Example #1
0
/*
 * pg_get_serverdef_string finds the foreign server that corresponds to the
 * given foreign tableId, and returns this server's definition.
 */
char *
pg_get_serverdef_string(Oid tableRelationId)
{
	ForeignTable *foreignTable = GetForeignTable(tableRelationId);
	ForeignServer *server = GetForeignServer(foreignTable->serverid);
	ForeignDataWrapper *foreignDataWrapper = GetForeignDataWrapper(server->fdwid);

	StringInfoData buffer = { NULL, 0, 0, 0 };
	initStringInfo(&buffer);

	appendStringInfo(&buffer, "CREATE SERVER %s", quote_identifier(server->servername));
	if (server->servertype != NULL)
	{
		appendStringInfo(&buffer, " TYPE %s",
						 quote_literal_cstr(server->servertype));
	}
	if (server->serverversion != NULL)
	{
		appendStringInfo(&buffer, " VERSION %s",
						 quote_literal_cstr(server->serverversion));
	}

	appendStringInfo(&buffer, " FOREIGN DATA WRAPPER %s",
					 quote_identifier(foreignDataWrapper->fdwname));

	/* append server options, if any */
	AppendOptionListToString(&buffer, server->options);

	return (buffer.data);
}
/*
 * AppendOptionListToString converts the option list to its textual format, and
 * appends this text to the given string buffer.
 */
void
AppendOptionListToString(StringInfo stringBuffer, List *optionList)
{
	if (optionList != NIL)
	{
		ListCell *optionCell = NULL;
		bool firstOptionPrinted = false;

		appendStringInfo(stringBuffer, " OPTIONS (");

		foreach(optionCell, optionList)
		{
			DefElem *option = (DefElem *) lfirst(optionCell);
			char *optionName = option->defname;
			char *optionValue = defGetString(option);

			if (firstOptionPrinted)
			{
				appendStringInfo(stringBuffer, ", ");
			}
			firstOptionPrinted = true;

			appendStringInfo(stringBuffer, "%s ", quote_identifier(optionName));
			appendStringInfo(stringBuffer, "%s", quote_literal_cstr(optionValue));
		}
/*
 * GenerateAttachShardPartitionCommand generates command to attach a child table
 * table to its parent in a partitioning hierarchy.
 */
char *
GenerateAttachShardPartitionCommand(ShardInterval *shardInterval)
{
	Oid schemaId = get_rel_namespace(shardInterval->relationId);
	char *schemaName = get_namespace_name(schemaId);
	char *escapedSchemaName = quote_literal_cstr(schemaName);

	char *command = GenerateAlterTableAttachPartitionCommand(shardInterval->relationId);
	char *escapedCommand = quote_literal_cstr(command);
	int shardIndex = ShardIndex(shardInterval);

	Oid parentSchemaId = InvalidOid;
	char *parentSchemaName = NULL;
	char *escapedParentSchemaName = NULL;
	uint64 parentShardId = INVALID_SHARD_ID;

	StringInfo attachPartitionCommand = makeStringInfo();

	Oid parentRelationId = PartitionParentOid(shardInterval->relationId);
	if (parentRelationId == InvalidOid)
	{
		ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
						errmsg("cannot attach partition"),
						errdetail("Referenced relation cannot be found.")));
	}

	parentSchemaId = get_rel_namespace(parentRelationId);
	parentSchemaName = get_namespace_name(parentSchemaId);
	escapedParentSchemaName = quote_literal_cstr(parentSchemaName);
	parentShardId = ColocatedShardIdInRelation(parentRelationId, shardIndex);

	appendStringInfo(attachPartitionCommand,
					 WORKER_APPLY_INTER_SHARD_DDL_COMMAND, parentShardId,
					 escapedParentSchemaName, shardInterval->shardId,
					 escapedSchemaName, escapedCommand);

