void ExSequenceTcb::advanceReturnHistoryRow() 
{

  if (currentRetOLAPBuffer_ == NULL)  //initially currentRetOLAPBuffer_ is null
  {
    ex_assert(firstOLAPBuffer_ !=NULL,"ExSequenceTcb::advanceReturnHistoryRow() - firstOLAPBuffer is a NULL pointer");
    currentRetOLAPBuffer_ = firstOLAPBuffer_;
    ex_assert(currentRetHistRowPtr_ == NULL,"ExSequenceTcb::advanceReturnHistoryRow() - currentRetHistRowPtr_ is not a NULL pointer");
    currentRetHistRowPtr_ = currentRetOLAPBuffer_->getFirstRow();
    currentRetHistRowInOLAPBuffer_ = 0;
    return;
  }
  currentRetHistRowInOLAPBuffer_ ++;

  if ( currentRetHistRowInOLAPBuffer_ == maxRowsInOLAPBuffer_ ) 
  {  // reached end of this buffer
    currentRetHistRowInOLAPBuffer_ = 0;

    if ( currentRetOLAPBuffer_->getNext() == NULL  ) 
    { //last buffer
      currentRetOLAPBuffer_ = firstOLAPBuffer_;
      currentRetHistRowPtr_ = currentRetOLAPBuffer_->getFirstRow();
    }
    else
    {
      currentRetOLAPBuffer_ = currentRetOLAPBuffer_->getNext();
      currentRetHistRowPtr_ = currentRetOLAPBuffer_->getFirstRow();
    }
  }
  else
  {
    currentRetHistRowPtr_ = currentRetHistRowPtr_ + recLen();
  }
};
NABoolean ExSequenceTcb::advanceHistoryRow(NABoolean checkMemoryPressure) 
{
  histRowsToReturn_++;

  if (currentOLAPBuffer_ == NULL)
  {
    currentOLAPBuffer_ = firstOLAPBuffer_;
    ex_assert (currentHistRowPtr_ == NULL,"ExSequenceTcb::advanceHistoryRow() - currentHistRowPtr_ is not a NULL pointer");
    currentHistRowPtr_ = currentOLAPBuffer_->getFirstRow() ;
    currentHistRowInOLAPBuffer_=0;
  }
  else
  {
    currentHistRowInOLAPBuffer_++;

    if ( currentHistRowInOLAPBuffer_ == maxRowsInOLAPBuffer_ ) 
    {  // reached end of this buffer
      currentHistRowInOLAPBuffer_ = 0;

      if ( currentOLAPBuffer_->getNext() == NULL  ) 
      { //last buffer
        if ( canAllocateOLAPBuffer() && 
	     ! isOverflowStarted() && // once overflowing - no more new buffers
	     addNewOLAPBuffer(checkMemoryPressure) )
	  {
	    currentOLAPBuffer_ = lastOLAPBuffer_;
	    currentHistRowPtr_ = currentOLAPBuffer_->getFirstRow();
	  }
        else
	  {
	    currentOLAPBuffer_ = firstOLAPBuffer_;
	    currentHistRowPtr_ = currentOLAPBuffer_->getFirstRow();
	    return TRUE; // no memory -- start overflow
	  }
      }
      else
      {
        currentOLAPBuffer_ = currentOLAPBuffer_->getNext();
        currentHistRowPtr_ = currentOLAPBuffer_->getFirstRow();
      }
    }
    else
    {
      currentHistRowPtr_ = currentHistRowPtr_ + recLen();
    }
  }

  if (numberHistoryRows_ < maxNumberHistoryRows_) 
  {
    numberHistoryRows_++;
  }
  return FALSE;
};
Example #3
0
//
// Constructor for sort_grby_tcb
//
ex_sort_grby_tcb::ex_sort_grby_tcb(const ex_sort_grby_tdb &  sort_grby_tdb, 
				   const ex_tcb &    child_tcb,   // child queue pair
				   ex_globals * glob
				    ) : 
    ex_tcb( sort_grby_tdb, 1, glob),
    pool_(NULL)
{
  Space * space = (glob ? glob->getSpace() : 0);
  CollHeap * heap = (glob ? glob->getDefaultHeap() : 0);
  
  childTcb_ = &child_tcb;

  // Allocate the buffer pool
#pragma nowarn(1506)   // warning elimination 
  pool_ = new(space) ExSimpleSQLBuffer(sort_grby_tdb.numBuffers_,
				       sort_grby_tdb.bufferSize_,
		                       recLen(),
				       space);
#pragma warn(1506)  // warning elimination 

  // get the child queue pair
  qchild_  = child_tcb.getParentQueue(); 

