset(main_cpu_reset, reset_info);
}
Example #19
0
static int tcx_init1(SysBusDevice *dev)
{
    TCXState *s = FROM_SYSBUS(TCXState, dev);
    int io_memory, dummy_memory;
    ram_addr_t vram_offset;
    int size;
    uint8_t *vram_base;

    vram_offset = qemu_ram_alloc(NULL, "tcx.vram", s->vram_size * (1 + 4 + 4));
    vram_base = qemu_get_ram_ptr(vram_offset);
    s->vram_offset = vram_offset;

    /* 8-bit plane */
    s->vram = vram_base;
    size = s->vram_size;
    sysbus_init_mmio(dev, size, s->vram_offset);
    vram_offset += size;
    vram_base += size;

    /* DAC */
    io_memory = cpu_register_io_memory(tcx_dac_read, tcx_dac_write, s,
                                       DEVICE_NATIVE_ENDIAN);
    sysbus_init_mmio(dev, TCX_DAC_NREGS, io_memory);

    /* TEC (dummy) */
    dummy_memory = cpu_register_io_memory(tcx_dummy_read, tcx_dummy_write,
                                          s, DEVICE_NATIVE_ENDIAN);
    sysbus_init_mmio(dev, TCX_TEC_NREGS, dummy_memory);
    /* THC: NetBSD writes here even with 8-bit display: dummy */
    sysbus_init_mmio(dev, TCX_THC_NREGS_24, dummy_memory);

    if (s->depth == 24) {
        /* 24-bit plane */
        size = s->vram_size * 4;
        s->vram24 = (uint32_t *)vram_base;
        s->vram24_offset = vram_offset;
        sysbus_init_mmio(dev, size, vram_offset);
        vram_offset += size;
        vram_base += size;

        /* Control plane */
        size = s->vram_size * 4;
        s->cplane = (uint32_t *)vram_base;
        s->cplane_offset = vram_offset;
        sysbus_init_mmio(dev, size, vram_offset);

        s->ds = graphic_console_init(tcx24_update_display,
                                     tcx24_invalidate_display,
                                     tcx24_screen_dump, NULL, s);
    } else {
        /* THC 8 bit (dummy) */
        sysbus_init_mmio(dev, TCX_THC_NREGS_8, dummy_memory);

        s->ds = graphic_console_init(tcx_update_display,
                                     tcx_invalidate_display,
                                     tcx_screen_dump, NULL, s);
    }

    qemu_console_resize(s->ds, s->width, s->height);
    return 0;
}
static void lm32_evr_init(ram_addr_t ram_size_not_used,
                          const char *boot_device,
                          const char *kernel_filename,
                          const char *kernel_cmdline,
                          const char *initrd_filename, const char *cpu_model)
{
    CPUState *env;
    DriveInfo *dinfo;
    ram_addr_t phys_ram;
    ram_addr_t phys_flash;
    qemu_irq *cpu_irq, irq[32];
    ResetInfo *reset_info;
    int i;

    /* memory map */
    target_phys_addr_t flash_base  = 0x04000000;
    size_t flash_sector_size       = 256 * 1024;
    size_t flash_size              = 32 * 1024 * 1024;
    target_phys_addr_t ram_base    = 0x08000000;
    size_t ram_size                = 64 * 1024 * 1024;
    target_phys_addr_t timer0_base = 0x80002000;
    target_phys_addr_t uart0_base  = 0x80006000;
    target_phys_addr_t timer1_base = 0x8000a000;
    int uart0_irq                  = 0;
    int timer0_irq                 = 1;
    int timer1_irq                 = 3;

    reset_info = qemu_mallocz(sizeof(ResetInfo));

    if (cpu_model == NULL) {
        cpu_model = "lm32-full";
    }
    env = cpu_init(cpu_model);
    reset_info->env = env;

    reset_info->flash_base = flash_base;

    phys_ram = qemu_ram_alloc(NULL, "lm32_evr.sdram", ram_size);
    cpu_register_physical_memory(ram_base, ram_size, phys_ram | IO_MEM_RAM);

    phys_flash = qemu_ram_alloc(NULL, "lm32_evr.flash", flash_size);
    dinfo = drive_get(IF_PFLASH, 0, 0);
    /* Spansion S29NS128P */
    pflash_cfi02_register(flash_base, phys_flash,
                          dinfo ? dinfo->bdrv : NULL, flash_sector_size,
                          flash_size / flash_sector_size, 1, 2,
                          0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa, 1);

    /* create irq lines */
    cpu_irq = qemu_allocate_irqs(cpu_irq_handler, env, 1);
    env->pic_state = lm32_pic_init(*cpu_irq);
    for (i = 0; i < 32; i++) {
        irq[i] = qdev_get_gpio_in(env->pic_state, i);
    }

    sysbus_create_simple("lm32-uart", uart0_base, irq[uart0_irq]);
    sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]);
    sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]);

    /* make sure juart isn't the first chardev */
    env->juart_state = lm32_juart_init();

    reset_info->bootstrap_pc = flash_base;

    if (kernel_filename) {
        uint64_t entry;
        int kernel_size;

        kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
                               1, ELF_MACHINE, 0);
        reset_info->bootstrap_pc = entry;

        if (kernel_size < 0) {
            kernel_size = load_image_targphys(kernel_filename, ram_base,
                                              ram_size);
            reset_info->bootstrap_pc = ram_base;
        }

        if (kernel_size < 0) {
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
                    kernel_filename);
            exit(1);
        }
    }

    qemu_register_reset(main_cpu_reset, reset_info);
}
Example #21
0
/* pSeries LPAR / sPAPR hardware init */
static void ppc_spapr_init(ram_addr_t ram_size,
                           const char *boot_device,
                           const char *kernel_filename,
                           const char *kernel_cmdline,
                           const char *initrd_filename,
                           const char *cpu_model)
{
    CPUState *env;
    int i;
    ram_addr_t ram_offset;
    uint32_t initrd_base;
    long kernel_size, initrd_size, fw_size;
    long pteg_shift = 17;
    char *filename;
    int irq = 16;

    spapr = qemu_malloc(sizeof(*spapr));
    cpu_ppc_hypercall = emulate_spapr_hypercall;

    /* We place the device tree just below either the top of RAM, or
     * 2GB, so that it can be processed with 32-bit code if
     * necessary */
    spapr->fdt_addr = MIN(ram_size, 0x80000000) - FDT_MAX_SIZE;
    spapr->rtas_addr = spapr->fdt_addr - RTAS_MAX_SIZE;

    /* init CPUs */
    if (cpu_model == NULL) {
        cpu_model = "POWER7";
    }
    for (i = 0; i < smp_cpus; i++) {
        env = cpu_init(cpu_model);

        if (!env) {
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
            exit(1);
        }
        /* Set time-base frequency to 512 MHz */
        cpu_ppc_tb_init(env, TIMEBASE_FREQ);
        qemu_register_reset((QEMUResetHandler *)&cpu_reset, env);

        env->hreset_vector = 0x60;
        env->hreset_excp_prefix = 0;
        env->gpr[3] = env->cpu_index;
    }

    /* allocate RAM */
    ram_offset = qemu_ram_alloc(NULL, "ppc_spapr.ram", ram_size);
    cpu_register_physical_memory(0, ram_size, ram_offset);

    /* allocate hash page table.  For now we always make this 16mb,
     * later we should probably make it scale to the size of guest
     * RAM */
    spapr->htab_size = 1ULL << (pteg_shift + 7);
    spapr->htab = qemu_malloc(spapr->htab_size);

    for (env = first_cpu; env != NULL; env = env->next_cpu) {
        env->external_htab = spapr->htab;
        env->htab_base = -1;
        env->htab_mask = spapr->htab_size - 1;
    }

