VolumeCollection* AnalyzeVolumeReader::readNifti(const std::string &fileName, bool standalone)
    throw (tgt::FileException, std::bad_alloc)
{
    LINFO("Loading nifti file " << fileName);

    std::ifstream file(fileName.c_str(), std::ios::in | std::ios::binary);
    if(!file) {
        throw tgt::FileNotFoundException("Failed to open file: ", fileName);
    }

    //file.seekg(0, std::ios::end);
    //int fileSize = file.tellg();
    //file.seekg(0, std::ios::beg);

    nifti_1_header header;
    if (!file.read((char*)&header, sizeof(header))) {
        throw tgt::CorruptedFileException("Failed to read header!", fileName);
    }

    file.close();

    bool bigEndian = false;
    //check if swap is necessary:
    if((header.dim[0] < 0) || (header.dim[0] > 15)) {
        bigEndian = true;
        header.swapEndianess();
    }

    if(header.sizeof_hdr != 348) {
        throw tgt::CorruptedFileException("Invalid header.sizeof_hdr", fileName);
    }

    if(!( (header.magic[0] == 'n') && (header.magic[2] == '1') && (header.magic[3] == 0) ))
        throw tgt::CorruptedFileException("Not a Nifti header!", fileName);

    if(header.magic[1] == '+') {
        if(!standalone)
            LWARNING("Tried to read standalone Nifti as hdr+img!");
        standalone = true;
    }
    else if(header.magic[1] == 'i') {
        if(!standalone)
            LWARNING("Tried to hdr+img Nifti as standalone!");
        standalone = false;
    }
    else
        throw tgt::CorruptedFileException("Not a Nifti header!", fileName);

    RawVolumeReader::ReadHints h;

    h.dimensions_.x = header.dim[1];
    h.dimensions_.y = header.dim[2];
    h.dimensions_.z = header.dim[3];
    LINFO("Resolution: " << h.dimensions_);

    if (hor(lessThanEqual(h.dimensions_, ivec3(0)))) {
        LERROR("Invalid resolution or resolution not specified: " << h.dimensions_);
        throw tgt::CorruptedFileException("error while reading data", fileName);
    }

    h.spacing_.x = header.pixdim[1];
    h.spacing_.y = header.pixdim[2];
    h.spacing_.z = header.pixdim[3];
    LINFO("Spacing: " << h.spacing_);

    LINFO("Datatype: " << header.datatype);

    //TODO: support more datatypes
    if(header.datatype > 128) {
        header.datatype -= 128;
        h.objectModel_ = "RGB";
    }
    else
        h.objectModel_ = "I";


    switch(header.datatype) {
        case DT_UNSIGNED_CHAR:
            h.format_ = "UCHAR";
            h.objectModel_ = "I";
            break;
        case DT_SIGNED_SHORT:
            h.format_ = "SHORT";
            h.objectModel_ = "I";
            break;
        case DT_SIGNED_INT:
            h.format_ = "INT";
            h.objectModel_ = "I";
            break;
        case DT_FLOAT:
            h.format_ = "FLOAT";
            h.objectModel_ = "I";
            break;
        case DT_DOUBLE:
            h.format_ = "DOUBLE";
            h.objectModel_ = "I";
            break;
        case DT_RGB:
            h.format_ = "UCHAR";
            h.objectModel_ = "RGB";
            break;
        case DT_RGBA32:         /* 4 byte RGBA (32 bits/voxel)  */
            h.format_ = "UCHAR";
            h.objectModel_ = "RGBA";
            break;
        case DT_INT8:           /* signed char (8 bits)         */
            h.format_ = "CHAR";
            h.objectModel_ = "I";
            break;
        case DT_UINT16:         /* unsigned short (16 bits)     */
            h.format_ = "USHORT";
            h.objectModel_ = "I";
            break;
        case DT_UINT32:         /* unsigned int (32 bits)       */
            h.format_ = "UINT";
            h.objectModel_ = "I";
            break;
        case DT_INT64:          /* long long (64 bits)          */
        case DT_UINT64:         /* unsigned long long (64 bits) */
        case DT_FLOAT128:       /* long double (128 bits)       */
        case DT_COMPLEX128:     /* double pair (128 bits)       */
        case DT_COMPLEX256:     /* long double pair (256 bits)  */
        case DT_ALL:
        case DT_COMPLEX:
        case 0: //DT_NONE/DT_UNKNOWN
        case DT_BINARY:
        default:
            throw tgt::UnsupportedFormatException("Unsupported datatype!");
    }