	return attachPartitionCommand->data;
}
Example #4
0
static PyObject *
PLy_quote_literal(PyObject *self, PyObject *args)
{
	const char *str;
	char	   *quoted;
	PyObject   *ret;

	if (!PyArg_ParseTuple(args, "s:quote_literal", &str))
		return NULL;

	quoted = quote_literal_cstr(str);
	ret = PyString_FromString(quoted);
	pfree(quoted);

	return ret;
}
Example #5
0
File: dbsize.c Project: pf-qiu/gpdb
Datum
pg_tablespace_size_name(PG_FUNCTION_ARGS)
{
	Name		tblspcName = PG_GETARG_NAME(0);
	Oid			tblspcOid = get_tablespace_oid(NameStr(*tblspcName), false);
	int64		size;

	size = calculate_tablespace_size(tblspcOid);

	if (Gp_role == GP_ROLE_DISPATCH)
	{
		char	   *sql;

		sql = psprintf("select pg_catalog.pg_tablespace_size(%s)",
					   quote_literal_cstr(NameStr(*tblspcName)));

		size += get_size_from_segDBs(sql);
	}

	if (size < 0)
		PG_RETURN_NULL();

	PG_RETURN_INT64(size);
}
Example #6
0
static Tuplestorestate *
build_tuplestore_recursively(char *key_fld,
							 char *parent_key_fld,
							 char *relname,
							 char *orderby_fld,
							 char *branch_delim,
							 char *start_with,
							 char *branch,
							 int level,
							 int *serial,
							 int max_depth,
							 bool show_branch,
							 bool show_serial,
							 MemoryContext per_query_ctx,
							 AttInMetadata *attinmeta,
							 Tuplestorestate *tupstore)
{
	TupleDesc	tupdesc = attinmeta->tupdesc;
	int			ret;
	int			proc;
	int			serial_column;
	StringInfoData sql;
	char	  **values;
	char	   *current_key;
	char	   *current_key_parent;
	char		current_level[INT32_STRLEN];
	char		serial_str[INT32_STRLEN];
	char	   *current_branch;
	HeapTuple	tuple;

	if (max_depth > 0 && level > max_depth)
		return tupstore;

	initStringInfo(&sql);

	/* Build initial sql statement */
	if (!show_serial)
	{
		appendStringInfo(&sql, "SELECT %s, %s FROM %s WHERE %s = %s AND %s IS NOT NULL AND %s <> %s",
						 key_fld,
						 parent_key_fld,
						 relname,
						 parent_key_fld,
						 quote_literal_cstr(start_with),
						 key_fld, key_fld, parent_key_fld);
		serial_column = 0;
	}
	else
	{
		appendStringInfo(&sql, "SELECT %s, %s FROM %s WHERE %s = %s AND %s IS NOT NULL AND %s <> %s ORDER BY %s",
						 key_fld,
						 parent_key_fld,
						 relname,
						 parent_key_fld,
						 quote_literal_cstr(start_with),
						 key_fld, key_fld, parent_key_fld,
						 orderby_fld);
		serial_column = 1;
	}

	if (show_branch)
		values = (char **) palloc((CONNECTBY_NCOLS + serial_column) * sizeof(char *));
	else
		values = (char **) palloc((CONNECTBY_NCOLS_NOBRANCH + serial_column) * sizeof(char *));

	/* First time through, do a little setup */
	if (level == 0)
	{
		/* root value is the one we initially start with */
		values[0] = start_with;

		/* root value has no parent */
		values[1] = NULL;

		/* root level is 0 */
		sprintf(current_level, "%d", level);
		values[2] = current_level;

		/* root branch is just starting root value */
		if (show_branch)
			values[3] = start_with;

		/* root starts the serial with 1 */
		if (show_serial)
		{
			sprintf(serial_str, "%d", (*serial)++);
			if (show_branch)
				values[4] = serial_str;
			else
				values[3] = serial_str;
		}

