static ColorProfile readColorProfile(jpeg_decompress_struct* info)
{
#if USE(ICCJPEG)
    JOCTET* profile;
    unsigned int profileLength;

    if (!read_icc_profile(info, &profile, &profileLength))
        return ColorProfile();

    // Only accept RGB color profiles from input class devices.
    bool ignoreProfile = false;
    char* profileData = reinterpret_cast<char*>(profile);
    if (profileLength < ImageDecoder::iccColorProfileHeaderLength)
        ignoreProfile = true;
    else if (!ImageDecoder::rgbColorProfile(profileData, profileLength))
        ignoreProfile = true;
    else if (!ImageDecoder::inputDeviceColorProfile(profileData, profileLength))
        ignoreProfile = true;

    ColorProfile colorProfile;
    if (!ignoreProfile)
        colorProfile.append(profileData, profileLength);
    free(profile);
    return colorProfile;
#else
    UNUSED_PARAM(info);
    return ColorProfile();
#endif
}
Example #2
0
//- JPEG -----------------------------------------------------------------------
static cmsHPROFILE loadFromJpegData(const QByteArray& data)
{
    cmsHPROFILE profile = 0;
    struct jpeg_decompress_struct srcinfo;

    JPEGErrorManager srcErrorManager;
    srcinfo.err = &srcErrorManager;
    jpeg_create_decompress(&srcinfo);
    if (setjmp(srcErrorManager.jmp_buffer)) {
        kError() << "libjpeg error in src\n";
        return 0;
    }

    QBuffer buffer(const_cast<QByteArray*>(&data));
    buffer.open(QIODevice::ReadOnly);
    IODeviceJpegSourceManager::setup(&srcinfo, &buffer);

    setup_read_icc_profile(&srcinfo);
    jpeg_read_header(&srcinfo, true);
    jpeg_start_decompress(&srcinfo);

    uchar* profile_data;
    uint profile_len;
    if (read_icc_profile(&srcinfo, &profile_data, &profile_len)) {
        LOG("Found a profile, length:" << profile_len);
        profile = cmsOpenProfileFromMem(profile_data, profile_len);
    }

    jpeg_destroy_decompress(&srcinfo);

    return profile;
}
Example #3
0
static void readColorProfile(jpeg_decompress_struct* info, ColorProfile& colorProfile)
{
#if USE(ICCJPEG)
    JOCTET* profile;
    unsigned profileLength;

    if (!read_icc_profile(info, &profile, &profileLength))
        return;

    // Only accept RGB color profiles from input class devices.
    bool ignoreProfile = false;
    char* profileData = reinterpret_cast<char*>(profile);
    if (profileLength < ImageDecoder::iccColorProfileHeaderLength)
        ignoreProfile = true;
    else if (!ImageDecoder::rgbColorProfile(profileData, profileLength))
        ignoreProfile = true;
    else if (!ImageDecoder::inputDeviceColorProfile(profileData, profileLength))
        ignoreProfile = true;

    ASSERT(colorProfile.isEmpty());
    if (!ignoreProfile)
        colorProfile.append(profileData, profileLength);
    free(profile);
#endif
}
Example #4
0
static ColorProfile readColorProfile(jpeg_decompress_struct* info)
{
#if USE(ICCJPEG)
    JOCTET* profile;
    unsigned int profileLength;

    if (!read_icc_profile(info, &profile, &profileLength))
        return ColorProfile();
    char* profileData = reinterpret_cast<char*>(profile);
    // Images with grayscale profiles get "upsampled" by libjpeg. If we use
    // their color profile, CoreGraphics will "upsample" them
    // again, resulting in horizontal distortions.
    if (profileLength >= 20 && !memcmp(&profileData[16], "GRAY", 4)) {
        free(profile);
        return ColorProfile();
    }

    ColorProfile colorProfile;
    colorProfile.append(profileData, profileLength);
    free(profile);
    return colorProfile;
#else
    return ColorProfile();
#endif
}
Example #5
0
int dt_imageio_jpeg_read_profile(dt_imageio_jpeg_t *jpg, uint8_t **out)
{
  unsigned int length = 0;
  boolean res = read_icc_profile(&(jpg->dinfo), out, &length);
  jpeg_destroy_decompress(&(jpg->dinfo));
  fclose(jpg->f);
  return res?length:0;
}
Example #6
0
static ColorProfile readColorProfile(jpeg_decompress_struct* info)
{
#if USE(ICCJPEG)
    JOCTET* profile;
    unsigned int profileLength;

    if (!read_icc_profile(info, &profile, &profileLength))
        return ColorProfile();