    if (header.intent_code == IC_INTENT_SYMMATRIX) {
        h.objectModel_ = "TENSOR_FUSION_LOW";
    }

    h.bigEndianByteOrder_ = bigEndian;

    //std::string objectType;
    //std::string gridType;
        //} else if (type == "ObjectType:") {
            //args >> objectType;
            //LDEBUG(type << " " << objectType);
        //} else if (type == "GridType:") {
            //args >> gridType;
            //LDEBUG(type << " " << gridType);
        //} else if (type == "BitsStored:") {
            //args >> h.bitsStored_;
            //LDEBUG(type << " " << h.bitsStored_);
        //} else if (type == "Unit:") {
            //args >> h.unit_;
            //LDEBUG(type << " " << h.unit_);

    if (standalone)
        h.headerskip_ = static_cast<uint16_t>(header.vox_offset);

    RawVolumeReader rawReader(getProgressBar());
    rawReader.setReadHints(h);

    VolumeCollection* volumeCollection = 0;
    if(standalone)
        volumeCollection = rawReader.read(fileName);
    else
        volumeCollection = rawReader.read(getRelatedImgFileName(fileName));

    if (!volumeCollection->empty()) {
        static_cast<VolumeHandle*>(volumeCollection->first())->setOrigin(VolumeOrigin(fileName));
        oldVolumePosition(static_cast<VolumeHandle*>(volumeCollection->first()));
    }

    return volumeCollection;
}
VolumeCollection* AnalyzeVolumeReader::readAnalyze(const std::string &fileName)
    throw (tgt::FileException, std::bad_alloc)
{
    LWARNING("Loading analyze file " << fileName);
    LWARNING("Related img file: " << getRelatedImgFileName(fileName));

    std::ifstream file(fileName.c_str(), std::ios::in | std::ios::binary);
    if(!file) {
        throw tgt::FileNotFoundException("Failed to open file: ", fileName);
    }

    file.seekg(0, std::ios::end);
    std::streamoff fileSize = file.tellg();
    file.seekg(0, std::ios::beg);

    if(fileSize != 348)
        LWARNING("Filesize != 348");

    header_key header;
    if (!file.read((char*)&header, sizeof(header))) {
        throw tgt::CorruptedFileException("Failed to read header!", fileName);
    }

    image_dimension dimension;
    if (!file.read((char*)&dimension, sizeof(dimension))) {
        throw tgt::CorruptedFileException("Failed to read dimensions!", fileName);
    }

    data_history history;
    if (!file.read((char*)&history, sizeof(history))) {
        throw tgt::CorruptedFileException("Failed to read history!", fileName);
    }

    bool bigEndian = false;
    //check if swap is necessary:
    if((dimension.dim[0] < 0) || (dimension.dim[0] > 15)) {
        bigEndian = true;
        header.swapEndianess();
        dimension.swapEndianess();
        history.swapEndianess();
    }

    RawVolumeReader::ReadHints h;

    h.dimensions_.x = dimension.dim[1];
    h.dimensions_.y = dimension.dim[2];
    h.dimensions_.z = dimension.dim[3];
    LINFO("Resolution: " << h.dimensions_);

    if (hor(lessThanEqual(h.dimensions_, ivec3(0)))) {
        LERROR("Invalid resolution or resolution not specified: " << h.dimensions_);
        throw tgt::CorruptedFileException("error while reading data", fileName);
    }

    h.spacing_.x = dimension.pixdim[1];
    h.spacing_.y = dimension.pixdim[2];
    h.spacing_.z = dimension.pixdim[3];
    LINFO("Spacing: " << h.spacing_);