    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
    spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
                                           ram_size - spapr->rtas_addr);
    if (spapr->rtas_size < 0) {
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
        exit(1);
    }
    qemu_free(filename);

    /* Set up Interrupt Controller */
    spapr->icp = xics_system_init(XICS_IRQS);

    /* Set up VIO bus */
    spapr->vio_bus = spapr_vio_bus_init();

    for (i = 0; i < MAX_SERIAL_PORTS; i++, irq++) {
        if (serial_hds[i]) {
            spapr_vty_create(spapr->vio_bus, i, serial_hds[i],
                             xics_find_qirq(spapr->icp, irq), irq);
        }
    }

    for (i = 0; i < nb_nics; i++, irq++) {
        NICInfo *nd = &nd_table[i];

        if (!nd->model) {
            nd->model = qemu_strdup("ibmveth");
        }

        if (strcmp(nd->model, "ibmveth") == 0) {
            spapr_vlan_create(spapr->vio_bus, 0x1000 + i, nd,
                              xics_find_qirq(spapr->icp, irq), irq);
        } else {
            fprintf(stderr, "pSeries (sPAPR) platform does not support "
                    "NIC model '%s' (only ibmveth is supported)\n",
                    nd->model);
            exit(1);
        }
    }

    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
        spapr_vscsi_create(spapr->vio_bus, 0x2000 + i,
                           xics_find_qirq(spapr->icp, irq), irq);
        irq++;
    }

    if (kernel_filename) {
        uint64_t lowaddr = 0;

        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
        if (kernel_size < 0) {
            kernel_size = load_image_targphys(kernel_filename,
                                              KERNEL_LOAD_ADDR,
                                              ram_size - KERNEL_LOAD_ADDR);
        }
        if (kernel_size < 0) {
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
                    kernel_filename);
            exit(1);
        }

        /* load initrd */
        if (initrd_filename) {
            initrd_base = INITRD_LOAD_ADDR;
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
                                              ram_size - initrd_base);
            if (initrd_size < 0) {
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
                        initrd_filename);
                exit(1);
            }
        } else {
            initrd_base = 0;
            initrd_size = 0;
        }

        spapr->entry_point = KERNEL_LOAD_ADDR;
    } else {
        if (ram_size < (MIN_RAM_SLOF << 20)) {
            fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
                    "%ldM guest RAM\n", MIN_RAM_SLOF);
            exit(1);
        }
        filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "slof.bin");
        fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
        if (fw_size < 0) {
            hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
            exit(1);
        }
        qemu_free(filename);
        spapr->entry_point = 0x100;
        initrd_base = 0;
        initrd_size = 0;

        /* SLOF will startup the secondary CPUs using RTAS,
           rather than expecting a kexec() style entry */
        for (env = first_cpu; env != NULL; env = env->next_cpu) {
            env->halted = 1;
        }
    }

    /* Prepare the device tree */
    spapr->fdt_skel = spapr_create_fdt_skel(cpu_model,
                                            initrd_base, initrd_size,
                                            boot_device, kernel_cmdline,
                                            pteg_shift + 7);
    assert(spapr->fdt_skel != NULL);

    qemu_register_reset(spapr_reset, spapr);
}
Example #22
0
File: mips_r4k.c Project: CPFL/gxen
static
void mips_r4k_init (ram_addr_t ram_size, int vga_ram_size,
                    const char *boot_device,
                    const char *kernel_filename, const char *kernel_cmdline,
                    const char *initrd_filename, const char *cpu_model)
{
    char buf[1024];
    unsigned long bios_offset;
    int bios_size;
    CPUState *env;
    RTCState *rtc_state;
    int i;
    qemu_irq *i8259;
    int index;
    BlockDriverState *hd[MAX_IDE_BUS * MAX_IDE_DEVS];

    /* init CPUs */
    if (cpu_model == NULL) {
#ifdef TARGET_MIPS64
        cpu_model = "R4000";
#else
        cpu_model = "24Kf";
#endif
    }
    env = cpu_init(cpu_model);
    if (!env) {
        fprintf(stderr, "Unable to find CPU definition\n");
        exit(1);
    }
    qemu_register_reset(main_cpu_reset, env);

    /* allocate RAM */
    if (ram_size > (256 << 20)) {
        fprintf(stderr,
                "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
                ((unsigned int)ram_size / (1 << 20)));
        exit(1);
    }
    cpu_register_physical_memory(0, ram_size, IO_MEM_RAM);

    if (!mips_qemu_iomemtype) {
        mips_qemu_iomemtype = cpu_register_io_memory(0, mips_qemu_read,
                                                     mips_qemu_write, NULL);
    }
    cpu_register_physical_memory(0x1fbf0000, 0x10000, mips_qemu_iomemtype);

    /* Try to load a BIOS image. If this fails, we continue regardless,
       but initialize the hardware ourselves. When a kernel gets
       preloaded we also initialize the hardware, since the BIOS wasn't
       run. */
    bios_offset = ram_size + vga_ram_size;
    if (bios_name == NULL)
        bios_name = BIOS_FILENAME;
    snprintf(buf, sizeof(buf), "%s/%s", bios_dir, bios_name);
    bios_size = load_image(buf, phys_ram_base + bios_offset);
    if ((bios_size > 0) && (bios_size <= BIOS_SIZE)) {
	cpu_register_physical_memory(0x1fc00000,
				     BIOS_SIZE, bios_offset | IO_MEM_ROM);
    } else if ((index = drive_get_index(IF_PFLASH, 0, 0)) > -1) {
        uint32_t mips_rom = 0x00400000;
        cpu_register_physical_memory(0x1fc00000, mips_rom,
	                     qemu_ram_alloc(mips_rom) | IO_MEM_ROM);
        if (!pflash_cfi01_register(0x1fc00000, qemu_ram_alloc(mips_rom),
            drives_table[index].bdrv, sector_len, mips_rom / sector_len,
            4, 0, 0, 0, 0)) {
            fprintf(stderr, "qemu: Error registering flash memory.\n");
	}
    }
    else {
	/* not fatal */
        fprintf(stderr, "qemu: Warning, could not load MIPS bios '%s'\n",
		buf);
    }

    if (kernel_filename) {
        loaderparams.ram_size = ram_size;
        loaderparams.kernel_filename = kernel_filename;
        loaderparams.kernel_cmdline = kernel_cmdline;
        loaderparams.initrd_filename = initrd_filename;
        load_kernel (env);
    }

    /* Init CPU internal devices */
    cpu_mips_irq_init_cpu(env);
    cpu_mips_clock_init(env);

    /* The PIC is attached to the MIPS CPU INT0 pin */
    i8259 = i8259_init(env->irq[2]);

    rtc_state = rtc_init(0x70, i8259[8], 2000);

    /* Register 64 KB of ISA IO space at 0x14000000 */
    isa_mmio_init(0x14000000, 0x00010000);
    isa_mem_base = 0x10000000;

    pit = pit_init(0x40, i8259[0]);

