static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, double q, int frame_num){ RateControlContext *rcc= &s->rc_context; int qmin, qmax; double bits; const int pict_type= rce->new_pict_type; const double buffer_size= s->avctx->rc_buffer_size; const double fps= (double)s->avctx->frame_rate / (double)s->avctx->frame_rate_base; const double min_rate= s->avctx->rc_min_rate / fps; const double max_rate= s->avctx->rc_max_rate / fps; get_qminmax(&qmin, &qmax, s, pict_type); /* modulation */ if(s->avctx->rc_qmod_freq && frame_num%s->avctx->rc_qmod_freq==0 && pict_type==P_TYPE) q*= s->avctx->rc_qmod_amp; bits= qp2bits(rce, q); //printf("q:%f\n", q); /* buffer overflow/underflow protection */ if(buffer_size && !( s->flags&CODEC_FLAG_PASS1)){ //MEANX: Dont do min/max in pass1 q=bitrate_constraint(s, rce, q, frame_num); } //printf("q:%f max:%f min:%f size:%f index:%d bits:%f agr:%f\n", q,max_rate, min_rate, buffer_size, rcc->buffer_index, bits, s->avctx->rc_buffer_aggressivity); if(s->avctx->rc_qsquish==0.0 || qmin==qmax){ if (q<qmin) q=qmin; else if(q>qmax) q=qmax; }else{ double min2= log(qmin); double max2= log(qmax); q= log(q); q= (q - min2)/(max2-min2) - 0.5; q*= -4.0; q= 1.0/(1.0 + exp(q)); q= q*(max2-min2) + min2; q= exp(q); } return q; }
static int init_pass2(MpegEncContext *s) { RateControlContext *rcc= &s->rc_context; AVCodecContext *a= s->avctx; int i, toobig; double fps= 1/av_q2d(s->avctx->time_base); double complexity[5]={0,0,0,0,0}; // aproximate bits at quant=1 uint64_t const_bits[5]={0,0,0,0,0}; // quantizer independent bits uint64_t all_const_bits; uint64_t all_available_bits= (uint64_t)(s->bit_rate*(double)rcc->num_entries/fps); double rate_factor=0; double step; //int last_i_frame=-10000000; const int filter_size= (int)(a->qblur*4) | 1; double expected_bits; double *qscale, *blurred_qscale, qscale_sum; /* find complexity & const_bits & decide the pict_types */ for(i=0; i<rcc->num_entries; i++){ RateControlEntry *rce= &rcc->entry[i]; rce->new_pict_type= rce->pict_type; rcc->i_cplx_sum [rce->pict_type] += rce->i_tex_bits*rce->qscale; rcc->p_cplx_sum [rce->pict_type] += rce->p_tex_bits*rce->qscale; rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits; rcc->frame_count[rce->pict_type] ++; complexity[rce->new_pict_type]+= (rce->i_tex_bits+ rce->p_tex_bits)*(double)rce->qscale; const_bits[rce->new_pict_type]+= rce->mv_bits + rce->misc_bits; } all_const_bits= const_bits[FF_I_TYPE] + const_bits[FF_P_TYPE] + const_bits[FF_B_TYPE]; if(all_available_bits < all_const_bits){ av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n"); return -1; } qscale= av_malloc(sizeof(double)*rcc->num_entries); blurred_qscale= av_malloc(sizeof(double)*rcc->num_entries); toobig = 0; for(step=256*256; step>0.0000001; step*=0.5){ expected_bits=0; rate_factor+= step; rcc->buffer_index= s->avctx->rc_buffer_size/2; /* find qscale */ for(i=0; i<rcc->num_entries; i++){ qscale[i]= get_qscale(s, &rcc->entry[i], rate_factor, i); } assert(filter_size%2==1); /* fixed I/B QP relative to P mode */ for(i=rcc->num_entries-1; i>=0; i--){ RateControlEntry *rce= &rcc->entry[i]; qscale[i]= get_diff_limited_q(s, rce, qscale[i]); } /* smooth curve */ for(i=0; i<rcc->num_entries; i++){ RateControlEntry *rce= &rcc->entry[i]; const int pict_type= rce->new_pict_type; int j; double q=0.0, sum=0.0; for(j=0; j<filter_size; j++){ int index= i+j-filter_size/2; double d= index-i; double coeff= a->qblur==0 ? 