    ColorProfile colorProfile;
    colorProfile.append(reinterpret_cast<char*>(profile), profileLength);
    free(profile);
    return colorProfile;
#else
    return ColorProfile();
#endif
}
Example #7
0
bool
JpgInput::open (const std::string &name, ImageSpec &newspec)
{
    // Check that file exists and can be opened
    m_filename = name;
    m_fd = Filesystem::fopen (name, "rb");
    if (m_fd == NULL) {
        error ("Could not open file \"%s\"", name.c_str());
        return false;
    }

    // Check magic number to assure this is a JPEG file
    uint8_t magic[2] = {0, 0};
    if (fread (magic, sizeof(magic), 1, m_fd) != 1) {
        error ("Empty file \"%s\"", name.c_str());
        close_file ();
        return false;
    }

    rewind (m_fd);
    if (magic[0] != JPEG_MAGIC1 || magic[1] != JPEG_MAGIC2) {
        close_file ();
        error ("\"%s\" is not a JPEG file, magic number doesn't match (was 0x%x%x)",
               name.c_str(), int(magic[0]), int(magic[1]));
        return false;
    }

    // Set up the normal JPEG error routines, then override error_exit and
    // output_message so we intercept all the errors.
    m_cinfo.err = jpeg_std_error ((jpeg_error_mgr *)&m_jerr);
    m_jerr.pub.error_exit = my_error_exit;
    m_jerr.pub.output_message = my_output_message;
    if (setjmp (m_jerr.setjmp_buffer)) {
        // Jump to here if there's a libjpeg internal error
        // Prevent memory leaks, see example.c in jpeg distribution
        jpeg_destroy_decompress (&m_cinfo);
        close_file ();
        return false;
    }

    jpeg_create_decompress (&m_cinfo);          // initialize decompressor
    jpeg_stdio_src (&m_cinfo, m_fd);            // specify the data source

    // Request saving of EXIF and other special tags for later spelunking
    for (int mark = 0;  mark < 16;  ++mark)
        jpeg_save_markers (&m_cinfo, JPEG_APP0+mark, 0xffff);
    jpeg_save_markers (&m_cinfo, JPEG_COM, 0xffff);     // comment marker

    // read the file parameters
    if (jpeg_read_header (&m_cinfo, FALSE) != JPEG_HEADER_OK || m_fatalerr) {
        error ("Bad JPEG header for \"%s\"", filename().c_str());
        return false;
    }

    int nchannels = m_cinfo.num_components;

    if (m_cinfo.jpeg_color_space == JCS_CMYK ||
        m_cinfo.jpeg_color_space == JCS_YCCK) {
        // CMYK jpegs get converted by us to RGB
        m_cinfo.out_color_space = JCS_CMYK;     // pre-convert YCbCrK->CMYK
        nchannels = 3;
        m_cmyk = true;
    }

    if (m_raw)
        m_coeffs = jpeg_read_coefficients (&m_cinfo);
    else
        jpeg_start_decompress (&m_cinfo);       // start working
    if (m_fatalerr)
        return false;
    m_next_scanline = 0;                        // next scanline we'll read

    m_spec = ImageSpec (m_cinfo.output_width, m_cinfo.output_height,
                        nchannels, TypeDesc::UINT8);

    // Assume JPEG is in sRGB unless the Exif or XMP tags say otherwise.
    m_spec.attribute ("oiio:ColorSpace", "sRGB");

    if (m_cinfo.jpeg_color_space == JCS_CMYK)
        m_spec.attribute ("jpeg:ColorSpace", "CMYK");
    else if (m_cinfo.jpeg_color_space == JCS_YCCK)
        m_spec.attribute ("jpeg:ColorSpace", "YCbCrK");

    // If the chroma subsampling is detected and matches something
    // we expect, then set an attribute so that it can be preserved
    // in future operations.
    std::string subsampling = comp_info_to_attr(m_cinfo);
    if (!subsampling.empty())
        m_spec.attribute(JPEG_SUBSAMPLING_ATTR, subsampling);
        