    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
        if (serial_hds[i]) {
            serial_init(serial_io[i], i8259[serial_irq[i]], 115200,
                        serial_hds[i]);
        }
    }

    isa_vga_init(phys_ram_base + ram_size, ram_size,
                 vga_ram_size);

    if (nd_table[0].vlan)
        isa_ne2000_init(0x300, i8259[9], &nd_table[0]);

    if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
        fprintf(stderr, "qemu: too many IDE bus\n");
        exit(1);
    }

    for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
        index = drive_get_index(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS);
        if (index != -1)
            hd[i] = drives_table[index].bdrv;
        else
            hd[i] = NULL;
    }

    for(i = 0; i < MAX_IDE_BUS; i++)
        isa_ide_init(ide_iobase[i], ide_iobase2[i], i8259[ide_irq[i]],
                     hd[MAX_IDE_DEVS * i],
		     hd[MAX_IDE_DEVS * i + 1]);

    i8042_init(i8259[1], i8259[12], 0x60);
}
Example #23
0
static void realview_init(ram_addr_t ram_size,
                     const char *boot_device,
                     const char *kernel_filename, const char *kernel_cmdline,
                     const char *initrd_filename, const char *cpu_model)
{
    CPUState *env;
    ram_addr_t ram_offset;
    DeviceState *dev;
    qemu_irq *irqp;
    qemu_irq pic[64];
    PCIBus *pci_bus;
    NICInfo *nd;
    int n;
    int done_smc = 0;
    qemu_irq cpu_irq[4];
    int ncpu;

    if (!cpu_model)
        cpu_model = "arm926";
    /* FIXME: obey smp_cpus.  */
    if (strcmp(cpu_model, "arm11mpcore") == 0) {
        ncpu = 4;
    } else {
        ncpu = 1;
    }

    for (n = 0; n < ncpu; n++) {
        env = cpu_init(cpu_model);
        if (!env) {
            fprintf(stderr, "Unable to find CPU definition\n");
            exit(1);
        }
        irqp = arm_pic_init_cpu(env);
        cpu_irq[n] = irqp[ARM_PIC_CPU_IRQ];
        if (n > 0) {
            /* Set entry point for secondary CPUs.  This assumes we're using
               the init code from arm_boot.c.  Real hardware resets all CPUs
               the same.  */
            env->regs[15] = 0x80000000;
        }
    }

    ram_offset = qemu_ram_alloc(ram_size);
    /* ??? RAM should repeat to fill physical memory space.  */
    /* SDRAM at address zero.  */
    cpu_register_physical_memory(0, ram_size, ram_offset | IO_MEM_RAM);

    arm_sysctl_init(0x10000000, 0xc1400400);

    if (ncpu == 1) {
        /* ??? The documentation says GIC1 is nFIQ and either GIC2 or GIC3
           is nIRQ (there are inconsistencies).  However Linux 2.6.17 expects
           GIC1 to be nIRQ and ignores all the others, so do that for now.  */
        dev = sysbus_create_simple("realview_gic", 0x10040000, cpu_irq[0]);
    } else {
        dev = sysbus_create_varargs("realview_mpcore", -1,
                                    cpu_irq[0], cpu_irq[1], cpu_irq[2],
                                    cpu_irq[3], NULL);
    }
    for (n = 0; n < 64; n++) {
        pic[n] = qdev_get_irq_sink(dev, n);
    }

    sysbus_create_simple("pl050_keyboard", 0x10006000, pic[20]);
    sysbus_create_simple("pl050_mouse", 0x10007000, pic[21]);

    sysbus_create_simple("pl011", 0x10009000, pic[12]);
    sysbus_create_simple("pl011", 0x1000a000, pic[13]);
    sysbus_create_simple("pl011", 0x1000b000, pic[14]);
    sysbus_create_simple("pl011", 0x1000c000, pic[15]);

    /* DMA controller is optional, apparently.  */
    sysbus_create_simple("pl081", 0x10030000, pic[24]);

    sysbus_create_simple("sp804", 0x10011000, pic[4]);
    sysbus_create_simple("sp804", 0x10012000, pic[5]);

    sysbus_create_simple("pl110_versatile", 0x10020000, pic[23]);

    sysbus_create_varargs("pl181", 0x10005000, pic[17], pic[18], NULL);

    sysbus_create_simple("pl031", 0x10017000, pic[10]);

    dev = sysbus_create_varargs("realview_pci", 0x60000000,
                                pic[48], pic[49], pic[50], pic[51], NULL);
    pci_bus = qdev_get_child_bus(dev, "pci");
    if (usb_enabled) {
        usb_ohci_init_pci(pci_bus, 3, -1);
    }
    n = drive_get_max_bus(IF_SCSI);
    while (n >= 0) {
        pci_create_simple(pci_bus, -1, "lsi53c895a");
        n--;
    }
    for(n = 0; n < nb_nics; n++) {
        nd = &nd_table[n];

        if ((!nd->model && !done_smc) || strcmp(nd->model, "smc91c111") == 0) {
            smc91c111_init(nd, 0x4e000000, pic[28]);
            done_smc = 1;
        } else {
            pci_nic_init(pci_bus, nd, -1, "rtl8139");
        }
    }

    /* Memory map for RealView Emulation Baseboard:  */
    /* 0x10000000 System registers.  */
    /*  0x10001000 System controller.  */
    /*  0x10002000 Two-Wire Serial Bus.  */
    /* 0x10003000 Reserved.  */
    /*  0x10004000 AACI.  */
    /*  0x10005000 MCI.  */
    /* 0x10006000 KMI0.  */
    /* 0x10007000 KMI1.  */
    /*  0x10008000 Character LCD.  */
    /* 0x10009000 UART0.  */
    /* 0x1000a000 UART1.  */
    /* 0x1000b000 UART2.  */
    /* 0x1000c000 UART3.  */
    /*  0x1000d000 SSPI.  */
    /*  0x1000e000 SCI.  */
    /* 0x1000f000 Reserved.  */
    /*  0x10010000 Watchdog.  */
    /* 0x10011000 Timer 0+1.  */
    /* 0x10012000 Timer 2+3.  */
    /*  0x10013000 GPIO 0.  */
    /*  0x10014000 GPIO 1.  */
    /*  0x10015000 GPIO 2.  */
    /* 0x10016000 Reserved.  */
    /* 0x10017000 RTC.  */
    /*  0x10018000 DMC.  */
    /*  0x10019000 PCI controller config.  */
    /*  0x10020000 CLCD.  */
    /* 0x10030000 DMA Controller.  */
    /* 0x10040000 GIC1.  */
    /* 0x10050000 GIC2.  */
    /* 0x10060000 GIC3.  */
    /* 0x10070000 GIC4.  */
    /*  0x10080000 SMC.  */
    /*  0x40000000 NOR flash.  */
    /*  0x44000000 DoC flash.  */
    /*  0x48000000 SRAM.  */
    /*  0x4c000000 Configuration flash.  */
    /* 0x4e000000 Ethernet.  */
    /*  0x4f000000 USB.  */
    /*  0x50000000 PISMO.  */
    /*  0x54000000 PISMO.  */
    /*  0x58000000 PISMO.  */
    /*  0x5c000000 PISMO.  */
    /* 0x60000000 PCI.  */
    /* 0x61000000 PCI Self Config.  */
    /* 0x62000000 PCI Config.  */
    /* 0x63000000 PCI IO.  */
    /* 0x64000000 PCI mem 0.  */
    /* 0x68000000 PCI mem 1.  */
    /* 0x6c000000 PCI mem 2.  */

