Example #1
0
/* Pass an object-like macro a hexadecimal floating-point value.  */
static void
builtin_define_with_hex_fp_value (const char *macro,
				  tree type ATTRIBUTE_UNUSED, int digits,
				  const char *hex_str, 
				  const char *fp_suffix,
				  const char *fp_cast)
{
  REAL_VALUE_TYPE real;
  char dec_str[64], buf1[256], buf2[256];

  /* Hex values are really cool and convenient, except that they're
     not supported in strict ISO C90 mode.  First, the "p-" sequence
     is not valid as part of a preprocessor number.  Second, we get a
     pedwarn from the preprocessor, which has no context, so we can't
     suppress the warning with __extension__.

     So instead what we do is construct the number in hex (because
     it's easy to get the exact correct value), parse it as a real,
     then print it back out as decimal.  */

  real_from_string (&real, hex_str);
  real_to_decimal (dec_str, &real, sizeof (dec_str), digits, 0);

  /* Assemble the macro in the following fashion
     macro = fp_cast [dec_str fp_suffix] */
  sprintf (buf1, "%s%s", dec_str, fp_suffix);
  sprintf (buf2, fp_cast, buf1);
  sprintf (buf1, "%s=%s", macro, buf2);
  
  cpp_define (parse_in, buf1);
}
Example #2
0
tree
gfc_conv_mpfr_to_tree (mpfr_t f, int kind, int is_snan)
{
  tree type;
  int n;
  REAL_VALUE_TYPE real;

  n = gfc_validate_kind (BT_REAL, kind, false);
  gcc_assert (gfc_real_kinds[n].radix == 2);

  type = gfc_get_real_type (kind);
  if (mpfr_nan_p (f) && is_snan)
     real_from_string (&real, "SNaN");
  else
    real_from_mpfr (&real, f, type, GFC_RND_MODE);

  return build_real (type, real);
}
void
real_from_mpfr (REAL_VALUE_TYPE *r, mpfr_srcptr m, tree type, mp_rnd_t rndmode)
{
  /* We use a string as an intermediate type.  */
  char buf[128], *rstr;
  mp_exp_t exp;

  /* Take care of Infinity and NaN.  */
  if (mpfr_inf_p (m))
    {
      real_inf (r);
      if (mpfr_sgn (m) < 0)
	*r = real_value_negate (r);
      return;
    }

  if (mpfr_nan_p (m))
    {
      real_nan (r, "", 1, TYPE_MODE (type));
      return;
    }

  rstr = mpfr_get_str (NULL, &exp, 16, 0, m, rndmode);

  /* The additional 12 chars add space for the sprintf below.  This
     leaves 6 digits for the exponent which is supposedly enough.  */
  gcc_assert (rstr != NULL && strlen (rstr) < sizeof (buf) - 12);

  /* REAL_VALUE_ATOF expects the exponent for mantissa * 2**exp,
     mpfr_get_str returns the exponent for mantissa * 16**exp, adjust
     for that.  */
  exp *= 4;

  if (rstr[0] == '-')
    sprintf (buf, "-0x.%sp%d", &rstr[1], (int) exp);
  else
    sprintf (buf, "0x.%sp%d", rstr, (int) exp);

  mpfr_free_str (rstr);

  real_from_string (r, buf);
}
Example #4
0
void
fixed_from_string (FIXED_VALUE_TYPE *f, const char *str, machine_mode mode)
{
  REAL_VALUE_TYPE real_value, fixed_value, base_value;
  unsigned int fbit;
  enum fixed_value_range_code temp;
  bool fail;

  f->mode = mode;
  fbit = GET_MODE_FBIT (mode);

  real_from_string (&real_value, str);
  temp = check_real_for_fixed_mode (&real_value, f->mode);
  /* We don't want to warn the case when the _Fract value is 1.0.  */
  if (temp == FIXED_UNDERFLOW
      || temp == FIXED_GT_MAX_EPS
      || (temp == FIXED_MAX_EPS && ALL_ACCUM_MODE_P (f->mode)))
    warning (OPT_Woverflow,
	     "large fixed-point constant implicitly truncated to fixed-point type");
  real_2expN (&base_value, fbit, VOIDmode);
  real_arithmetic (&fixed_value, MULT_EXPR, &real_value, &base_value);
  wide_int w = real_to_integer (&fixed_value, &fail,
				GET_MODE_PRECISION (mode));
  f->data.low = w.ulow ();
  f->data.high = w.elt (1);

