Example #1
0
void left(int val, int dp)
{
	int i;
	if(dp == mid)
	{
		insert(val); 
		return;
	}
	for(i = 1;i <= m; i++) left(val + k[dp] * qpow(i, p[dp]), dp + 1);
}
Example #2
0
void right(int val, int dp)
{
	int i;
	if(dp == n) 
	{
		cnt += find(-val); 
		return;
	}
	for(i = 1;i <= m; i++) right(val + k[dp] * qpow(i, p[dp]), dp + 1);
}
Example #3
0
void phaseVocoder_setup(PhaseVocoder *t, int toneShift) {
	
	fixedp tmp;

	tmp = qpow(short2q(2), qdiv(short2q(toneShift),short2q(12)));

	//% Storleken på mellanrummet mellan varje segment hos utsignalen.
	t->hopSizeOut = _qmul(tmp, HOP_SIZE, FIXED_FRACBITS, 0, 0);
	//% Korrigerar för avrundning i hopSizeOut. what?
	t->pShift = qdiv(int2q(t->hopSizeOut), int2q(HOP_SIZE));
	t->hopOutIndex = 0;
	t->rp = 0;
	t->wp = 0;

	return;
}
Example #4
0
int main() {
#ifdef USE_FILE_IO
    freopen("problem.in", "r", stdin);
    freopen("problem.out", "w", stdout);
#endif

    i64 n, s, d;
    scanf("%lld%lld%lld", &n, &s, &d);

    i64 p = qpow(2, n - 1);
    n %= MOD;
    s %= MOD;
    d %= MOD;
    printf("%lld\n", (2 * s + n * d % MOD) * p % MOD);

    return 0;
}
Example #5
0
int main() {
  int n;
  while(~scanf("%d", &n)) {
    Matrix<int> a(3, 3), g(3, 1);
    a[0][1] = 1;
    a[1][2] = 1;
    a[2][1] = a[2][2] = 1;

    g[0][0] = 1; g[1][0] = 2; g[2][0] = 4;
    
    int tot = qpow(2, n);
    while(n) {
      if(n & 1) g = a * g;
      n >>= 1;
      a = a * a;
    }
    printf("%d\n", (tot + mod - g[0][0]) % mod);
  }
  return 0;
}
void
yypower(void)
{
	int n;

	p2 = pop();
	p1 = pop();

	// both base and exponent are rational numbers?

	if (isrational(p1) && isrational(p2)) {
		push(p1);
		push(p2);
		qpow();
		return;
	}

	// both base and exponent are either rational or double?

	if (isnum(p1) && isnum(p2)) {
		push(p1);
		push(p2);
		dpow();
		return;
	}

	if (istensor(p1)) {
		power_tensor();
		return;
	}

	if (p1 == symbol(E) && car(p2) == symbol(LOG)) {
		push(cadr(p2));
		return;
	}

	if (p1 == symbol(E) && isdouble(p2)) {
		push_double(exp(p2->u.d));
		return;
	}

	//	1 ^ a		->	1

	//	a ^ 0		->	1

	if (equal(p1, one) || iszero(p2)) {
		push(one);
		return;
	}

	//	a ^ 1		->	a

	if (equal(p2, one)) {
		push(p1);
		return;
	}

	//	(a * b) ^ c	->	(a ^ c) * (b ^ c)

	if (car(p1) == symbol(MULTIPLY)) {
		p1 = cdr(p1);
		push(car(p1));
		push(p2);
		power();
		p1 = cdr(p1);
		while (iscons(p1)) {
			push(car(p1));
			push(p2);
			power();
			multiply();
			p1 = cdr(p1);
		}
		return;
	}

	//	(a ^ b) ^ c	->	a ^ (b * c)

	if (car(p1) == symbol(POWER)) {
		push(cadr(p1));
		push(caddr(p1));
		push(p2);
		multiply();
		power();
		return;
	}

	//	(a + b) ^ n	->	(a + b) * (a + b) ...

	if (expanding && isadd(p1) && isnum(p2)) {
		push(p2);
		n = pop_integer();
        // this && n != 0x80000000 added by DDC
        // as it's not always the case that 0x80000000
        // is negative
		if (n > 1 && n != 0x80000000) {
			power_sum(n);
			return;
		}
	}

	//	sin(x) ^ 2n -> (1 - cos(x) ^ 2) ^ n

	if (trigmode == 1 && car(p1) == symbol(SIN) && iseveninteger(p2)) {
		push_integer(1);
		push(cadr(p1));
		cosine();
		push_integer(2);
		power();
		subtract();
		push(p2);
		push_rational(1, 2);
		multiply();
		power();
		return;
	}

	//	cos(x) ^ 2n -> (1 - sin(x) ^ 2) ^ n

	if (trigmode == 2 && car(p1) == symbol(COS) && iseveninteger(p2)) {
		push_integer(1);
		push(cadr(p1));
		sine();
		push_integer(2);
		power();
		subtract();
		push(p2);
		push_rational(1, 2);
		multiply();
		power();
		return;
	}

	// complex number? (just number, not expression)

	if (iscomplexnumber(p1)) {

		// integer power?

		// n will be negative here, positive n already handled

		if (isinteger(p2)) {

			//               /        \  n
			//         -n   |  a - ib  |
			// (a + ib)   = | -------- |
			//              |   2   2  |
			//               \ a + b  /

			push(p1);
			conjugate();
			p3 = pop();
			push(p3);
			push(p3);
			push(p1);
			multiply();
			divide();
			push(p2);
			negate();
			power();
			return;
		}

		// noninteger or floating power?

		if (isnum(p2)) {

#if 1			// use polar form
			push(p1);
			mag();
			push(p2);
			power();
			push_integer(-1);
			push(p1);
			arg();
			push(p2);
			multiply();
			push(symbol(PI));
			divide();
			power();
			multiply();

#else			// use exponential form
			push(p1);
			mag();
			push(p2);
			power();
			push(symbol(E));
			push(p1);
			arg();
			push(p2);
			multiply();
			push(imaginaryunit);
			multiply();
			power();
			multiply();
#endif
			return;
		}
	}

	if (simplify_polar())
		return;

	push_symbol(POWER);
	push(p1);
	push(p2);
	list(3);
}
Example #7
0
File: D.cpp Project: Fengdalu/ICPC
int get(int l, int r) {
    r--;
    int k = mm[r - l + 1];
    //printf("%d %d %d\n",l,r,k);
    return std::max(f[l][k], f[r - qpow(2, k) + 1][k]);
}