    /* ??? Hack to map an additional page of ram for the secondary CPU
       startup code.  I guess this works on real hardware because the
       BootROM happens to be in ROM/flash or in memory that isn't clobbered
       until after Linux boots the secondary CPUs.  */
    ram_offset = qemu_ram_alloc(0x1000);
    cpu_register_physical_memory(0x80000000, 0x1000, ram_offset | IO_MEM_RAM);

    realview_binfo.ram_size = ram_size;
    realview_binfo.kernel_filename = kernel_filename;
    realview_binfo.kernel_cmdline = kernel_cmdline;
    realview_binfo.initrd_filename = initrd_filename;
    realview_binfo.nb_cpus = ncpu;
    arm_load_kernel(first_cpu, &realview_binfo);
}
static void at91sam9_init(ram_addr_t ram_size,
                          const char *boot_device,
                          const char *kernel_filename,
                          const char *kernel_cmdline,
                          const char *initrd_filename,
                          const char *cpu_model)
{
    CPUState *env;
    DriveInfo *dinfo;
    struct at91sam9_state *sam9;
    int iomemtype;
    qemu_irq *cpu_pic;
    qemu_irq pic[32];
    qemu_irq pic1[32];
    DeviceState *dev;
    DeviceState *pit;
    DeviceState *pmc;
    DeviceState *spi;
    int i;
    int bms;
    SPIControl *cs0_spi_handler;

    cs0_spi_handler = qemu_mallocz(sizeof(SPIControl));
    DEBUG("begin, ram_size %llu, boot dev %s\n", (unsigned long long)ram_size,
          boot_device ? boot_device : "<empty>");

    if (option_rom[0] && boot_device[0] == 'n') {
        printf("Emulate ROM code\n");
        bms = 1;
    } else {
        printf("Emulate start from EBI0_NCS0\n");
        bms = 0;
    }

#ifdef TRACE_ON
    trace_file = fopen("/tmp/trace.log", "w");
#endif
    if (!cpu_model)
        cpu_model = "arm926";
    env = cpu_init(cpu_model);
    if (!env) {
        fprintf(stderr, "Unable to find CPU definition\n");
        exit(EXIT_FAILURE);
    }
    /* SDRAM at chipselect 1.  */
    cpu_register_physical_memory(AT91SAM9263EK_SDRAM_OFF, AT91SAM9263EK_SDRAM_SIZE,
                                 qemu_ram_alloc(AT91SAM9263EK_SDRAM_SIZE) | IO_MEM_RAM);

    sam9 = (struct at91sam9_state *)qemu_mallocz(sizeof(*sam9));
    if (!sam9) {
        fprintf(stderr, "allocation failed\n");
        exit(EXIT_FAILURE);
    }
    sam9->env = env;
    /* Internal SRAM */
    sam9->internal_sram = qemu_ram_alloc(80 * 1024);
    cpu_register_physical_memory(0x00300000, 80 * 1024, sam9->internal_sram | IO_MEM_RAM);
    sam9->bootrom = qemu_ram_alloc(0x100000);
    cpu_register_physical_memory(0x00400000, 0x100000, sam9->bootrom | IO_MEM_RAM);
    if (option_rom[0]) {
        sam9->rom_size = load_image_targphys(option_rom[0], 0x00400000, 0x100000);
        printf("load bootrom, size %d\n", sam9->rom_size);
    }

    /*Internal Peripherals */
    iomemtype = cpu_register_io_memory(at91_periph_readfn, at91_periph_writefn, sam9);
    cpu_register_physical_memory(0xF0000000, 0xFFFFFFFF - 0xF0000000, iomemtype);

    cpu_pic = arm_pic_init_cpu(env);
    dev = sysbus_create_varargs("at91,aic", AT91_AIC_BASE,
                                cpu_pic[ARM_PIC_CPU_IRQ],
                                cpu_pic[ARM_PIC_CPU_FIQ],
                                NULL);

    for (i = 0; i < 32; i++) {
        pic[i] = qdev_get_gpio_in(dev, i);
    }

    dev = sysbus_create_simple("at91,intor", -1, pic[1]);
    for (i = 0; i < 32; i++) {
        pic1[i] = qdev_get_gpio_in(dev, i);
    }
    sysbus_create_simple("at91,dbgu", AT91_DBGU_BASE, pic1[0]);
    pmc = sysbus_create_simple("at91,pmc", AT91_PMC_BASE, pic1[1]);
    qdev_prop_set_uint32(pmc, "mo_freq", 16000000);
    pit = sysbus_create_simple("at91,pit", AT91_PITC_BASE, pic1[3]);
    sysbus_create_varargs("at91,tc", AT91_TC012_BASE, pic[19], pic[19], pic[19], NULL);
    spi = sysbus_create_simple("at91,spi", AT91_SPI0_BASE, pic[14]);
    at91_init_bus_matrix(sam9);
    memset(&sam9->ccfg_regs, 0, sizeof(sam9->ccfg_regs));
    sysbus_create_simple("at91,pio", AT91_PIOA_BASE, pic[2]);
    sysbus_create_simple("at91,pio", AT91_PIOB_BASE, pic[3]);
    sysbus_create_simple("at91,pio", AT91_PIOC_BASE, pic[4]);
    sysbus_create_simple("at91,pio", AT91_PIOD_BASE, pic[4]);
    sysbus_create_simple("at91,pio", AT91_PIOE_BASE, pic[4]);
    sysbus_create_varargs("at91,rstc", AT91_RSTC_BASE, NULL);
    memset(&sam9->sdramc0_regs, 0, sizeof(sam9->sdramc0_regs));
    memset(&sam9->smc0_regs, 0, sizeof(sam9->smc0_regs));
    memset(sam9->usart0_regs, 0, sizeof(sam9->usart0_regs));

    qemu_check_nic_model(&nd_table[0], "at91");
    dev = qdev_create(NULL, "at91,emac");
    dev->nd = &nd_table[0];
    qdev_init(dev);
    sysbus_mmio_map(sysbus_from_qdev(dev), 0, AT91_EMAC_BASE);
    sysbus_connect_irq(sysbus_from_qdev(dev), 0, pic[21]);

    sysbus_create_simple("at91,lcdc", AT91_LCDC_BASE, pic[26]);
    /*
      we use variant of booting from external memory (NOR FLASH),
      it mapped to 0x0 at start, and also it is accessable from 0x10000000 address
    */
    dinfo = drive_get(IF_PFLASH, 0, 0);
    if (dinfo) {
        if (bms) {
            NANDFlashState *nand_state;

            if (spi_flash_register(dinfo->bdrv, 4 * 1024 * 1024, cs0_spi_handler) < 0) {
                fprintf(stderr, "init of spi flash failed\n");
                exit(EXIT_FAILURE);
            }
            qdev_prop_set_ptr(spi, "spi_control", cs0_spi_handler);
            //rom
            cpu_register_physical_memory(0x0, 100 * 1024,
                                         sam9->bootrom | IO_MEM_ROMD);
            nand_state = nand_init(NAND_MFR_MICRON, 0xba);
            at91_nand_register(nand_state);
        } else {
            //nor flash
            ram_addr_t nor_flash_mem = qemu_ram_alloc(NOR_FLASH_SIZE);
            if (!nor_flash_mem) {
                fprintf(stderr, "allocation failed\n");
                exit(EXIT_FAILURE);
            }

            sam9->norflash = pflash_cfi_atmel_register(AT91SAM9263EK_NORFLASH_OFF,
                                                       nor_flash_mem,
                                                       dinfo->bdrv,
                                                       4 * 1024 * 2, 8,
                                                       32 * 1024 * 2,
                                                       (135 - 8),
                                                       2, 0x001F, 0x01D6, 0, 0);

            if (!sam9->norflash) {
                fprintf(stderr, "qemu: error registering flash memory.\n");
                exit(EXIT_FAILURE);
            }