    for (jpeg_saved_marker_ptr m = m_cinfo.marker_list;  m;  m = m->next) {
        if (m->marker == (JPEG_APP0+1) &&
                ! strcmp ((const char *)m->data, "Exif")) {
            // The block starts with "Exif\0\0", so skip 6 bytes to get
            // to the start of the actual Exif data TIFF directory
            decode_exif ((unsigned char *)m->data+6, m->data_length-6, m_spec);
        }
        else if (m->marker == (JPEG_APP0+1) &&
                 ! strcmp ((const char *)m->data, "http://ns.adobe.com/xap/1.0/")) {
#ifndef NDEBUG
            std::cerr << "Found APP1 XMP! length " << m->data_length << "\n";
#endif
            std::string xml ((const char *)m->data, m->data_length);
            decode_xmp (xml, m_spec);
        }
        else if (m->marker == (JPEG_APP0+13) &&
                ! strcmp ((const char *)m->data, "Photoshop 3.0"))
            jpeg_decode_iptc ((unsigned char *)m->data);
        else if (m->marker == JPEG_COM) {
            if (! m_spec.find_attribute ("ImageDescription", TypeDesc::STRING))
                m_spec.attribute ("ImageDescription",
                                  std::string ((const char *)m->data, m->data_length));
        }
    }

    // Handle density/pixelaspect. We need to do this AFTER the exif is
    // decoded, in case it contains useful information.
    float xdensity = m_spec.get_float_attribute ("XResolution");
    float ydensity = m_spec.get_float_attribute ("YResolution");
    if (! xdensity || ! ydensity) {
        xdensity = float(m_cinfo.X_density);
        ydensity = float(m_cinfo.Y_density);
        if (xdensity && ydensity) {
            m_spec.attribute ("XResolution", xdensity);
            m_spec.attribute ("YResolution", ydensity);
        }
    }
    if (xdensity && ydensity) {
        float aspect = ydensity/xdensity;
        if (aspect != 1.0f)
            m_spec.attribute ("PixelAspectRatio", aspect);
        switch (m_cinfo.density_unit) {
        case 0 : m_spec.attribute ("ResolutionUnit", "none"); break;
        case 1 : m_spec.attribute ("ResolutionUnit", "in");   break;
        case 2 : m_spec.attribute ("ResolutionUnit", "cm");   break;
        }
    }

    read_icc_profile(&m_cinfo, m_spec); /// try to read icc profile

    newspec = m_spec;
    return true;
}
Example #8
0
static
int TransformImage(char *cDefInpProf, char *cOutProf)
{
       cmsHPROFILE hIn, hOut, hProof;
       cmsHTRANSFORM xform;
       cmsUInt32Number wInput, wOutput;
       int OutputColorSpace;
       cmsUInt32Number dwFlags = 0;
       cmsUInt32Number EmbedLen;
       cmsUInt8Number* EmbedBuffer;


       cmsSetAdaptationState(ObserverAdaptationState);

       if (BlackPointCompensation) {

            dwFlags |= cmsFLAGS_BLACKPOINTCOMPENSATION;
       }


       switch (PrecalcMode) {

       case 0: dwFlags |= cmsFLAGS_NOOPTIMIZE; break;
       case 2: dwFlags |= cmsFLAGS_HIGHRESPRECALC; break;
       case 3: dwFlags |= cmsFLAGS_LOWRESPRECALC; break;
       default:;
       }


       if (GamutCheck) {
            dwFlags |= cmsFLAGS_GAMUTCHECK;
            cmsSetAlarmCodes(Alarm);
       }

       // Take input color space
       wInput = GetInputPixelType();

        if (lIsDeviceLink) {

            hIn = cmsOpenProfileFromFile(cDefInpProf, "r");
            hOut = NULL;
            hProof = NULL;
       }
        else {

        if (!IgnoreEmbedded && read_icc_profile(&Decompressor, &EmbedBuffer, &EmbedLen))
        {
              hIn = cmsOpenProfileFromMem(EmbedBuffer, EmbedLen);

               if (Verbose) {

                  fprintf(stdout, " (Embedded profile found)\n");
				  PrintProfileInformation(hIn);
                  fflush(stdout);
              }

               if (hIn != NULL && SaveEmbedded != NULL)
                          SaveMemoryBlock(EmbedBuffer, EmbedLen, SaveEmbedded);

              free(EmbedBuffer);
        }
        else
        {
            // Default for ITU/Fax
            if (cDefInpProf == NULL && T_COLORSPACE(wInput) == PT_Lab)
                cDefInpProf = "*Lab";

            if (cDefInpProf != NULL && cmsstrcasecmp(cDefInpProf, "*lab") == 0)
                hIn = CreateITU2PCS_ICC();
            else
                hIn = OpenStockProfile(0, cDefInpProf);
       }

        if (cOutProf != NULL && cmsstrcasecmp(cOutProf, "*lab") == 0)
            hOut = CreatePCS2ITU_ICC();
        else
        hOut = OpenStockProfile(0, cOutProf);

       hProof = NULL;
       if (cProofing != NULL) {

           hProof = OpenStockProfile(0, cProofing);
           if (hProof == NULL) {
            FatalError("Proofing profile couldn't be read.");
           }
           dwFlags |= cmsFLAGS_SOFTPROOFING;
          }
       }

        if (!hIn)
            FatalError("Input profile couldn't be read.");
        if (!hOut)
            FatalError("Output profile couldn't be read.");

