void vframeArrayElement::unpack_on_stack(int callee_parameters, int callee_locals, frame* caller, bool is_top_frame, int exec_mode) { JavaThread* thread = (JavaThread*) Thread::current(); // Look at bci and decide on bcp and continuation pc address bcp; // C++ interpreter doesn't need a pc since it will figure out what to do when it // begins execution address pc; bool use_next_mdp = false; // true if we should use the mdp associated with the next bci // rather than the one associated with bcp if (raw_bci() == SynchronizationEntryBCI) { // We are deoptimizing while hanging in prologue code for synchronized method bcp = method()->bcp_from(0); // first byte code pc = Interpreter::deopt_entry(vtos, 0); // step = 0 since we don't skip current bytecode } else if (should_reexecute()) { //reexecute this bytecode assert(is_top_frame, "reexecute allowed only for the top frame"); bcp = method()->bcp_from(bci()); pc = Interpreter::deopt_reexecute_entry(method(), bcp); } else { bcp = method()->bcp_from(bci()); pc = Interpreter::deopt_continue_after_entry(method(), bcp, callee_parameters, is_top_frame); use_next_mdp = true; } assert(Bytecodes::is_defined(*bcp), "must be a valid bytecode"); // Monitorenter and pending exceptions: // // For Compiler2, there should be no pending exception when deoptimizing at monitorenter // because there is no safepoint at the null pointer check (it is either handled explicitly // or prior to the monitorenter) and asynchronous exceptions are not made "pending" by the // runtime interface for the slow case (see JRT_ENTRY_FOR_MONITORENTER). If an asynchronous // exception was processed, the bytecode pointer would have to be extended one bytecode beyond // the monitorenter to place it in the proper exception range. // // For Compiler1, deoptimization can occur while throwing a NullPointerException at monitorenter, // in which case bcp should point to the monitorenter since it is within the exception's range. assert(*bcp != Bytecodes::_monitorenter || is_top_frame, "a _monitorenter must be a top frame"); // TIERED Must know the compiler of the deoptee QQQ COMPILER2_PRESENT(guarantee(*bcp != Bytecodes::_monitorenter || exec_mode != Deoptimization::Unpack_exception, "shouldn't get exception during monitorenter");)
int compiledVFrame::bci() const { int raw = raw_bci(); return raw == SynchronizationEntryBCI ? 0 : raw; }
void vframeArrayElement::unpack_on_stack(int caller_actual_parameters, int callee_parameters, int callee_locals, frame* caller, bool is_top_frame, bool is_bottom_frame, int exec_mode) { JavaThread* thread = (JavaThread*) Thread::current(); // Look at bci and decide on bcp and continuation pc address bcp; // C++ interpreter doesn't need a pc since it will figure out what to do when it // begins execution address pc; bool use_next_mdp = false; // true if we should use the mdp associated with the next bci // rather than the one associated with bcp if (raw_bci() == SynchronizationEntryBCI) { // We are deoptimizing while hanging in prologue code for synchronized method bcp = method()->bcp_from(0); // first byte code pc = Interpreter::deopt_entry(vtos, 0); // step = 0 since we don't skip current bytecode } else if (should_reexecute()) { //reexecute this bytecode assert(is_top_frame, "reexecute allowed only for the top frame"); bcp = method()->bcp_from(bci()); pc = Interpreter::deopt_reexecute_entry(method(), bcp); } else { bcp = method()->bcp_from(bci()); pc = Interpreter::deopt_continue_after_entry(method(), bcp, callee_parameters, is_top_frame); use_next_mdp = true; } assert(Bytecodes::is_defined(*bcp), "must be a valid bytecode"); // Monitorenter and pending exceptions: // // For Compiler2, there should be no pending exception when deoptimizing at monitorenter // because there is no safepoint at the null pointer check (it is either handled explicitly // or