            DEBUG("register flash at 0x0\n");
            //register only part of flash, to prevent conflict with internal sram
            cpu_register_physical_memory(0x0, 100 * 1024,
                                         nor_flash_mem | IO_MEM_ROMD);
        }
    } else {
        fprintf(stderr, "qemu: can not start without flash.\n");
        exit(EXIT_FAILURE);
    }
    g_env = env;
    env->regs[15] = 0x0;
}
Example #25
0
File: r2d.c Project: ESOS-Lab/VSSIM
static void r2d_init(ram_addr_t ram_size,
              const char *boot_device,
	      const char *kernel_filename, const char *kernel_cmdline,
	      const char *initrd_filename, const char *cpu_model)
{
    CPUState *env;
    struct SH7750State *s;
    ram_addr_t sdram_addr;
    qemu_irq *irq;
    PCIBus *pci;
    int i;

    if (!cpu_model)
        cpu_model = "SH7751R";

    env = cpu_init(cpu_model);
    if (!env) {
        fprintf(stderr, "Unable to find CPU definition\n");
        exit(1);
    }

    /* Allocate memory space */
    sdram_addr = qemu_ram_alloc(SDRAM_SIZE);
    cpu_register_physical_memory(SDRAM_BASE, SDRAM_SIZE, sdram_addr);
    /* Register peripherals */
    s = sh7750_init(env);
    irq = r2d_fpga_init(0x04000000, sh7750_irl(s));
    pci = sh_pci_register_bus(r2d_pci_set_irq, r2d_pci_map_irq, irq, 0, 4);

    sm501_init(0x10000000, SM501_VRAM_SIZE, irq[SM501], serial_hds[2]);

    /* onboard CF (True IDE mode, Master only). */
    if ((i = drive_get_index(IF_IDE, 0, 0)) != -1)
	mmio_ide_init(0x14001000, 0x1400080c, irq[CF_IDE], 1,
		      drives_table[i].bdrv, NULL);

    /* NIC: rtl8139 on-board, and 2 slots. */
    for (i = 0; i < nb_nics; i++)
        pci_nic_init(&nd_table[i], "rtl8139", i==0 ? "2" : NULL);

    /* Todo: register on board registers */
    if (kernel_filename) {
      int kernel_size;
      /* initialization which should be done by firmware */
      stl_phys(SH7750_BCR1, 1<<3); /* cs3 SDRAM */
      stw_phys(SH7750_BCR2, 3<<(3*2)); /* cs3 32bit */

      if (kernel_cmdline) {
          kernel_size = load_image_targphys(kernel_filename,
				   SDRAM_BASE + LINUX_LOAD_OFFSET,
				   SDRAM_SIZE - LINUX_LOAD_OFFSET);
          env->pc = (SDRAM_BASE + LINUX_LOAD_OFFSET) | 0xa0000000;
          pstrcpy_targphys(SDRAM_BASE + 0x10100, 256, kernel_cmdline);
      } else {
          kernel_size = load_image_targphys(kernel_filename, SDRAM_BASE, SDRAM_SIZE);
          env->pc = SDRAM_BASE | 0xa0000000; /* Start from P2 area */
      }

      if (kernel_size < 0) {
        fprintf(stderr, "qemu: could not load kernel '%s'\n", kernel_filename);
        exit(1);
      }
    }
}
Example #26
0
static void sx1_init(ram_addr_t ram_size,
                const char *boot_device,
                const char *kernel_filename, const char *kernel_cmdline,
                const char *initrd_filename, const char *cpu_model,
                const int version)
{
    struct omap_mpu_state_s *cpu;
    int io;
    static uint32_t cs0val = 0x00213090;
    static uint32_t cs1val = 0x00215070;
    static uint32_t cs2val = 0x00001139;
    static uint32_t cs3val = 0x00001139;
    DriveInfo *dinfo;
    int fl_idx;
    uint32_t flash_size = flash0_size;
    int be;

    if (version == 2) {
        flash_size = flash2_size;
    }

    cpu = omap310_mpu_init(sx1_binfo.ram_size, cpu_model);

    /* External Flash (EMIFS) */
    cpu_register_physical_memory(OMAP_CS0_BASE, flash_size,
                                 qemu_ram_alloc(NULL, "omap_sx1.flash0-0",
                                                flash_size) | IO_MEM_ROM);

    io = cpu_register_io_memory(static_readfn, static_writefn, &cs0val,
                                DEVICE_NATIVE_ENDIAN);
    cpu_register_physical_memory(OMAP_CS0_BASE + flash_size,
                    OMAP_CS0_SIZE - flash_size, io);
    io = cpu_register_io_memory(static_readfn, static_writefn, &cs2val,
                                DEVICE_NATIVE_ENDIAN);
    cpu_register_physical_memory(OMAP_CS2_BASE, OMAP_CS2_SIZE, io);
    io = cpu_register_io_memory(static_readfn, static_writefn, &cs3val,
                                DEVICE_NATIVE_ENDIAN);
    cpu_register_physical_memory(OMAP_CS3_BASE, OMAP_CS3_SIZE, io);

    fl_idx = 0;
#ifdef TARGET_WORDS_BIGENDIAN
    be = 1;
#else
    be = 0;
#endif

    if ((dinfo = drive_get(IF_PFLASH, 0, fl_idx)) != NULL) {
        if (!pflash_cfi01_register(OMAP_CS0_BASE, qemu_ram_alloc(NULL,
                                   "omap_sx1.flash0-1", flash_size),
                                   dinfo->bdrv, sector_size,
                                   flash_size / sector_size,
                                   4, 0, 0, 0, 0, be)) {
            fprintf(stderr, "qemu: Error registering flash memory %d.\n",
                           fl_idx);
        }
        fl_idx++;
    }

    if ((version == 1) &&
            (dinfo = drive_get(IF_PFLASH, 0, fl_idx)) != NULL) {
        cpu_register_physical_memory(OMAP_CS1_BASE, flash1_size,
                                     qemu_ram_alloc(NULL, "omap_sx1.flash1-0",
                                                    flash1_size) | IO_MEM_ROM);
        io = cpu_register_io_memory(static_readfn, static_writefn, &cs1val,
                                    DEVICE_NATIVE_ENDIAN);
        cpu_register_physical_memory(OMAP_CS1_BASE + flash1_size,
                        OMAP_CS1_SIZE - flash1_size, io);

        if (!pflash_cfi01_register(OMAP_CS1_BASE, qemu_ram_alloc(NULL,
                                   "omap_sx1.flash1-1", flash1_size),
                                   dinfo->bdrv, sector_size,
                                   flash1_size / sector_size,
                                   4, 0, 0, 0, 0, be)) {
            fprintf(stderr, "qemu: Error registering flash memory %d.\n",
                           fl_idx);
        }
        fl_idx++;
    } else {
        io = cpu_register_io_memory(static_readfn, static_writefn, &cs1val,
                                    DEVICE_NATIVE_ENDIAN);
        cpu_register_physical_memory(OMAP_CS1_BASE, OMAP_CS1_SIZE, io);
    }

    if (!kernel_filename && !fl_idx) {
        fprintf(stderr, "Kernel or Flash image must be specified\n");
        exit(1);
    }

    /* Load the kernel.  */
    if (kernel_filename) {
        sx1_binfo.kernel_filename = kernel_filename;
        sx1_binfo.kernel_cmdline = kernel_cmdline;
        sx1_binfo.initrd_filename = initrd_filename;
        arm_load_kernel(cpu->env, &sx1_binfo);
    }

