Example #1
0
void vframeArrayElement::unpack_on_stack(int callee_parameters,
                                         int callee_locals,
                                         frame* caller,
                                         bool is_top_frame,
                                         int exec_mode) {
  JavaThread* thread = (JavaThread*) Thread::current();

  // Look at bci and decide on bcp and continuation pc
  address bcp;
  // C++ interpreter doesn't need a pc since it will figure out what to do when it
  // begins execution
  address pc;
  bool use_next_mdp = false; // true if we should use the mdp associated with the next bci
                             // rather than the one associated with bcp
  if (raw_bci() == SynchronizationEntryBCI) {
    // We are deoptimizing while hanging in prologue code for synchronized method
    bcp = method()->bcp_from(0); // first byte code
    pc  = Interpreter::deopt_entry(vtos, 0); // step = 0 since we don't skip current bytecode
  } else if (should_reexecute()) { //reexecute this bytecode
    assert(is_top_frame, "reexecute allowed only for the top frame");
    bcp = method()->bcp_from(bci());
    pc  = Interpreter::deopt_reexecute_entry(method(), bcp);
  } else {
    bcp = method()->bcp_from(bci());
    pc  = Interpreter::deopt_continue_after_entry(method(), bcp, callee_parameters, is_top_frame);
    use_next_mdp = true;
  }
  assert(Bytecodes::is_defined(*bcp), "must be a valid bytecode");

  // Monitorenter and pending exceptions:
  //
  // For Compiler2, there should be no pending exception when deoptimizing at monitorenter
  // because there is no safepoint at the null pointer check (it is either handled explicitly
  // or prior to the monitorenter) and asynchronous exceptions are not made "pending" by the
  // runtime interface for the slow case (see JRT_ENTRY_FOR_MONITORENTER).  If an asynchronous
  // exception was processed, the bytecode pointer would have to be extended one bytecode beyond
  // the monitorenter to place it in the proper exception range.
  //
  // For Compiler1, deoptimization can occur while throwing a NullPointerException at monitorenter,
  // in which case bcp should point to the monitorenter since it is within the exception's range.

  assert(*bcp != Bytecodes::_monitorenter || is_top_frame, "a _monitorenter must be a top frame");
  // TIERED Must know the compiler of the deoptee QQQ
  COMPILER2_PRESENT(guarantee(*bcp != Bytecodes::_monitorenter || exec_mode != Deoptimization::Unpack_exception,
                              "shouldn't get exception during monitorenter");)
Example #2
0
int compiledVFrame::bci() const {
  int raw = raw_bci();
  return raw == SynchronizationEntryBCI ? 0 : raw;
}
void vframeArrayElement::unpack_on_stack(int caller_actual_parameters,
                                         int callee_parameters,
                                         int callee_locals,
                                         frame* caller,
                                         bool is_top_frame,
                                         bool is_bottom_frame,
                                         int exec_mode) {
  JavaThread* thread = (JavaThread*) Thread::current();

  // Look at bci and decide on bcp and continuation pc
  address bcp;
  // C++ interpreter doesn't need a pc since it will figure out what to do when it
  // begins execution
  address pc;
  bool use_next_mdp = false; // true if we should use the mdp associated with the next bci
                             // rather than the one associated with bcp
  if (raw_bci() == SynchronizationEntryBCI) {
    // We are deoptimizing while hanging in prologue code for synchronized method
    bcp = method()->bcp_from(0); // first byte code
    pc  = Interpreter::deopt_entry(vtos, 0); // step = 0 since we don't skip current bytecode
  } else if (should_reexecute()) { //reexecute this bytecode
    assert(is_top_frame, "reexecute allowed only for the top frame");
    bcp = method()->bcp_from(bci());
    pc  = Interpreter::deopt_reexecute_entry(method(), bcp);
  } else {
    bcp = method()->bcp_from(bci());
    pc  = Interpreter::deopt_continue_after_entry(method(), bcp, callee_parameters, is_top_frame);
    use_next_mdp = true;
  }
  assert(Bytecodes::is_defined(*bcp), "must be a valid bytecode");