       // Assure both, input profile and input JPEG are on same colorspace
       if (cmsGetColorSpace(hIn) != _cmsICCcolorSpace(T_COLORSPACE(wInput)))
              FatalError("Input profile is not operating in proper color space");


       // Output colorspace is given by output profile

        if (lIsDeviceLink) {
            OutputColorSpace = GetDevicelinkColorSpace(hIn);
        }
        else {
            OutputColorSpace = GetProfileColorSpace(hOut);
        }

       jpeg_copy_critical_parameters(&Decompressor, &Compressor);

       WriteOutputFields(OutputColorSpace);

       wOutput      = ComputeOutputFormatDescriptor(wInput, OutputColorSpace);


       xform = cmsCreateProofingTransform(hIn, wInput,
                                          hOut, wOutput,
                                          hProof, Intent,
                                          ProofingIntent, dwFlags);
	   if (xform == NULL)
                 FatalError("Cannot transform by using the profiles");

       DoTransform(xform, OutputColorSpace);


       jcopy_markers_execute(&Decompressor, &Compressor);

       cmsDeleteTransform(xform);
       cmsCloseProfile(hIn);
       cmsCloseProfile(hOut);
       if (hProof) cmsCloseProfile(hProof);

       return 1;
}
Example #9
0
static
int TransformImage(char *cDefInpProf, char *cOutProf)
{
       cmsHPROFILE hIn, hOut, hProof;
       cmsHTRANSFORM xform;
       DWORD wInput, wOutput;
       int OutputColorSpace;
       DWORD dwFlags = 0; 
       DWORD EmbedLen;
       LPBYTE EmbedBuffer;


       if (BlackPointCompensation) {

            dwFlags |= cmsFLAGS_BLACKPOINTCOMPENSATION;            
       }

       switch (PrecalcMode) {
           
       case 0: dwFlags |= cmsFLAGS_NOTPRECALC; break;
       case 2: dwFlags |= cmsFLAGS_HIGHRESPRECALC; break;
       case 3: dwFlags |= cmsFLAGS_LOWRESPRECALC; break;
       default:;
       }
        

       if (GamutCheck)
            dwFlags |= cmsFLAGS_GAMUTCHECK;
        

        if (lIsDeviceLink) {

            hIn = cmsOpenProfileFromFile(cDefInpProf, "r");
            hOut = NULL;
            hProof = NULL;
       }
        else {

        if (!IgnoreEmbedded && read_icc_profile(&Decompressor, &EmbedBuffer, &EmbedLen))
        {
              hIn = cmsOpenProfileFromMem(EmbedBuffer, EmbedLen);

               if (Verbose) {

                  fprintf(stdout, " (Embedded profile found)\n");
                  fprintf(stdout, "Product name: %s\n", cmsTakeProductName(hIn));
                  fprintf(stdout, "Description : %s\n", cmsTakeProductDesc(hIn));                          
                  fflush(stdout);
              }

               if (hIn != NULL && SaveEmbedded != NULL)
                          SaveMemoryBlock(EmbedBuffer, EmbedLen, SaveEmbedded);

              free(EmbedBuffer);
        }
        else
        {
                hIn = OpenStockProfile(cDefInpProf);
       }

        hOut = OpenStockProfile(cOutProf);


       hProof = NULL;
       if (cProofing != NULL) {

           hProof = OpenStockProfile(cProofing);
       }
        }

       // Take input color space

       wInput = GetInputPixelType();

       // Assure both, input profile and input JPEG are on same colorspace

       
       if (cmsGetColorSpace(hIn) != _cmsICCcolorSpace(T_COLORSPACE(wInput)))
              FatalError("Input profile is not operating in proper color space");
       

       // Output colorspace is given by output profile

        if (lIsDeviceLink) {
            OutputColorSpace = T_COLORSPACE(wInput);
        }
        else {
            OutputColorSpace = GetProfileColorSpace(hOut);
        }

       jpeg_copy_critical_parameters(&Decompressor, &Compressor);
       