    LINFO("Datatype: " << dimension.datatype);

    switch(dimension.datatype) {
        case DT_UNSIGNED_CHAR:
            h.format_ = "UCHAR";
            h.objectModel_ = "I";
            break;
        case DT_SIGNED_SHORT:
            h.format_ = "SHORT";
            h.objectModel_ = "I";
            break;
        case DT_SIGNED_INT:
            h.format_ = "INT";
            h.objectModel_ = "I";
            break;
        case DT_FLOAT:
            h.format_ = "FLOAT";
            h.objectModel_ = "I";
            break;
        case DT_DOUBLE:
            h.format_ = "DOUBLE";
            h.objectModel_ = "I";
            break;
        case DT_RGB:
            h.format_ = "UCHAR";
            h.objectModel_ = "RGB";
            break;
        case DT_ALL:
        case DT_COMPLEX:
        case 0: //DT_NONE/DT_UNKNOWN
        case DT_BINARY:
        default:
            throw tgt::UnsupportedFormatException("Unsupported datatype!");
    }

    h.bigEndianByteOrder_ = bigEndian;

    std::string objectType;
    std::string gridType;

    RawVolumeReader rawReader(getProgressBar());
    rawReader.setReadHints(h);

    VolumeCollection* volumeCollection = rawReader.read(getRelatedImgFileName(fileName));

    if (!volumeCollection->empty()) {
        static_cast<VolumeHandle*>(volumeCollection->first())->setOrigin(VolumeOrigin(fileName));
        oldVolumePosition(static_cast<VolumeHandle*>(volumeCollection->first()));
    }

    return volumeCollection;
}
VolumeList* AmiraMeshReader::readMetaFile(const std::string &fileName, size_t firstSlice, size_t lastSlice, int timeframe)
    throw (tgt::FileException, std::bad_alloc)
{
	bool error = false;
	const char* FileName = fileName.c_str();
	FILE* fp = fopen(FileName, "rb");
    if (!fp)
    {
        LERROR("Could not find :" << FileName);
        error = true;
		goto K;
    }

    char buffer[2048];
    fread(buffer, sizeof(char), 2047, fp);
    buffer[2047] = '\0'; //The following string routines prefer null-terminated strings

    if (!strstr(buffer, "# AmiraMesh BINARY-LITTLE-ENDIAN 2.1") && !strstr(buffer, "# AmiraMesh 3D BINARY 2.0"))
    {
        LERROR("Not a proper AmiraMesh file.");
        fclose(fp);
        error = true;
		goto K;
    }

    //Find the Lattice definition, i.e., the dimensions of the uniform grid
    int xDim(0), yDim(0), zDim(0);
    sscanf(FindAndJump(buffer, "define Lattice"), "%d %d %d", &xDim, &yDim, &zDim);
	LDEBUG("Grid Dimensions: " << xDim << " " << yDim << " " << zDim);

    //Find the BoundingBox
    float xmin(1.0f), ymin(1.0f), zmin(1.0f);
    float xmax(-1.0f), ymax(-1.0f), zmax(-1.0f);
    sscanf(FindAndJump(buffer, "BoundingBox"), "%g %g %g %g %g %g", &xmin, &xmax, &ymin, &ymax, &zmin, &zmax);
    LDEBUG("BoundingBox in x-Direction: [" << xmin << " " << xmax << "]");
	LDEBUG("BoundingBox in x-Direction: [" << ymin << " " << ymax << "]");
	LDEBUG("BoundingBox in x-Direction: [" << zmin << " " << zmax << "]");
	