prior to the monitorenter) and asynchronous exceptions are not made "pending" by the // runtime interface for the slow case (see JRT_ENTRY_FOR_MONITORENTER). If an asynchronous // exception was processed, the bytecode pointer would have to be extended one bytecode beyond // the monitorenter to place it in the proper exception range. // // For Compiler1, deoptimization can occur while throwing a NullPointerException at monitorenter, // in which case bcp should point to the monitorenter since it is within the exception's range. assert(*bcp != Bytecodes::_monitorenter || is_top_frame, "a _monitorenter must be a top frame"); assert(thread->deopt_nmethod() != NULL, "nmethod should be known"); guarantee(!(thread->deopt_nmethod()->is_compiled_by_c2() && *bcp == Bytecodes::_monitorenter && exec_mode == Deoptimization::Unpack_exception), "shouldn't get exception during monitorenter"); int popframe_preserved_args_size_in_bytes = 0; int popframe_preserved_args_size_in_words = 0; if (is_top_frame) { JvmtiThreadState *state = thread->jvmti_thread_state(); if (JvmtiExport::can_pop_frame() && (thread->has_pending_popframe() || thread->popframe_forcing_deopt_reexecution())) { if (thread->has_pending_popframe()) { // Pop top frame after deoptimization #ifndef CC_INTERP pc = Interpreter::remove_activation_preserving_args_entry(); #else // Do an uncommon trap type entry. c++ interpreter will know // to pop frame and preserve the args pc = Interpreter::deopt_entry(vtos, 0); use_next_mdp = false; #endif } else { // Reexecute invoke in top frame pc = Interpreter::deopt_entry(vtos, 0); use_next_mdp = false; popframe_preserved_args_size_in_bytes = in_bytes(thread->popframe_preserved_args_size()); // Note: the PopFrame-related extension of the expression stack size is done in // Deoptimization::fetch_unroll_info_helper popframe_preserved_args_size_in_words = in_words(thread->popframe_preserved_args_size_in_words()); } } else if (JvmtiExport::can_force_early_return() && state != NULL && state->is_earlyret_pending()) { // Force early return from top frame after deoptimization #ifndef CC_INTERP pc = Interpreter::remove_activation_early_entry(state->earlyret_tos()); #else // TBD: Need to implement ForceEarlyReturn for CC_INTERP (ia64) #endif } else { // Possibly override the previous pc computation of the top (youngest) frame switch (exec_mode) { case Deoptimization::Unpack_deopt: // use what we've got break; case Deoptimization::Unpack_exception: // exception is pending pc = SharedRuntime::raw_exception_handler_for_return_address(thread, pc); // [phh] We're going to end up in some handler or other, so it doesn't // matter what mdp we point to. See exception_handler_for_exception() // in interpreterRuntime.cpp. break; case Deoptimization::Unpack_uncommon_trap: case Deoptimization::Unpack_reexecute: // redo last byte code pc = Interpreter::deopt_entry(vtos, 0); use_next_mdp = false; break; default: ShouldNotReachHere(); } } } // Setup the interpreter frame assert(method() != NULL, "method must exist"); int temps = expressions()->size(); int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors(); Interpreter::layout_activation(method(), temps + callee_parameters, popframe_preserved_args_size_in_words, locks, caller_actual_parameters, callee_parameters, callee_locals, caller, iframe(), is_top_frame, is_bottom_frame); // Update the pc in the frame object and overwrite the temporary pc // we placed in the skeletal frame now that we finally know the // exact interpreter address we should use. _frame.patch_pc(thread, pc); assert (!method()->is_synchronized() || locks > 0, "synchronized methods must have monitors"); BasicObjectLock* top = iframe()->interpreter_frame_monitor_begin(); for (int index = 0; index < locks; index++) { top = iframe()->previous_monitor_in_interpreter_frame(top); BasicObjectLock* src = _monitors->at(index); top->set_obj(src->obj()); src->lock()->move_to(src->obj(), top->lock()); } if (ProfileInterpreter) { iframe()->interpreter_frame_set_mdx(0); // clear out the mdp. } iframe()->interpreter_frame_set_bcx((intptr_t)bcp); // cannot use bcp because frame is not initialized yet if (ProfileInterpreter) { methodDataOop mdo = method()->method_data(); if (mdo != NULL) { int bci = iframe()->interpreter_frame_bci(); if (use_next_mdp) ++bci; address mdp = mdo->bci_to_dp(bci); iframe()->interpreter_frame_set_mdp(mdp); } } // Unpack expression stack // If this is an intermediate frame (i.e. not top frame) then this // only unpacks the part of the expression stack not used by callee // as parameters. The callee parameters are unpacked as part of the // callee locals. int i; for(i = 0; i < expressions()->size(); i++) { StackValue *value = expressions()->at(i); intptr_t* addr = iframe()->interpreter_frame_expression_stack_at(i); switch(value->type()) { case T_INT: *addr = value->get_int(); break; case T_OBJECT: *addr = value->get_int(T_OBJECT); break; case T_CONFLICT: // A dead stack slot. Initialize to null in case it is an oop. *addr = NULL_WORD; break; default: ShouldNotReachHere(); } } // Unpack the locals for(i = 0; i < locals()->size(); i++) { StackValue *value = locals()->at(i); intptr_t* addr = iframe()->interpreter_frame_local_at(i); switch(value->type()) { case T_INT: *addr = value->get_int(); break; case T_OBJECT: *addr = value->get_int(T_OBJECT); break; case T_CONFLICT: // A dead location. If it is an oop then we need a NULL to prevent GC from following it *addr = NULL_WORD; break; default: ShouldNotReachHere(); } } if (is_top_frame && JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) { // An interpreted frame was popped but it returns to a deoptimized // frame. The incoming arguments to the interpreted activation // were preserved in thread-local storage by the // remove_activation_preserving_args_entry in the interpreter; now // we put them back into the just-unpacked interpreter frame. // Note that this assumes that the locals arena grows toward lower // addresses. if (popframe_preserved_args_size_in_words != 0) { void* saved_args = thread->popframe_preserved_args(); assert(saved_args != NULL, "must have been saved by interpreter"); #ifdef ASSERT assert(popframe_preserved_args_size_in_words <= iframe()->interpreter_frame_expression_stack_size()*Interpreter::stackElementWords, "expression stack size should have been extended"); #endif // ASSERT int top_element = iframe()->interpreter_frame_expression_stack_size()-1; intptr_t* base; if (frame::interpreter_frame_expression_stack_direction() < 0) { base = iframe()->interpreter_frame_expression_stack_at(top_element); } else { base = iframe()->interpreter_frame_expression_stack(); } Copy::conjoint_jbytes(saved_args, base, popframe_preserved_args_size_in_bytes); thread->popframe_free_preserved_args(); } } #ifndef PRODUCT if (TraceDeoptimization && Verbose) { ttyLocker ttyl; tty->print_cr("[%d Interpreted Frame]", ++unpack_counter); iframe()->print_on(tty); RegisterMap map(thread); vframe* f = vframe::new_vframe(iframe(), &map, thread); f->print(); tty->print_cr("locals size %d", locals()->size()); tty->print_cr("expression size %d", expressions()->size()); method()->print_value(); tty->cr(); // method()->print_codes(); } else if (TraceDeoptimization) { tty->print(" "); method()->print_value(); Bytecodes::Code code = Bytecodes::java_code_at(method(), bcp); int bci = method()->bci_from(bcp); tty->print(" - %s", Bytecodes::name(code)); tty->print(" @ bci %d ", bci); tty->print_cr("sp = " PTR_FORMAT, iframe()->sp()); } #endif // PRODUCT // The expression stack and locals are in the resource area don't leave // a dangling pointer in the vframeArray we leave around for debug // purposes _locals = _expressions = NULL; }