		/* construct the tuple */
		tuple = BuildTupleFromCStrings(attinmeta, values);

		/* now store it */
		tuplestore_puttuple(tupstore, tuple);

		/* increment level */
		level++;
	}

	/* Retrieve the desired rows */
	ret = SPI_execute(sql.data, true, 0);
	proc = SPI_processed;

	/* Check for qualifying tuples */
	if ((ret == SPI_OK_SELECT) && (proc > 0))
	{
		HeapTuple	spi_tuple;
		SPITupleTable *tuptable = SPI_tuptable;
		TupleDesc	spi_tupdesc = tuptable->tupdesc;
		int			i;
		StringInfoData branchstr;
		StringInfoData chk_branchstr;
		StringInfoData chk_current_key;

		/* First time through, do a little more setup */
		if (level == 0)
		{
			/*
			 * Check that return tupdesc is compatible with the one we got
			 * from the query, but only at level 0 -- no need to check more
			 * than once
			 */

			if (!compatConnectbyTupleDescs(tupdesc, spi_tupdesc))
				ereport(ERROR,
						(errcode(ERRCODE_SYNTAX_ERROR),
						 errmsg("invalid return type"),
						 errdetail("Return and SQL tuple descriptions are " \
								   "incompatible.")));
		}

		initStringInfo(&branchstr);
		initStringInfo(&chk_branchstr);
		initStringInfo(&chk_current_key);

		for (i = 0; i < proc; i++)
		{
			/* initialize branch for this pass */
			appendStringInfo(&branchstr, "%s", branch);
			appendStringInfo(&chk_branchstr, "%s%s%s", branch_delim, branch, branch_delim);

			/* get the next sql result tuple */
			spi_tuple = tuptable->vals[i];

			/* get the current key and parent */
			current_key = SPI_getvalue(spi_tuple, spi_tupdesc, 1);
			appendStringInfo(&chk_current_key, "%s%s%s", branch_delim, current_key, branch_delim);
			current_key_parent = pstrdup(SPI_getvalue(spi_tuple, spi_tupdesc, 2));

			/* get the current level */
			sprintf(current_level, "%d", level);

			/* check to see if this key is also an ancestor */
			if (strstr(chk_branchstr.data, chk_current_key.data))
				elog(ERROR, "infinite recursion detected");

			/* OK, extend the branch */
			appendStringInfo(&branchstr, "%s%s", branch_delim, current_key);
			current_branch = branchstr.data;

			/* build a tuple */
			values[0] = pstrdup(current_key);
			values[1] = current_key_parent;
			values[2] = current_level;
			if (show_branch)
				values[3] = current_branch;
			if (show_serial)
			{
				sprintf(serial_str, "%d", (*serial)++);
				if (show_branch)
					values[4] = serial_str;
				else
					values[3] = serial_str;
			}

			tuple = BuildTupleFromCStrings(attinmeta, values);

			xpfree(current_key);
			xpfree(current_key_parent);

			/* store the tuple for later use */
			tuplestore_puttuple(tupstore, tuple);

			heap_freetuple(tuple);

			/* recurse using current_key_parent as the new start_with */
			tupstore = build_tuplestore_recursively(key_fld,
													parent_key_fld,
													relname,
													orderby_fld,
													branch_delim,
													values[0],
													current_branch,
													level + 1,
													serial,
													max_depth,
													show_branch,
													show_serial,
													per_query_ctx,
													attinmeta,
													tupstore);