    //Is it a uniform grid? We need this only for the sanity check below.
    const bool bIsUniform = (strstr(buffer, "CoordType \"uniform\"") != NULL);
    LDEBUG("GridType: " << bIsUniform ? "uniform" : "UNKNOWN");

    //Type of the field: scalar, vector
    int NumComponents(0);
    if (strstr(buffer, "Lattice { float Data }"))
    {
        //Scalar field
        NumComponents = 1;
    }
    else
    {
        //A field with more than one component, i.e., a vector field
        sscanf(FindAndJump(buffer, "Lattice { float["), "%d", &NumComponents);
    }
    LDEBUG("Number of Components: " << NumComponents);

    //Sanity check
    if (xDim <= 0 || yDim <= 0 || zDim <= 0
        || xmin > xmax || ymin > ymax || zmin > zmax
        || !bIsUniform || NumComponents <= 0)
    {
        printf("Something went wrong\n");
        fclose(fp);
        error = true;
		goto K;
    }


	K : RawVolumeReader::ReadHints h;
	std::string objectFilename = fileName;

	h.headerskip_ = strstr(buffer, "# Data section follows") - buffer;
    //Set the file pointer to the beginning of "# Data section follows"
	fseek(fp, h.headerskip_, SEEK_SET);
    //Consume this line, which is "# Data section follows"
	char buf1[2048];
	fgets(buf1, 2047, fp);
	int l1 = strlen(buf1);

    //Consume the next line, which is "@1"
	char buf2[2048];
    fgets(buf2, 2047, fp);
	int l2 = strlen(buf2);

    vec3 sliceThickness = vec3(1.f, 1.f, 1.f);
    int numFrames = NumComponents;
	
	h.dimensions_.x = xDim;
	h.dimensions_.y = yDim;
	h.dimensions_.z = zDim;
	
	h.format_ = "FLOAT";
	h.objectModel_ = "I";
	h.bigEndianByteOrder_ = false;
	h.headerskip_ += (l1 + l2);
	LDEBUG("Header size : " << h.headerskip_);

    if (hor(lessThanEqual(h.dimensions_, ivec3(0)))) {
        LERROR("Invalid resolution or resolution not specified: " << h.dimensions_);
        error = true;
    }

    h.spacing_ = sliceThickness;
	h.timeStep_ = 0;

	if (!error) {
        RawVolumeReader rawReader(getProgressBar());

        // do we have a relative path?
        if ((objectFilename.substr(0, 1) != "/")  && (objectFilename.substr(0, 1) != "\\") &&
            (objectFilename.substr(1, 2) != ":/") && (objectFilename.substr(1, 2) != ":\\"))
        {
            size_t p = fileName.find_last_of("\\/");
            // construct path relative to dat file
            objectFilename = fileName.substr(0, p + 1) + objectFilename;
        }

        int start = 0;
        int end = numFrames;
        if (timeframe != -1) {
            if (timeframe >= numFrames)
                throw tgt::FileException("Specified time frame not in volume", fileName);

            start = timeframe;
            end = timeframe+1;
        }

        VolumeList* toReturn = new VolumeList();
        for (int frame = start; frame < end; ++frame) {
            h.timeframe_ = frame;
            rawReader.setReadHints(h);

            VolumeList* volumeList = rawReader.readSlices(objectFilename, firstSlice, lastSlice);
            if (!volumeList->empty()) {
                VolumeURL origin(fileName);
                origin.addSearchParameter("timeframe", itos(frame));

                Volume* vh = static_cast<Volume*>(volumeList->first());
                vh->setOrigin(origin);
                vh->setTimestep(static_cast<float>(frame));

                oldVolumePosition(vh);

                if(!h.hash_.empty())
                    vh->setHash(h.hash_);

                toReturn->add(volumeList->first());
            }
            delete volumeList;
        }
        return toReturn;
    }
    else {
        throw tgt::CorruptedFileException("error while reading data", fileName);
    }
}