    /* TODO: fix next line */
    //~ qemu_console_resize(ds, 640, 480);
}
Example #27
0
static void android_mips_init_(ram_addr_t ram_size,
    const char *boot_device,
    const char *kernel_filename,
    const char *kernel_cmdline,
    const char *initrd_filename,
    const char *cpu_model)
{
    CPUOldState *env;
    qemu_irq *goldfish_pic;
    int i;
    ram_addr_t ram_offset;

    if (!cpu_model)
        cpu_model = "24Kf";

    env = cpu_init(cpu_model);

    register_savevm(NULL,
                    "cpu",
                    0,
                    MIPS_CPU_SAVE_VERSION,
                    cpu_save,
                    cpu_load,
                    env);

    if (ram_size > GOLDFISH_IO_SPACE)
        ram_size = GOLDFISH_IO_SPACE;   /* avoid overlap of ram and IO regs */
    ram_offset = qemu_ram_alloc(NULL, "android_mips", ram_size);
    cpu_register_physical_memory(0, ram_size, ram_offset | IO_MEM_RAM);

    /* Init internal devices */
    cpu_mips_irq_init_cpu(env);
    cpu_mips_clock_init(env);

    goldfish_pic = goldfish_interrupt_init(GOLDFISH_INTERRUPT,
					   env->irq[2], env->irq[3]);
    goldfish_device_init(goldfish_pic, GOLDFISH_DEVICES, 0x7f0000, 10, 22);

    goldfish_device_bus_init(GOLDFISH_DEVICEBUS, 1);

    goldfish_timer_and_rtc_init(GOLDFISH_RTC, 3);

    goldfish_tty_add(serial_hds[0], 0, GOLDFISH_TTY, 4);
    for(i = 1; i < MAX_SERIAL_PORTS; i++) {
        if(serial_hds[i]) {
            goldfish_tty_add(serial_hds[i], i, 0, 0);
        }
    }

    for(i = 0; i < MAX_NICS; i++) {
        if (nd_table[i].vlan) {
            if (nd_table[i].model == NULL
                || strcmp(nd_table[i].model, "smc91c111") == 0) {
                struct goldfish_device *smc_device;
                smc_device = g_malloc0(sizeof(*smc_device));
                smc_device->name = "smc91x";
                smc_device->id = i;
                smc_device->size = 0x1000;
                smc_device->irq_count = 1;
                goldfish_add_device_no_io(smc_device);
                smc91c111_init(&nd_table[i], smc_device->base, goldfish_pic[smc_device->irq]);
            } else {
                fprintf(stderr, "qemu: Unsupported NIC: %s\n", nd_table[0].model);
                exit (1);
            }
        }
    }

    goldfish_fb_init(0);
#ifdef HAS_AUDIO
    goldfish_audio_init(GOLDFISH_AUDIO, 0, audio_input_source);
#endif
    {
        DriveInfo* info = drive_get( IF_IDE, 0, 0 );
        if (info != NULL) {
            goldfish_mmc_init(GOLDFISH_MMC, 0, info->bdrv);
	}
    }
    goldfish_battery_init(android_hw->hw_battery);

    goldfish_add_device_no_io(&event0_device);
    events_dev_init(event0_device.base, goldfish_pic[event0_device.irq]);

#ifdef CONFIG_NAND
    goldfish_add_device_no_io(&nand_device);
    nand_dev_init(nand_device.base);
#endif

#ifdef CONFIG_ANDROID_MEMCHECK
    if (memcheck_enabled) {
        trace_dev_init();
    }
#endif  // CONFIG_ANDROID_MEMCHECK
    bool newDeviceNaming =
            (androidHwConfig_getKernelDeviceNaming(android_hw) >= 1);
    pipe_dev_init(newDeviceNaming);

    android_load_kernel(env, ram_size, kernel_filename, kernel_cmdline, initrd_filename);
}
/* PowerPC Mac99 hardware initialisation */
static void ppc_core99_init (ram_addr_t ram_size,
                             const char *boot_device,
                             const char *kernel_filename,
                             const char *kernel_cmdline,
                             const char *initrd_filename,
                             const char *cpu_model)
{
    CPUState *env = NULL, *envs[MAX_CPUS];
    char *filename;
    qemu_irq *pic, **openpic_irqs;
    int unin_memory;
    int linux_boot, i;
    ram_addr_t ram_offset, bios_offset, vga_bios_offset;
    uint32_t kernel_base, kernel_size, initrd_base, initrd_size;
    PCIBus *pci_bus;
    MacIONVRAMState *nvr;
    int nvram_mem_index;
    int vga_bios_size, bios_size;
    int pic_mem_index, dbdma_mem_index, cuda_mem_index, escc_mem_index;
    int ide_mem_index[3];
    int ppc_boot_device;
    DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
    void *fw_cfg;
    void *dbdma;
    uint8_t *vga_bios_ptr;
    int machine_arch;

    linux_boot = (kernel_filename != NULL);

    /* init CPUs */
    if (cpu_model == NULL)
#ifdef TARGET_PPC64
        cpu_model = "970fx";
#else
        cpu_model = "G4";
#endif
    for (i = 0; i < smp_cpus; i++) {
        env = cpu_init(cpu_model);
        if (!env) {
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
            exit(1);
        }
        /* Set time-base frequency to 100 Mhz */
        cpu_ppc_tb_init(env, 100UL * 1000UL * 1000UL);
#if 0
        env->osi_call = vga_osi_call;
#endif
        qemu_register_reset((QEMUResetHandler*)&cpu_reset, env);
        envs[i] = env;
    }

    /* allocate RAM */
    ram_offset = qemu_ram_alloc(NULL, "ppc_core99.ram", ram_size);
    cpu_register_physical_memory(0, ram_size, ram_offset);

    /* allocate and load BIOS */
    bios_offset = qemu_ram_alloc(NULL, "ppc_core99.bios", BIOS_SIZE);
    if (bios_name == NULL)
        bios_name = PROM_FILENAME;
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
    cpu_register_physical_memory(PROM_ADDR, BIOS_SIZE, bios_offset | IO_MEM_ROM);

    /* Load OpenBIOS (ELF) */
    if (filename) {
        bios_size = load_elf(filename, NULL, NULL, NULL,
                             NULL, NULL, 1, ELF_MACHINE, 0);

        qemu_free(filename);
    } else {
        bios_size = -1;
    }
    if (bios_size < 0 || bios_size > BIOS_SIZE) {
        hw_error("qemu: could not load PowerPC bios '%s'\n", bios_name);
        exit(1);
    }

    /* allocate and load VGA BIOS */
    vga_bios_offset = qemu_ram_alloc(NULL, "ppc_core99.vbios", VGA_BIOS_SIZE);
    vga_bios_ptr = qemu_get_ram_ptr(vga_bios_offset);
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, VGABIOS_FILENAME);
    if (filename) {
        vga_bios_size = load_image(filename, vga_bios_ptr + 8);
        qemu_free(filename);
    } else {
        vga_bios_size = -1;
    }
    if (vga_bios_size < 0) {
        /* if no bios is present, we can still work */
        fprintf(stderr, "qemu: warning: could not load VGA bios '%s'\n",
                VGABIOS_FILENAME);
        vga_bios_size = 0;
    } else {
        /* set a specific header (XXX: find real Apple format for NDRV
           drivers) */
        vga_bios_ptr[0] = 'N';
        vga_bios_ptr[1] = 'D';
        vga_bios_ptr[2] = 'R';
        vga_bios_ptr[3] = 'V';
        cpu_to_be32w((uint32_t *)(vga_bios_ptr + 4), vga_bios_size);
        vga_bios_size += 8;

        /* Round to page boundary */
        vga_bios_size = (vga_bios_size + TARGET_PAGE_SIZE - 1) &
            TARGET_PAGE_MASK;
    }

    if (linux_boot) {
        uint64_t lowaddr = 0;
        int bswap_needed;

#ifdef BSWAP_NEEDED
        bswap_needed = 1;
#else
        bswap_needed = 0;
#endif
        kernel_base = KERNEL_LOAD_ADDR;