       WriteOutputFields(OutputColorSpace);               
       
       wOutput      = ComputeOutputFormatDescriptor(wInput, OutputColorSpace);
       
       xform = cmsCreateProofingTransform(hIn, wInput, 
                                          hOut, wOutput, 
                                          hProof, Intent, 
                                          ProofingIntent, dwFlags);

       // Handle tile by tile or strip by strip strtok

       DoTransform(xform);

       
       jcopy_markers_execute(&Decompressor, &Compressor);
       
       cmsDeleteTransform(xform);
       cmsCloseProfile(hIn);
       cmsCloseProfile(hOut);
       if (hProof) cmsCloseProfile(hProof);
       
       return 1;
}
Example #10
0
static gint32
load_image (char *filename)
{
  GPixelRgn pixel_rgn;
  TileDrawable *drawable;
  gint32 image_ID;
  gint32 layer_ID;
  struct jpeg_decompress_struct cinfo;
  struct my_error_mgr jerr;
  FILE *infile;
  guchar *buf;
  guchar **rowbuf;
  char *name;
  int image_type;
  int layer_type;
  int tile_height;
  int scanlines;
  int i, start, end;
  int m;
  int depth = 8;

  /* We set up the normal JPEG error routines. */
  cinfo.err = jpeg_std_error (&jerr.pub);
  jerr.pub.error_exit = my_error_exit;

  if ((infile = fopen (filename, "rb")) == NULL)
    {
      g_warning ("can't open \"%s\"\n", filename);
      gimp_quit ();
    }

  if( strrchr(filename,'.') &&
      strcmp( strrchr(filename, '.'), ".jp4") == 0 )
    depth = 16;

  name = malloc (strlen (filename) + 12);
  sprintf (name, "%s %s:", _("Loading"), filename);
  gimp_progress_init (name);
  free (name);

  image_ID = -1;
  /* Establish the setjmp return context for my_error_exit to use. */
  if (setjmp (jerr.setjmp_buffer))
    {
      /* If we get here, the JPEG code has signaled an error.
       * We need to clean up the JPEG object, close the input file, and return.
       */
      jpeg_destroy_decompress (&cinfo);
      if (infile)
	fclose (infile);
      if (image_ID != -1)
	gimp_image_delete (image_ID);
      gimp_quit ();
    }
  /* Now we can initialize the JPEG decompression object. */
  jpeg_create_decompress (&cinfo);

  /* Step 2: specify data source (eg, a file) */

  jpeg_stdio_src (&cinfo, infile);

  setup_read_icc_profile(&cinfo);  
  for (m = 0; m < 16; m++)
    jpeg_save_markers(&cinfo, JPEG_APP0 + m, 0xFFFF);

  /* Step 3: read file parameters with jpeg_read_header() */

  (void) jpeg_read_header (&cinfo, TRUE);
  /* We can ignore the return value from jpeg_read_header since
   *   (a) suspension is not possible with the stdio data source, and
   *   (b) we passed TRUE to reject a tables-only JPEG file as an error.
   * See libjpeg.doc for more info.
   */

  /* Step 4: set parameters for decompression */

  /* In this example, we don't need to change any of the defaults set by
   * jpeg_read_header(), so we do nothing here.
   */
  prepareColour( &cinfo );

  /* Step 5: Start decompressor */

  jpeg_start_decompress (&cinfo);

  /* We may need to do some setup of our own at this point before reading
   * the data.  After jpeg_start_decompress() we have the correct scaled
   * output image dimensions available, as well as the output colormap
   * if we asked for color quantization.
   * In this example, we need to make an output work buffer of the right size.
   */
  /* temporary buffer */
  tile_height = gimp_tile_height ();
  buf = g_new (guchar, tile_height * cinfo.output_width * cinfo.output_components);
  rowbuf = g_new (guchar*, tile_height);

  for (i = 0; i < tile_height; i++)
    rowbuf[i] = buf + cinfo.output_width * cinfo.output_components * i;