			/* reset branch for next pass */
			resetStringInfo(&branchstr);
			resetStringInfo(&chk_branchstr);
			resetStringInfo(&chk_current_key);
		}

		xpfree(branchstr.data);
		xpfree(chk_branchstr.data);
		xpfree(chk_current_key.data);
	}

	return tupstore;
}
/*
 * master_append_table_to_shard appends the given table's contents to the given
 * shard, and updates shard metadata on the master node. If the function fails
 * to append table data to all shard placements, it doesn't update any metadata
 * and errors out. Else if the function fails to append table data to some of
 * the shard placements, it marks those placements as invalid. These invalid
 * placements will get cleaned up during shard rebalancing.
 */
Datum
master_append_table_to_shard(PG_FUNCTION_ARGS)
{
	uint64 shardId = PG_GETARG_INT64(0);
	text *sourceTableNameText = PG_GETARG_TEXT_P(1);
	text *sourceNodeNameText = PG_GETARG_TEXT_P(2);
	uint32 sourceNodePort = PG_GETARG_UINT32(3);
	char *sourceTableName = text_to_cstring(sourceTableNameText);
	char *sourceNodeName = text_to_cstring(sourceNodeNameText);

	char *shardName = NULL;
	List *shardPlacementList = NIL;
	List *succeededPlacementList = NIL;
	List *failedPlacementList = NIL;
	ListCell *shardPlacementCell = NULL;
	ListCell *failedPlacementCell = NULL;
	uint64 newShardSize = 0;
	uint64 shardMaxSizeInBytes = 0;
	float4 shardFillLevel = 0.0;
	char partitionMethod = 0;

	ShardInterval *shardInterval = LoadShardInterval(shardId);
	Oid relationId = shardInterval->relationId;
	bool cstoreTable = CStoreTable(relationId);

	char storageType = shardInterval->storageType;

	EnsureTablePermissions(relationId, ACL_INSERT);

	if (storageType != SHARD_STORAGE_TABLE && !cstoreTable)
	{
		ereport(ERROR, (errmsg("cannot append to shardId " UINT64_FORMAT, shardId),
						errdetail("The underlying shard is not a regular table")));
	}

	partitionMethod = PartitionMethod(relationId);
	if (partitionMethod == DISTRIBUTE_BY_HASH)
	{
		ereport(ERROR, (errmsg("cannot append to shardId " UINT64_FORMAT, shardId),
						errdetail("We currently don't support appending to shards "
								  "in hash-partitioned tables")));
	}

	/*
	 * We lock on the shardId, but do not unlock. When the function returns, and
	 * the transaction for this function commits, this lock will automatically
	 * be released. This ensures appends to a shard happen in a serial manner.
	 */
	LockShardResource(shardId, AccessExclusiveLock);

	/* if shard doesn't have an alias, extend regular table name */
	shardName = LoadShardAlias(relationId, shardId);
	if (shardName == NULL)
	{
		shardName = get_rel_name(relationId);
		AppendShardIdToName(&shardName, shardId);
	}

	shardPlacementList = FinalizedShardPlacementList(shardId);
	if (shardPlacementList == NIL)
	{
		ereport(ERROR, (errmsg("could not find any shard placements for shardId "
							   UINT64_FORMAT, shardId),
						errhint("Try running master_create_empty_shard() first")));
	}

	/* issue command to append table to each shard placement */
	foreach(shardPlacementCell, shardPlacementList)
	{
		ShardPlacement *shardPlacement = (ShardPlacement *) lfirst(shardPlacementCell);
		char *workerName = shardPlacement->nodeName;
		uint32 workerPort = shardPlacement->nodePort;
		List *queryResultList = NIL;

		StringInfo workerAppendQuery = makeStringInfo();
		appendStringInfo(workerAppendQuery, WORKER_APPEND_TABLE_TO_SHARD,
						 quote_literal_cstr(shardName),
						 quote_literal_cstr(sourceTableName),
						 quote_literal_cstr(sourceNodeName), sourceNodePort);

		/* inserting data should be performed by the current user */
		queryResultList = ExecuteRemoteQuery(workerName, workerPort, NULL,
											 workerAppendQuery);
		if (queryResultList != NIL)
		{
			succeededPlacementList = lappend(succeededPlacementList, shardPlacement);
		}
		else
		{
			failedPlacementList = lappend(failedPlacementList, shardPlacement);
		}
	}