  // Monitorenter and pending exceptions:
  //
  // For Compiler2, there should be no pending exception when deoptimizing at monitorenter
  // because there is no safepoint at the null pointer check (it is either handled explicitly
  // or prior to the monitorenter) and asynchronous exceptions are not made "pending" by the
  // runtime interface for the slow case (see JRT_ENTRY_FOR_MONITORENTER).  If an asynchronous
  // exception was processed, the bytecode pointer would have to be extended one bytecode beyond
  // the monitorenter to place it in the proper exception range.
  //
  // For Compiler1, deoptimization can occur while throwing a NullPointerException at monitorenter,
  // in which case bcp should point to the monitorenter since it is within the exception's range.

  assert(*bcp != Bytecodes::_monitorenter || is_top_frame, "a _monitorenter must be a top frame");
  assert(thread->deopt_nmethod() != NULL, "nmethod should be known");
  guarantee(!(thread->deopt_nmethod()->is_compiled_by_c2() &&
              *bcp == Bytecodes::_monitorenter             &&
              exec_mode == Deoptimization::Unpack_exception),
            "shouldn't get exception during monitorenter");

  int popframe_preserved_args_size_in_bytes = 0;
  int popframe_preserved_args_size_in_words = 0;
  if (is_top_frame) {
    JvmtiThreadState *state = thread->jvmti_thread_state();
    if (JvmtiExport::can_pop_frame() &&
        (thread->has_pending_popframe() || thread->popframe_forcing_deopt_reexecution())) {
      if (thread->has_pending_popframe()) {
        // Pop top frame after deoptimization
#ifndef CC_INTERP
        pc = Interpreter::remove_activation_preserving_args_entry();
#else
        // Do an uncommon trap type entry. c++ interpreter will know
        // to pop frame and preserve the args
        pc = Interpreter::deopt_entry(vtos, 0);
        use_next_mdp = false;
#endif
      } else {
        // Reexecute invoke in top frame
        pc = Interpreter::deopt_entry(vtos, 0);
        use_next_mdp = false;
        popframe_preserved_args_size_in_bytes = in_bytes(thread->popframe_preserved_args_size());
        // Note: the PopFrame-related extension of the expression stack size is done in
        // Deoptimization::fetch_unroll_info_helper
        popframe_preserved_args_size_in_words = in_words(thread->popframe_preserved_args_size_in_words());
      }
    } else if (JvmtiExport::can_force_early_return() && state != NULL && state->is_earlyret_pending()) {
      // Force early return from top frame after deoptimization
#ifndef CC_INTERP
      pc = Interpreter::remove_activation_early_entry(state->earlyret_tos());
#else
     // TBD: Need to implement ForceEarlyReturn for CC_INTERP (ia64)
#endif
    } else {
      // Possibly override the previous pc computation of the top (youngest) frame
      switch (exec_mode) {
      case Deoptimization::Unpack_deopt:
        // use what we've got
        break;
      case Deoptimization::Unpack_exception:
        // exception is pending
        pc = SharedRuntime::raw_exception_handler_for_return_address(thread, pc);
        // [phh] We're going to end up in some handler or other, so it doesn't
        // matter what mdp we point to.  See exception_handler_for_exception()
        // in interpreterRuntime.cpp.
        break;
      case Deoptimization::Unpack_uncommon_trap:
      case Deoptimization::Unpack_reexecute:
        // redo last byte code
        pc  = Interpreter::deopt_entry(vtos, 0);
        use_next_mdp = false;
        break;
      default:
        ShouldNotReachHere();
      }
    }
  }

  // Setup the interpreter frame

  assert(method() != NULL, "method must exist");
  int temps = expressions()->size();

  int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();

  Interpreter::layout_activation(method(),
                                 temps + callee_parameters,
                                 popframe_preserved_args_size_in_words,
                                 locks,
                                 caller_actual_parameters,
                                 callee_parameters,
                                 callee_locals,
                                 caller,
                                 iframe(),
                                 is_top_frame,
                                 is_bottom_frame);

  // Update the pc in the frame object and overwrite the temporary pc
  // we placed in the skeletal frame now that we finally know the
  // exact interpreter address we should use.