  if (temp == FIXED_MAX_EPS && ALL_FRACT_MODE_P (f->mode))
    {
      /* From the spec, we need to evaluate 1 to the maximal value.  */
      f->data.low = -1;
      f->data.high = -1;
      f->data = f->data.zext (GET_MODE_FBIT (f->mode)
				+ GET_MODE_IBIT (f->mode));
    }
  else
    f->data = f->data.ext (SIGNED_FIXED_POINT_MODE_P (f->mode)
			      + GET_MODE_FBIT (f->mode)
			      + GET_MODE_IBIT (f->mode),
			      UNSIGNED_FIXED_POINT_MODE_P (f->mode));
}
Example #5
0
static enum fixed_value_range_code
check_real_for_fixed_mode (REAL_VALUE_TYPE *real_value, machine_mode mode)
{
  REAL_VALUE_TYPE max_value, min_value, epsilon_value;

  real_2expN (&max_value, GET_MODE_IBIT (mode), VOIDmode);
  real_2expN (&epsilon_value, -GET_MODE_FBIT (mode), VOIDmode);

  if (SIGNED_FIXED_POINT_MODE_P (mode))
    min_value = real_value_negate (&max_value);
  else
    real_from_string (&min_value, "0.0");

  if (real_compare (LT_EXPR, real_value, &min_value))
    return FIXED_UNDERFLOW;
  if (real_compare (EQ_EXPR, real_value, &max_value))
    return FIXED_MAX_EPS;
  real_arithmetic (&max_value, MINUS_EXPR, &max_value, &epsilon_value);
  if (real_compare (GT_EXPR, real_value, &max_value))
    return FIXED_GT_MAX_EPS;
  return FIXED_OK;
}
Example #6
0
/* Interpret TOKEN, a floating point number with FLAGS as classified
   by cpplib.  */
static tree
interpret_float (const cpp_token *token, unsigned int flags)
{
  tree type;
  tree value;
  REAL_VALUE_TYPE real;
  char *copy;
  size_t copylen;
  const char *type_name;

  /* FIXME: make %T work in error/warning, then we don't need type_name.  */
  if ((flags & CPP_N_WIDTH) == CPP_N_LARGE)
    {
      type = long_double_type_node;
      type_name = "long double";
    }
  else if ((flags & CPP_N_WIDTH) == CPP_N_SMALL
	   || flag_single_precision_constant)
    {
      type = float_type_node;
      type_name = "float";
    }
  else
    {
      type = double_type_node;
      type_name = "double";
    }

  /* Copy the constant to a nul-terminated buffer.  If the constant
     has any suffixes, cut them off; REAL_VALUE_ATOF/ REAL_VALUE_HTOF
     can't handle them.  */
  copylen = token->val.str.len;
  if ((flags & CPP_N_WIDTH) != CPP_N_MEDIUM)
    /* Must be an F or L suffix.  */
    copylen--;
  if (flags & CPP_N_IMAGINARY)
    /* I or J suffix.  */
    copylen--;

  copy = (char *) alloca (copylen + 1);
  memcpy (copy, token->val.str.text, copylen);
  copy[copylen] = '\0';

  real_from_string (&real, copy);
  real_convert (&real, TYPE_MODE (type), &real);

  /* Both C and C++ require a diagnostic for a floating constant
     outside the range of representable values of its type.  Since we
     have __builtin_inf* to produce an infinity, it might now be
     appropriate for this to be a mandatory pedwarn rather than
     conditioned on -pedantic.  */
  if (REAL_VALUE_ISINF (real) && pedantic)
    pedwarn ("floating constant exceeds range of %<%s%>", type_name);

  /* Create a node with determined type and value.  */
  value = build_real (type, real);
  if (flags & CPP_N_IMAGINARY)
    value = build_complex (NULL_TREE, convert (type, integer_zero_node), value);

  return value;
}