        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
        if (kernel_size < 0)
            kernel_size = load_aout(kernel_filename, kernel_base,
                                    ram_size - kernel_base, bswap_needed,
                                    TARGET_PAGE_SIZE);
        if (kernel_size < 0)
            kernel_size = load_image_targphys(kernel_filename,
                                              kernel_base,
                                              ram_size - kernel_base);
        if (kernel_size < 0) {
            hw_error("qemu: could not load kernel '%s'\n", kernel_filename);
            exit(1);
        }
        /* load initrd */
        if (initrd_filename) {
            initrd_base = INITRD_LOAD_ADDR;
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
                                              ram_size - initrd_base);
            if (initrd_size < 0) {
                hw_error("qemu: could not load initial ram disk '%s'\n",
                         initrd_filename);
                exit(1);
            }
        } else {
            initrd_base = 0;
            initrd_size = 0;
        }
        ppc_boot_device = 'm';
    } else {
        kernel_base = 0;
        kernel_size = 0;
        initrd_base = 0;
        initrd_size = 0;
        ppc_boot_device = '\0';
        /* We consider that NewWorld PowerMac never have any floppy drive
         * For now, OHW cannot boot from the network.
         */
        for (i = 0; boot_device[i] != '\0'; i++) {
            if (boot_device[i] >= 'c' && boot_device[i] <= 'f') {
                ppc_boot_device = boot_device[i];
                break;
            }
        }
        if (ppc_boot_device == '\0') {
            fprintf(stderr, "No valid boot device for Mac99 machine\n");
            exit(1);
        }
    }

    isa_mem_base = 0x80000000;

    /* Register 8 MB of ISA IO space */
    isa_mmio_init(0xf2000000, 0x00800000, 1);

    /* UniN init */
    unin_memory = cpu_register_io_memory(unin_read, unin_write, NULL);
    cpu_register_physical_memory(0xf8000000, 0x00001000, unin_memory);

    openpic_irqs = qemu_mallocz(smp_cpus * sizeof(qemu_irq *));
    openpic_irqs[0] =
        qemu_mallocz(smp_cpus * sizeof(qemu_irq) * OPENPIC_OUTPUT_NB);
    for (i = 0; i < smp_cpus; i++) {
        /* Mac99 IRQ connection between OpenPIC outputs pins
         * and PowerPC input pins
         */
        switch (PPC_INPUT(env)) {
        case PPC_FLAGS_INPUT_6xx:
            openpic_irqs[i] = openpic_irqs[0] + (i * OPENPIC_OUTPUT_NB);
            openpic_irqs[i][OPENPIC_OUTPUT_INT] =
                ((qemu_irq *)env->irq_inputs)[PPC6xx_INPUT_INT];
            openpic_irqs[i][OPENPIC_OUTPUT_CINT] =
                ((qemu_irq *)env->irq_inputs)[PPC6xx_INPUT_INT];
            openpic_irqs[i][OPENPIC_OUTPUT_MCK] =
                ((qemu_irq *)env->irq_inputs)[PPC6xx_INPUT_MCP];
            /* Not connected ? */
            openpic_irqs[i][OPENPIC_OUTPUT_DEBUG] = NULL;
            /* Check this */
            openpic_irqs[i][OPENPIC_OUTPUT_RESET] =
                ((qemu_irq *)env->irq_inputs)[PPC6xx_INPUT_HRESET];
            break;
#if defined(TARGET_PPC64)
        case PPC_FLAGS_INPUT_970:
            openpic_irqs[i] = openpic_irqs[0] + (i * OPENPIC_OUTPUT_NB);
            openpic_irqs[i][OPENPIC_OUTPUT_INT] =
                ((qemu_irq *)env->irq_inputs)[PPC970_INPUT_INT];
            openpic_irqs[i][OPENPIC_OUTPUT_CINT] =
                ((qemu_irq *)env->irq_inputs)[PPC970_INPUT_INT];
            openpic_irqs[i][OPENPIC_OUTPUT_MCK] =
                ((qemu_irq *)env->irq_inputs)[PPC970_INPUT_MCP];
            /* Not connected ? */
            openpic_irqs[i][OPENPIC_OUTPUT_DEBUG] = NULL;
            /* Check this */
            openpic_irqs[i][OPENPIC_OUTPUT_RESET] =
                ((qemu_irq *)env->irq_inputs)[PPC970_INPUT_HRESET];
            break;
#endif /* defined(TARGET_PPC64) */
        default:
            hw_error("Bus model not supported on mac99 machine\n");
            exit(1);
        }
    }
    pic = openpic_init(NULL, &pic_mem_index, smp_cpus, openpic_irqs, NULL);
    if (PPC_INPUT(env) == PPC_FLAGS_INPUT_970) {
        /* 970 gets a U3 bus */
        pci_bus = pci_pmac_u3_init(pic);
        machine_arch = ARCH_MAC99_U3;
    } else {
        pci_bus = pci_pmac_init(pic);
        machine_arch = ARCH_MAC99;
    }
    /* init basic PC hardware */
    pci_vga_init(pci_bus, vga_bios_offset, vga_bios_size);

    escc_mem_index = escc_init(0x80013000, pic[0x25], pic[0x24],
                               serial_hds[0], serial_hds[1], ESCC_CLOCK, 4);

    for(i = 0; i < nb_nics; i++)
        pci_nic_init_nofail(&nd_table[i], "ne2k_pci", NULL);

    if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
        fprintf(stderr, "qemu: too many IDE bus\n");
        exit(1);
    }
    dbdma = DBDMA_init(&dbdma_mem_index);

    /* We only emulate 2 out of 3 IDE controllers for now */
    ide_mem_index[0] = -1;
    hd[0] = drive_get(IF_IDE, 0, 0);
    hd[1] = drive_get(IF_IDE, 0, 1);
    ide_mem_index[1] = pmac_ide_init(hd, pic[0x0d], dbdma, 0x16, pic[0x02]);
    hd[0] = drive_get(IF_IDE, 1, 0);
    hd[1] = drive_get(IF_IDE, 1, 1);
    ide_mem_index[2] = pmac_ide_init(hd, pic[0x0e], dbdma, 0x1a, pic[0x02]);

    /* cuda also initialize ADB */
    if (machine_arch == ARCH_MAC99_U3) {
        usb_enabled = 1;
    }
    cuda_init(&cuda_mem_index, pic[0x19]);

    adb_kbd_init(&adb_bus);
    adb_mouse_init(&adb_bus);

    macio_init(pci_bus, PCI_DEVICE_ID_APPLE_UNI_N_KEYL, 0, pic_mem_index,
               dbdma_mem_index, cuda_mem_index, NULL, 3, ide_mem_index,
               escc_mem_index);

    if (usb_enabled) {
        usb_ohci_init_pci(pci_bus, -1);
    }

    /* U3 needs to use USB for input because Linux doesn't support via-cuda
       on PPC64 */
    if (machine_arch == ARCH_MAC99_U3) {
        usbdevice_create("keyboard");
        usbdevice_create("mouse");
    }

    if (graphic_depth != 15 && graphic_depth != 32 && graphic_depth != 8)
        graphic_depth = 15;