1.0 : exp(-d*d/(a->qblur * a->qblur)); if(index < 0 || index >= rcc->num_entries) continue; if(pict_type != rcc->entry[index].new_pict_type) continue; q+= qscale[index] * coeff; sum+= coeff; } blurred_qscale[i]= q/sum; } /* find expected bits */ for(i=0; i<rcc->num_entries; i++){ RateControlEntry *rce= &rcc->entry[i]; double bits; rce->new_qscale= modify_qscale(s, rce, blurred_qscale[i], i); bits= qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits; //printf("%d %f\n", rce->new_bits, blurred_qscale[i]); bits += 8*ff_vbv_update(s, bits); rce->expected_bits= expected_bits; expected_bits += bits; } /* av_log(s->avctx, AV_LOG_INFO, "expected_bits: %f all_available_bits: %d rate_factor: %f\n", expected_bits, (int)all_available_bits, rate_factor); */ if(expected_bits > all_available_bits) { rate_factor-= step; ++toobig; } } av_free(qscale); av_free(blurred_qscale); /* check bitrate calculations and print info */ qscale_sum = 0.0; for(i=0; i<rcc->num_entries; i++){ /* av_log(s->avctx, AV_LOG_DEBUG, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n", i, rcc->entry[i].new_qscale, rcc->entry[i].new_qscale / FF_QP2LAMBDA); */ qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA, s->avctx->qmin, s->avctx->qmax); } assert(toobig <= 40); av_log(s->avctx, AV_LOG_DEBUG, "[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n", s->bit_rate, (int)(expected_bits / ((double)all_available_bits/s->bit_rate))); av_log(s->avctx, AV_LOG_DEBUG, "[lavc rc] estimated target average qp: %.3f\n", (float)qscale_sum / rcc->num_entries); if (toobig == 0) { av_log(s->avctx, AV_LOG_INFO, "[lavc rc] Using all of requested bitrate is not " "necessary for this video with these parameters.\n"); } else if (toobig == 40) { av_log(s->avctx, AV_LOG_ERROR, "[lavc rc] Error: bitrate too low for this video " "with these parameters.\n"); return -1; } else if (fabs(expected_bits/all_available_bits - 1.0) > 0.01) { av_log(s->avctx, AV_LOG_ERROR, "[lavc rc] Error: 2pass curve failed to converge\n"); return -1; } return 0; }
static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, double q, int frame_num){ RateControlContext *rcc= &s->rc_context; int qmin, qmax; double bits; const int pict_type= rce->new_pict_type; const double buffer_size= s->avctx->rc_buffer_size; const double fps= 1/av_q2d(s->avctx->time_base); const double min_rate= s->avctx->rc_min_rate / fps; const double max_rate= s->avctx->rc_max_rate / fps; get_qminmax(&qmin, &qmax, s, pict_type, frame_num); /* modulation */ if(s->avctx->rc_qmod_freq && frame_num%s->avctx->rc_qmod_freq==0 && pict_type==FF_P_TYPE) q*= s->avctx->rc_qmod_amp; bits= qp2bits(rce, q); //printf("q:%f\n", q); /* buffer overflow/underflow protection */ if(buffer_size){ double expected_size= rcc->buffer_index; double q_limit; if(min_rate){ double d= 2*(buffer_size - expected_size)/buffer_size; if(d>1.0) d=1.0; else if(d<0.0001) d=0.0001; q*= pow(d, 1.0/s->avctx->rc_buffer_aggressivity); q_limit= bits2qp(rce, FFMAX((min_rate - buffer_size + rcc->buffer_index) * s->avctx->rc_min_vbv_overflow_use, 