  _frame.patch_pc(thread, pc);

  assert (!method()->is_synchronized() || locks > 0, "synchronized methods must have monitors");

  BasicObjectLock* top = iframe()->interpreter_frame_monitor_begin();
  for (int index = 0; index < locks; index++) {
    top = iframe()->previous_monitor_in_interpreter_frame(top);
    BasicObjectLock* src = _monitors->at(index);
    top->set_obj(src->obj());
    src->lock()->move_to(src->obj(), top->lock());
  }
  if (ProfileInterpreter) {
    iframe()->interpreter_frame_set_mdx(0); // clear out the mdp.
  }
  iframe()->interpreter_frame_set_bcx((intptr_t)bcp); // cannot use bcp because frame is not initialized yet
  if (ProfileInterpreter) {
    methodDataOop mdo = method()->method_data();
    if (mdo != NULL) {
      int bci = iframe()->interpreter_frame_bci();
      if (use_next_mdp) ++bci;
      address mdp = mdo->bci_to_dp(bci);
      iframe()->interpreter_frame_set_mdp(mdp);
    }
  }

  // Unpack expression stack
  // If this is an intermediate frame (i.e. not top frame) then this
  // only unpacks the part of the expression stack not used by callee
  // as parameters. The callee parameters are unpacked as part of the
  // callee locals.
  int i;
  for(i = 0; i < expressions()->size(); i++) {
    StackValue *value = expressions()->at(i);
    intptr_t*   addr  = iframe()->interpreter_frame_expression_stack_at(i);
    switch(value->type()) {
      case T_INT:
        *addr = value->get_int();
        break;
      case T_OBJECT:
        *addr = value->get_int(T_OBJECT);
        break;
      case T_CONFLICT:
        // A dead stack slot.  Initialize to null in case it is an oop.
        *addr = NULL_WORD;
        break;
      default:
        ShouldNotReachHere();
    }
  }


  // Unpack the locals
  for(i = 0; i < locals()->size(); i++) {
    StackValue *value = locals()->at(i);
    intptr_t* addr  = iframe()->interpreter_frame_local_at(i);
    switch(value->type()) {
      case T_INT:
        *addr = value->get_int();
        break;
      case T_OBJECT:
        *addr = value->get_int(T_OBJECT);
        break;
      case T_CONFLICT:
        // A dead location. If it is an oop then we need a NULL to prevent GC from following it
        *addr = NULL_WORD;
        break;
      default:
        ShouldNotReachHere();
    }
  }

  if (is_top_frame && JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
    // An interpreted frame was popped but it returns to a deoptimized
    // frame. The incoming arguments to the interpreted activation
    // were preserved in thread-local storage by the
    // remove_activation_preserving_args_entry in the interpreter; now
    // we put them back into the just-unpacked interpreter frame.
    // Note that this assumes that the locals arena grows toward lower
    // addresses.
    if (popframe_preserved_args_size_in_words != 0) {
      void* saved_args = thread->popframe_preserved_args();
      assert(saved_args != NULL, "must have been saved by interpreter");
#ifdef ASSERT
      assert(popframe_preserved_args_size_in_words <=
             iframe()->interpreter_frame_expression_stack_size()*Interpreter::stackElementWords,
             "expression stack size should have been extended");
#endif // ASSERT
      int top_element = iframe()->interpreter_frame_expression_stack_size()-1;
      intptr_t* base;
      if (frame::interpreter_frame_expression_stack_direction() < 0) {
        base = iframe()->interpreter_frame_expression_stack_at(top_element);
      } else {
        base = iframe()->interpreter_frame_expression_stack();
      }
      Copy::conjoint_jbytes(saved_args,
                            base,
                            popframe_preserved_args_size_in_bytes);
      thread->popframe_free_preserved_args();
    }
  }

#ifndef PRODUCT
  if (TraceDeoptimization && Verbose) {
    ttyLocker ttyl;
    tty->print_cr("[%d Interpreted Frame]", ++unpack_counter);
    iframe()->print_on(tty);
    RegisterMap map(thread);
    vframe* f = vframe::new_vframe(iframe(), &map, thread);
    f->print();

    tty->print_cr("locals size     %d", locals()->size());
    tty->print_cr("expression size %d", expressions()->size());

    method()->print_value();
    tty->cr();
    // method()->print_codes();
  } else if (TraceDeoptimization) {
    tty->print("     ");
    method()->print_value();
    Bytecodes::Code code = Bytecodes::java_code_at(method(), bcp);
    int bci = method()->bci_from(bcp);
    tty->print(" - %s", Bytecodes::name(code));
    tty->print(" @ bci %d ", bci);
    tty->print_cr("sp = " PTR_FORMAT, iframe()->sp());
  }
#endif // PRODUCT

  // The expression stack and locals are in the resource area don't leave
  // a dangling pointer in the vframeArray we leave around for debug
  // purposes

  _locals = _expressions = NULL;

}