Example #1
0
/// Initialized the main CoMD data stucture, SimFlat, based on command
/// line input from the user.  Also performs certain sanity checks on
/// the input to screen out certain non-sensical inputs.
///
/// Simple data members such as the time step dt are initialized
/// directly, substructures such as the potential, the link cells, the
/// atoms, etc., are initialized by calling additional initialization
/// functions (initPotential(), initLinkCells(), initAtoms(), etc.).
/// Initialization order is set by the natural dependencies of the
/// substructure such as the atoms need the link cells so the link cells
/// must be initialized before the atoms.
SimFlat* initSimulation(Command cmd)
{
   SimFlat* sim = comdMalloc(sizeof(SimFlat));
   sim->nSteps = cmd.nSteps;
   sim->printRate = cmd.printRate;
   sim->dt = cmd.dt;
   sim->domain = NULL;
   sim->boxes = NULL;
   sim->atoms = NULL;
   sim->ePotential = 0.0;
   sim->eKinetic = 0.0;
   sim->atomExchange = NULL;

   sim->pot = initPotential(cmd.doeam, cmd.potDir, cmd.potName, cmd.potType);
   real_t latticeConstant = cmd.lat;
   if (cmd.lat < 0.0)
      latticeConstant = sim->pot->lat;

   // ensure input parameters make sense.
   sanityChecks(cmd, sim->pot->cutoff, latticeConstant, sim->pot->latticeType);

   sim->species = initSpecies(sim->pot);

   real3 globalExtent;
   globalExtent[0] = cmd.nx * latticeConstant;
   globalExtent[1] = cmd.ny * latticeConstant;
   globalExtent[2] = cmd.nz * latticeConstant;

   sim->domain = initDecomposition(
      cmd.xproc, cmd.yproc, cmd.zproc, globalExtent);

   sim->boxes = initLinkCells(sim->domain, sim->pot->cutoff);
   sim->atoms = initAtoms(sim->boxes);

   // create lattice with desired temperature and displacement.
   createFccLattice(cmd.nx, cmd.ny, cmd.nz, latticeConstant, sim);
   setTemperature(sim, cmd.temperature);
   randomDisplacements(sim, cmd.initialDelta);

   sim->atomExchange = initAtomHaloExchange(sim->domain, sim->boxes);

   // Forces must be computed before we call the time stepper.
   startTimer(redistributeTimer);
   redistributeAtoms(sim);
   stopTimer(redistributeTimer);

   startTimer(computeForceTimer);
   computeForce(sim);
   stopTimer(computeForceTimer);

   kineticEnergy(sim);

   return sim;
}
Example #2
0
SimFlat* initSimulation(Command cmd)
{
   SimFlat* sim = comdMalloc(sizeof(SimFlat));
   sim->nSteps = cmd.nSteps;
   sim->printRate = cmd.printRate;
   sim->dt = cmd.dt;
   sim->domain = NULL;
   sim->boxes = NULL;
   sim->atoms = NULL;
   sim->ePotential = 0.0;
   sim->eKinetic = 0.0;
   sim->atomExchange = NULL;

   sim->pot = initPotential(cmd.doeam, cmd.potDir, cmd.potName, cmd.potType);
   real_t latticeConstant = cmd.lat;
   
   if (cmd.lat < 0.0)
      latticeConstant = sim->pot->lat;

   // ensure input parameters make sense.
   sanityChecks(cmd, sim->pot->cutoff, latticeConstant, sim->pot->latticeType);

   sim->species = initSpecies(sim->pot);

   real3 globalExtent;
   globalExtent[0] = cmd.nx * latticeConstant;
   globalExtent[1] = cmd.ny * latticeConstant;
   globalExtent[2] = cmd.nz * latticeConstant;

   sim->domain = initDecomposition(cmd.xproc, cmd.yproc, cmd.zproc, globalExtent);

   sim->boxes = initLinkCells(sim->domain, sim->pot->cutoff);
   sim->atoms = initAtoms(sim->boxes);

   sim->defInfo = initDeformation(sim, cmd.defGrad);

   //printf("Got to here\n");

   // create lattice with desired temperature and displacement.
   createFccLattice(cmd.nx, cmd.ny, cmd.nz, latticeConstant, sim);

  
   setTemperature(sim,0.0);
   randomDisplacements(sim, cmd.initialDelta);

   sim->atomExchange = initAtomHaloExchange(sim->domain, sim->boxes);

   forwardDeformation(sim);
   
   //eamForce(sim);
   // Procedure for energy density passing from the macrosolver to CoMD 
   //setTemperature(sim,((cmd.energy*latticeVolume*cmd.nx*cmd.ny*cmd.nz-sim->ePotential)/sim->atoms->nGlobal)/(kB_eV * 1.5));
   //randomDisplacements(sim, cmd.initialDelta);


   // Forces must be computed before we call the time stepper.
   startTimer(redistributeTimer);
   redistributeAtoms(sim);
   stopTimer(redistributeTimer);

   startTimer(computeForceTimer);
   computeForce(sim);
   stopTimer(computeForceTimer);
   
   double cohmmEnergy=cmd.energy*sim->defInfo->globalVolume;
   double temperatureFromEnergyDensity=((cohmmEnergy-sim->ePotential)/sim->atoms->nGlobal)/(kB_eV*1.5);

   setTemperature(sim,temperatureFromEnergyDensity); //uncomment to set temperature according to hmm energy density
   //setTemperature(sim,cmd.temperature); //uncomment to directly input temperature
   kineticEnergy(sim);



   return sim;
}