1)); if(q > q_limit){ if(s->avctx->debug&FF_DEBUG_RC){ av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit); } q= q_limit; } } if(max_rate){ double d= 2*expected_size/buffer_size; if(d>1.0) d=1.0; else if(d<0.0001) d=0.0001; q/= pow(d, 1.0/s->avctx->rc_buffer_aggressivity); q_limit= bits2qp(rce, FFMAX(rcc->buffer_index * s->avctx->rc_max_available_vbv_use, 1)); if(q < q_limit){ if(s->avctx->debug&FF_DEBUG_RC){ av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit); } q= q_limit; } } } //printf("q:%f max:%f min:%f size:%f index:%d bits:%f agr:%f\n", q,max_rate, min_rate, buffer_size, rcc->buffer_index, bits, s->avctx->rc_buffer_aggressivity); if(s->avctx->rc_qsquish==0.0 || qmin==qmax){ if (q<qmin) q=qmin; else if(q>qmax) q=qmax; }else{ double min2= log(qmin); double max2= log(qmax); q= log(q); q= (q - min2)/(max2-min2) - 0.5; q*= -4.0; q= 1.0/(1.0 + exp(q)); q= q*(max2-min2) + min2; q= exp(q); } return q; }
/** * modifies the bitrate curve from pass1 for one frame */ static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num){ RateControlContext *rcc= &s->rc_context; AVCodecContext *a= s->avctx; double q, bits; const int pict_type= rce->new_pict_type; const double mb_num= s->mb_num; int i; double const_values[]={ M_PI, M_E, rce->i_tex_bits*rce->qscale, rce->p_tex_bits*rce->qscale, (rce->i_tex_bits + rce->p_tex_bits)*(double)rce->qscale, rce->mv_bits/mb_num, rce->pict_type == FF_B_TYPE ? (rce->f_code + rce->b_code)*0.5 : rce->f_code, rce->i_count/mb_num, rce->mc_mb_var_sum/mb_num, rce->mb_var_sum/mb_num, rce->pict_type == FF_I_TYPE, rce->pict_type == FF_P_TYPE, rce->pict_type == FF_B_TYPE, rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type], a->qcompress, /* rcc->last_qscale_for[FF_I_TYPE], rcc->last_qscale_for[FF_P_TYPE], rcc->last_qscale_for[FF_B_TYPE], rcc->next_non_b_qscale,*/ rcc->i_cplx_sum[FF_I_TYPE] / (double)rcc->frame_count[FF_I_TYPE], rcc->i_cplx_sum[FF_P_TYPE] / (double)rcc->frame_count[FF_P_TYPE], rcc->p_cplx_sum[FF_P_TYPE] / (double)rcc->frame_count[FF_P_TYPE], rcc->p_cplx_sum[FF_B_TYPE] / (double)rcc->frame_count[FF_B_TYPE], (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type], 0 }; bits= ff_parse_eval(rcc->rc_eq_eval, const_values, rce); #ifdef __GNUC__ if (isnan(bits)) { av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->avctx->rc_eq); return -1; } #endif rcc->pass1_rc_eq_output_sum+= bits; bits*=rate_factor; if(bits<0.0) bits=0.0; bits+= 1.0; //avoid 1/0 issues /* user override */ for(i=0; i<s->avctx->rc_override_count; i++){ RcOverride *rco= s->avctx->rc_override; if(rco[i].start_frame > frame_num) continue; if(rco[i].end_frame < frame_num) continue; if(rco[i].qscale) bits= qp2bits(rce, rco[i].qscale); //FIXME move at end to really force it? else bits*= rco[i].quality_factor; } q= bits2qp(rce, bits); /* I/B difference */ if (pict_type==FF_I_TYPE && s->avctx->i_quant_factor<0.0) q= -q*s->avctx->i_quant_factor + s->avctx->i_quant_offset; else if(pict_type==FF_B_TYPE && s->avctx->b_quant_factor<0.0) q= -q*s->avctx->b_quant_factor + s->avctx->b_quant_offset; if(q<1) q=1; return q; }