  /* Create a new image of the proper size and associate the filename with it.
   */
  if(depth == 8)
  {
    switch (cinfo.output_components)
    {
    case 1:
      image_type = GRAY;
      layer_type = GRAY_IMAGE;
      break;
    case 3:
      image_type = RGB;
      layer_type = RGB_IMAGE;
      break;
    case 4:
      image_type = RGB;
      layer_type = RGBA_IMAGE;
      break;
    default:
      gimp_quit ();
    }
  } else {
    switch (cinfo.output_components)
    {
    case 1:
      image_type = U16_GRAY;
      layer_type = U16_GRAY_IMAGE;
      break;
    case 3:
      image_type = U16_RGB;
      layer_type = U16_RGB_IMAGE;
      break;
    case 4:
      image_type = U16_RGB;
      layer_type = U16_RGBA_IMAGE;
      break;
    default:
      gimp_quit ();
    }
  }

  image_ID = gimp_image_new (cinfo.output_width / (depth/8), cinfo.output_height,
                             image_type);
  gimp_image_set_filename (image_ID, filename);

  layer_ID = gimp_layer_new (image_ID, _("Background"),
			     cinfo.output_width / (depth/8),
			     cinfo.output_height,
			     layer_type, 100, NORMAL_MODE);
  gimp_image_add_layer (image_ID, layer_ID, 0);

  drawable = gimp_drawable_get (layer_ID);
  gimp_pixel_rgn_init (&pixel_rgn, drawable, 0, 0, drawable->width, drawable->height, TRUE, FALSE);

  /* Step 6: while (scan lines remain to be read) */
  /*           jpeg_read_scanlines(...); */

  /* Here we use the library's state variable cinfo.output_scanline as the
   * loop counter, so that we don't have to keep track ourselves.
   */
  while (cinfo.output_scanline < cinfo.output_height)
    {
      start = cinfo.output_scanline;
      end = cinfo.output_scanline + tile_height;
      end = MIN (end,CAST(int) cinfo.output_height);
      scanlines = end - start;

      for (i = 0; i < scanlines; i++)
	jpeg_read_scanlines (&cinfo, (JSAMPARRAY) &rowbuf[i], 1);

      /*
      for (i = start; i < end; i++)
	gimp_pixel_rgn_set_row (&pixel_rgn, tilerow[i - start], 0, i, drawable->width);
	*/

      if(cinfo.out_color_space == JCS_CMYK)
        for(i = 0; i < scanlines*drawable->width*cinfo.output_components; ++i)
          buf[i] = 255 - buf[i];

      if(depth == 16 && 0)
        for(i = 0; i < scanlines*drawable->width*cinfo.output_components; ++i)
        {
          unsigned char c = buf[2*i];
          buf[2*i] = buf[2*i+1];
          buf[2*i+1] = c;
        }

      gimp_pixel_rgn_set_rect (&pixel_rgn, buf, 0, start, drawable->width, scanlines);

      gimp_progress_update ((double) cinfo.output_scanline / (double) cinfo.output_height);
    }

  // Step 6a: read icc profile
  {
    LPBYTE Buffer = NULL;
    size_t Len = 0;
    cmsHPROFILE hProfile=NULL;

    if (read_icc_profile(&cinfo, &Buffer, &Len))
    {
      printf ("%s:%d %s() embedded profile found\n",__FILE__,__LINE__,__func__);
    } else if (read_icc_profile2(&cinfo, &Buffer, &Len)) {
      printf ("%s:%d %s() default profile selected\n",__FILE__,__LINE__,__func__);
    }

    if(Buffer && Len)
    {
      hProfile = cmsOpenProfileFromMem(Buffer, Len);
      if (hProfile) {
        gimp_image_set_icc_profile_by_mem (image_ID, Len, Buffer, ICC_IMAGE_PROFILE);
        cmsCloseProfile (hProfile);
        free(Buffer);
        printf ("%s:%d %s() set profile\n",__FILE__,__LINE__,__func__);
      }
    }
  }

  /* Step 7: Finish decompression */

  jpeg_finish_decompress (&cinfo);
  /* We can ignore the return value since suspension is not possible
   * with the stdio data source.
   */

  /* Step 8: Release JPEG decompression object */

  /* This is an important step since it will release a good deal of memory. */
  jpeg_destroy_decompress (&cinfo);

  /* free up the temporary buffers */
  g_free (rowbuf);
  g_free (buf);

  /* After finish_decompress, we can close the input file.
   * Here we postpone it until after no more JPEG errors are possible,
   * so as to simplify the setjmp error logic above.  (Actually, I don't
   * think that jpeg_destroy can do an error exit, but why assume anything...)
   */
  fclose (infile);

  /* At this point you may want to check to see whether any corrupt-data
   * warnings occurred (test whether jerr.num_warnings is nonzero).
   */

  /* Tell the GIMP to display the image.
   */
  gimp_drawable_flush (drawable);

  return image_ID;
}