    /* The NewWorld NVRAM is not located in the MacIO device */
    nvr = macio_nvram_init(&nvram_mem_index, 0x2000, 1);
    pmac_format_nvram_partition(nvr, 0x2000);
    macio_nvram_map(nvr, 0xFFF04000);
    /* No PCI init: the BIOS will do it */

    fw_cfg = fw_cfg_init(0, 0, CFG_ADDR, CFG_ADDR + 2);
    fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
    fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
    fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, machine_arch);
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, kernel_base);
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
    if (kernel_cmdline) {
        fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
        pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE, kernel_cmdline);
    } else {
        fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
    }
    fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_base);
    fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
    fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, ppc_boot_device);

    fw_cfg_add_i16(fw_cfg, FW_CFG_PPC_WIDTH, graphic_width);
    fw_cfg_add_i16(fw_cfg, FW_CFG_PPC_HEIGHT, graphic_height);
    fw_cfg_add_i16(fw_cfg, FW_CFG_PPC_DEPTH, graphic_depth);

    fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_IS_KVM, kvm_enabled());
    if (kvm_enabled()) {
#ifdef CONFIG_KVM
        uint8_t *hypercall;

        fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_TBFREQ, kvmppc_get_tbfreq());
        hypercall = qemu_malloc(16);
        kvmppc_get_hypercall(env, hypercall, 16);
        fw_cfg_add_bytes(fw_cfg, FW_CFG_PPC_KVM_HC, hypercall, 16);
        fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_KVM_PID, getpid());
#endif
    } else {
        fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_TBFREQ, get_ticks_per_sec());
    }

    qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
}
static void cjdesign5307_init(ram_addr_t ram_size,
                     const char *boot_device,
                     const char *kernel_filename, const char *kernel_cmdline,
                     const char *initrd_filename, const char *cpu_model)
{
    CPUState *env;
    int kernel_size;
    uint64_t elf_entry;
    target_phys_addr_t entry;

    if (!cpu_model) {
        cpu_model = "m5307";
    }
    env = cpu_init(cpu_model);
    if (!env) {
        hw_error("Unable to find m68k CPU definition\n");
    }

    /* Initialize CPU registers.  */
    env->vbr = 0x0;
    /* TODO: allow changing MBAR and RAMBAR. */
    env->mbar = CJ5307_MBAR_ADDR | 1;
    env->rambar0 = CJ5307_RAMBAR_ADDR | 1;

    /* DRAM at address 0x10000000*/
    cpu_register_physical_memory(CJ5307_RAM_ADDR, ram_size,
        qemu_ram_alloc(NULL, "cjdesign5307.sdram", ram_size) | IO_MEM_RAM);

    /* Internal SRAM.  */
    cpu_register_physical_memory(CJ5307_RAMBAR_ADDR, 4096,
        qemu_ram_alloc(NULL, "m5307.sram", 4096) | IO_MEM_RAM);

    mcf5307_init(CJ5307_MBAR_ADDR, env);

    /* Load kernel.  */
    if (!kernel_filename) {
        fprintf(stderr, "Kernel image must be specified\n");
        exit(1);
    }

    kernel_size = load_elf(kernel_filename, NULL, NULL, &elf_entry,
                           NULL, NULL, 1, ELF_MACHINE, 0);
    entry = elf_entry;
    if (kernel_size < 0) {
        kernel_size = load_srec(kernel_filename, &entry);
    }
    if (kernel_size < 0) {
        kernel_size = load_uimage(kernel_filename, &entry, NULL, NULL);
    }
    if (kernel_size < 0) {
        kernel_size = load_image_targphys(kernel_filename, KERNEL_LOAD_ADDR,
                                          ram_size - KERNEL_LOAD_ADDR);
        entry = KERNEL_LOAD_ADDR;
    }
    if (kernel_size < 0) {
        fprintf(stderr, "qemu: could not load kernel '%s'\n", kernel_filename);
        exit(1);
    }

    env->pc = entry;
}
/* PC hardware initialisation */
static void s390_init(ram_addr_t ram_size,
                      const char *boot_device,
                      const char *kernel_filename,
                      const char *kernel_cmdline,
                      const char *initrd_filename,
                      const char *cpu_model)
{
    CPUState *env = NULL;
    ram_addr_t ram_addr;
    ram_addr_t kernel_size = 0;
    ram_addr_t initrd_offset;
    ram_addr_t initrd_size = 0;
    int i;

    /* XXX we only work on KVM for now */

    if (!kvm_enabled()) {
        fprintf(stderr, "The S390 target only works with KVM enabled\n");
        exit(1);
    }

    /* get a BUS */
    s390_bus = s390_virtio_bus_init(&ram_size);

    /* allocate RAM */
    ram_addr = qemu_ram_alloc(NULL, "s390.ram", ram_size);
    cpu_register_physical_memory(0, ram_size, ram_addr);

    /* init CPUs */
    if (cpu_model == NULL) {
        cpu_model = "host";
    }

    ipi_states = qemu_malloc(sizeof(CPUState *) * smp_cpus);

    for (i = 0; i < smp_cpus; i++) {
        CPUState *tmp_env;

        tmp_env = cpu_init(cpu_model);
        if (!env) {
            env = tmp_env;
        }
        ipi_states[i] = tmp_env;
        tmp_env->halted = 1;
        tmp_env->exception_index = EXCP_HLT;
    }

    env->halted = 0;
    env->exception_index = 0;

    if (kernel_filename) {
        kernel_size = load_image(kernel_filename, qemu_get_ram_ptr(0));

        if (lduw_phys(KERN_IMAGE_START) != 0x0dd0) {
            fprintf(stderr, "Specified image is not an s390 boot image\n");
            exit(1);
        }

        env->psw.addr = KERN_IMAGE_START;
        env->psw.mask = 0x0000000180000000ULL;
    } else {
        ram_addr_t bios_size = 0;
        char *bios_filename;

        /* Load zipl bootloader */
        if (bios_name == NULL) {
            bios_name = ZIPL_FILENAME;
        }

        bios_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
        bios_size = load_image(bios_filename, qemu_get_ram_ptr(ZIPL_LOAD_ADDR));
        qemu_free(bios_filename);

        if ((long)bios_size < 0) {
            hw_error("could not load bootloader '%s'\n", bios_name);
        }

        if (bios_size > 4096) {
            hw_error("stage1 bootloader is > 4k\n");
        }

        env->psw.addr = ZIPL_START;
        env->psw.mask = 0x0000000180000000ULL;
    }

    if (initrd_filename) {
        initrd_offset = INITRD_START;
        while (kernel_size + 0x100000 > initrd_offset) {
            initrd_offset += 0x100000;
        }
        initrd_size = load_image(initrd_filename, qemu_get_ram_ptr(initrd_offset));

        stq_phys(INITRD_PARM_START, initrd_offset);
        stq_phys(INITRD_PARM_SIZE, initrd_size);
    }

    if (kernel_cmdline) {
        cpu_physical_memory_rw(KERN_PARM_AREA, (uint8_t *)kernel_cmdline,
                               strlen(kernel_cmdline), 1);
    }

    /* Create VirtIO network adapters */
    for(i = 0; i < nb_nics; i++) {
        NICInfo *nd = &nd_table[i];
        DeviceState *dev;

        if (!nd->model) {
            nd->model = qemu_strdup("virtio");
        }

        if (strcmp(nd->model, "virtio")) {
            fprintf(stderr, "S390 only supports VirtIO nics\n");
            exit(1);
        }

        dev = qdev_create((BusState *)s390_bus, "virtio-net-s390");
        qdev_set_nic_properties(dev, nd);
        qdev_init_nofail(dev);
    }

    /* Create VirtIO disk drives */
    for(i = 0; i < MAX_BLK_DEVS; i++) {
        DriveInfo *dinfo;
        DeviceState *dev;

        dinfo = drive_get(IF_IDE, 0, i);
        if (!dinfo) {
            continue;
        }

        dev = qdev_create((BusState *)s390_bus, "virtio-blk-s390");
        qdev_prop_set_drive_nofail(dev, "drive", dinfo->bdrv);
        qdev_init_nofail(dev);
    }
}