static int init_pass2(MpegEncContext *s) { RateControlContext *rcc= &s->rc_context; AVCodecContext *a= s->avctx; int i; double fps= (double)s->avctx->frame_rate / (double)s->avctx->frame_rate_base; double complexity[5]={0,0,0,0,0}; // aproximate bits at quant=1 double avg_quantizer[5]; uint64_t const_bits[5]={0,0,0,0,0}; // quantizer idependant bits uint64_t available_bits[5]; uint64_t all_const_bits; uint64_t all_available_bits= (uint64_t)(s->bit_rate*(double)rcc->num_entries/fps); double rate_factor=0; double step; //int last_i_frame=-10000000; const int filter_size= (int)(a->qblur*4) | 1; double expected_bits; double *qscale, *blured_qscale; /* find complexity & const_bits & decide the pict_types */ for(i=0; i<rcc->num_entries; i++){ RateControlEntry *rce= &rcc->entry[i]; rce->new_pict_type= rce->pict_type; rcc->i_cplx_sum [rce->pict_type] += rce->i_tex_bits*rce->qscale; rcc->p_cplx_sum [rce->pict_type] += rce->p_tex_bits*rce->qscale; rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits; rcc->frame_count[rce->pict_type] ++; complexity[rce->new_pict_type]+= (rce->i_tex_bits+ rce->p_tex_bits)*(double)rce->qscale; const_bits[rce->new_pict_type]+= rce->mv_bits + rce->misc_bits; } all_const_bits= const_bits[I_TYPE] + const_bits[P_TYPE] + const_bits[B_TYPE]; if(all_available_bits < all_const_bits){ av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is to low\n"); return -1; } /* find average quantizers */ avg_quantizer[P_TYPE]=0; for(step=256*256; step>0.0000001; step*=0.5){ double expected_bits=0; avg_quantizer[P_TYPE]+= step; avg_quantizer[I_TYPE]= avg_quantizer[P_TYPE]*ABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset; avg_quantizer[B_TYPE]= avg_quantizer[P_TYPE]*ABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset; expected_bits= + all_const_bits + complexity[I_TYPE]/avg_quantizer[I_TYPE] + complexity[P_TYPE]/avg_quantizer[P_TYPE] + complexity[B_TYPE]/avg_quantizer[B_TYPE]; if(expected_bits < all_available_bits) avg_quantizer[P_TYPE]-= step; //printf("%f %lld %f\n", expected_bits, all_available_bits, avg_quantizer[P_TYPE]); } //printf("qp_i:%f, qp_p:%f, qp_b:%f\n", avg_quantizer[I_TYPE],avg_quantizer[P_TYPE],avg_quantizer[B_TYPE]); for(i=0; i<5; i++){ available_bits[i]= const_bits[i] + complexity[i]/avg_quantizer[i]; } //printf("%lld %lld %lld %lld\n", available_bits[I_TYPE], available_bits[P_TYPE], available_bits[B_TYPE], all_available_bits); qscale= av_malloc(sizeof(double)*rcc->num_entries); blured_qscale= av_malloc(sizeof(double)*rcc->num_entries); for(step=256*256; step>0.0000001; step*=0.5){ expected_bits=0; rate_factor+= step; rcc->buffer_index= s->avctx->rc_buffer_size/2; /* find qscale */ for(i=0; i<rcc->num_entries; i++){ qscale[i]= get_qscale(s, &rcc->entry[i], rate_factor, i); } assert(filter_size%2==1); /* fixed I/B QP relative to P mode */ for(i=rcc->num_entries-1; i>=0; i--){ RateControlEntry *rce= &rcc->entry[i]; qscale[i]= get_diff_limited_q(s, rce, qscale[i]); } /* smooth curve */ for(i=0; i<rcc->num_entries; i++){ RateControlEntry *rce= &rcc->entry[i]; const int pict_type= rce->new_pict_type; int j; double q=0.0, sum=0.0; for(j=0; j<filter_size; j++){ int index= i+j-filter_size/2; double d= index-i; double coeff= a->qblur==0 ? 1.0 : exp(-d*d/(a->qblur * a->qblur)); if(index < 0 || index >= rcc->num_entries) continue; if(pict_type != rcc->entry[index].new_pict_type) continue; q+= qscale[index] * coeff; sum+= coeff; } blured_qscale[i]= q/sum; } /* find expected bits */ for(i=0; i<rcc->num_entries; i++){ RateControlEntry *rce= &rcc->entry[i]; double bits; rce->new_qscale= modify_qscale(s, rce, blured_qscale[i], i); bits= qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits; //printf("%d %f\n", rce->new_bits, blured_qscale[i]); bits += 8*ff_vbv_update(s, bits); rce->expected_bits= expected_bits; expected_bits += bits; } // printf("%f %d %f\n", expected_bits, (int)all_available_bits, rate_factor); if(expected_bits > all_available_bits) rate_factor-= step; } av_free(qscale); av_free(blured_qscale); if(abs(expected_bits/all_available_bits - 1.0) > 0.01 ){ av_log(s->avctx, AV_LOG_ERROR, "Error: 2pass curve failed to converge\n"); return -1; } return 0; }
/** * modifies the bitrate curve from pass1 for one frame */ static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num){ RateControlContext *rcc= &s->rc_context; AVCodecContext *a= s->avctx; double q, bits; const int pict_type= rce->new_pict_type; const double mb_num= s->mb_num; int i; double const_values[]={ M_PI, M_E, rce->i_tex_bits*rce->qscale, rce->p_tex_bits*rce->qscale, (rce->i_tex_bits + rce->p_tex_bits)*(double)rce->qscale, rce->mv_bits/mb_num, rce->pict_type == B_TYPE ? (rce->f_code + rce->b_code)*0.5 : rce->f_code, rce->i_count/mb_num, rce->mc_mb_var_sum/mb_num, rce->mb_var_sum/mb_num, rce->pict_type == I_TYPE, rce->pict_type == P_TYPE, rce->pict_type == B_TYPE, rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type], a->qcompress, /* rcc->last_qscale_for[I_TYPE], rcc->last_qscale_for[P_TYPE], rcc->last_qscale_for[B_TYPE], rcc->next_non_b_qscale,*/ rcc->i_cplx_sum[I_TYPE] / (double)rcc->frame_count[I_TYPE], rcc->i_cplx_sum[P_TYPE] / (double)rcc->frame_count[P_TYPE], rcc->p_cplx_sum[P_TYPE] / (double)rcc->frame_count[P_TYPE], rcc->p_cplx_sum[B_TYPE] / (double)rcc->frame_count[B_TYPE], (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type], 0 }; static const char *const_names[]={ "PI", "E", "iTex", "pTex", "tex", "mv", "fCode", "iCount", "mcVar", "var", "isI", "isP", "isB", "avgQP", "qComp", /* "lastIQP", "lastPQP", "lastBQP", "nextNonBQP",*/ "avgIITex", "avgPITex", "avgPPTex", "avgBPTex", "avgTex", NULL }; static double (*func1[])(void *, double)={ (void *)bits2qp, (void *)qp2bits, NULL }; static const char *func1_names[]={ "bits2qp", "qp2bits", NULL }; bits= ff_eval(s->avctx->rc_eq, const_values, const_names, func1, func1_names, NULL, NULL, rce); rcc->pass1_rc_eq_output_sum+= bits; bits*=rate_factor; if(bits<0.0) bits=0.0; bits+= 1.0; //avoid 1/0 issues /* user override */ for(i=0; i<s->avctx->rc_override_count; i++){ RcOverride *rco= s->avctx->rc_override; if(rco[i].start_frame > frame_num) continue; if(rco[i].end_frame < frame_num) continue; if(rco[i].qscale) bits= qp2bits(rce, rco[i].qscale); //FIXME move at end to really force it? else bits*= rco[i].quality_factor; } q= bits2qp(rce, bits); /* I/B difference */ if (pict_type==I_TYPE && s->avctx->i_quant_factor<0.0) q= -q*s->avctx->i_quant_factor + s->avctx->i_quant_offset; else if(pict_type==B_TYPE && s->avctx->b_quant_factor<0.0) q= -q*s->avctx->b_quant_factor + s->avctx->b_quant_offset; return q; }