  // Allocate the queue to communicate with parent
  allocateParentQueues(qparent_);

  // Intialize processedInputs_ to the next request to process
  processedInputs_ = qparent_.down->getTailIndex();

  // allocate work atp
  workAtp_ = allocateAtp(sort_grby_tdb.criDescUp_,getSpace());

  // fixup aggr expression
  if (aggrExpr())
    (void) aggrExpr()->fixup(0, getExpressionMode(), this, space, heap,
			     glob->computeSpace());

  // fixup move expression
  if (moveExpr())
    (void) moveExpr()->fixup(0, getExpressionMode(), this, space, heap,
			     glob->computeSpace());

  // fixup grby expression
  if (grbyExpr())
    (void) grbyExpr()->fixup(0, getExpressionMode(), this, space, heap,
			     glob->computeSpace());

  // fixup having expression
  if (havingExpr())
    (void) havingExpr()->fixup(0, getExpressionMode(), this, space, heap,
			       glob->computeSpace());

}
// work - doit...
//
//
short ExSequenceTcb::work()
{
  // If there are no parent requests on the queue, then there cannot
  // be anything to do here.
  //
  if (qparent_.down->isEmpty())
    return WORK_OK;

  ex_queue_entry * pentry_down;
  ExSequencePrivateState * pstate;
  ex_queue::down_request request;

  // Take any new parent requests and pass them on to the child as long
  // as the child's queue is not full. processedInputs_ maintains the 
  // Queue index of the last request that was passed on.
  // 
  for(queue_index tail = qparent_.down->getTailIndex(); 
      (processedInputs_ != tail) && (!qchild_.down->isFull());
      processedInputs_++ )
    {
      pentry_down = qparent_.down->getQueueEntry(processedInputs_);
      pstate = (ExSequencePrivateState*) pentry_down->pstate;
      request = pentry_down->downState.request;

      // If the request has already been cancelled don't pass it to the
      // child. Instead, just mark the request as done. This will trigger
      // a EOD reply when this request gets worked on.
      //
      if (request == ex_queue::GET_NOMORE)
        {
          // LCOV_EXCL_START
          pstate->step_ = ExSeq_DONE;
          // LCOV_EXCL_STOP
        }
      else
        {
          pstate->step_ = ExSeq_WORKING_READ;

          // Pass the request to the child
          //
          ex_queue_entry * centry = qchild_.down->getTailEntry();
          centry->downState.request = ex_queue::GET_ALL;
          centry->downState.requestValue = 11;
          centry->downState.parentIndex = processedInputs_;
          centry->passAtp(pentry_down);
          qchild_.down->insert();
        }
    } // end for processedInputs_

  pentry_down = qparent_.down->getHeadEntry();
  pstate = (ExSequencePrivateState*) pentry_down->pstate;
  request = pentry_down->downState.request;

  // Take any child replies and process them. Return the processed
  // rows as long the parent queue has room.
  //
  while (1)
    {
      // If we have satisfied the parent request (or it was cancelled),
      // then stop processing rows, cancel any outstanding child
      // requests, and set this request to the CANCELLED state.
      //
      if ((pstate->step_ == ExSeq_WORKING_READ) ||
          (pstate->step_ == ExSeq_WORKING_RETURN))
        {
          if ((request == ex_queue::GET_NOMORE) ||
              ((request == ex_queue::GET_N) &&
               (pentry_down->downState.requestValue 
                <= (Lng32)pstate->matchCount_)))
            {
              qchild_.down->cancelRequestWithParentIndex
                (qparent_.down->getHeadIndex());
              pstate->step_ = ExSeq_CANCELLED;
            }
        }

      switch (pstate->step_)
        {
          // ExSeq_CANCELLED
          //
          // Transition to this state from ...
          // 1. ExSeq_Error - After the error has been processed.
          // 2. ExSeq_Working - If enough rows have been returned.
          // 3. ExSeq_Working - If the request was cancelled.
          //
          // Remain in this state until ..
          // 1. All rows from the child including EOD are consumed
          //
          // Transition from this state to ...
          // 1. ExSeq_DONE - In all cases.
          //
        case ExSeq_CANCELLED:
          {
            // There are no extra rows to process from the child yet,
            // so try again later.
            //
            if (qchild_.up->isEmpty())
              {
                return WORK_OK;
              }

            ex_queue_entry * centry = qchild_.up->getHeadEntry();
            ex_queue::up_status child_status = centry->upState.status;

            // If this is the EOD, transition to the ExSeq_DONE state.
            //
            if (child_status == ex_queue::Q_NO_DATA)
                  pstate->step_ = ExSeq_DONE;

            // Discard the child row.
            qchild_.up->removeHead();	    
            break;
          }

        // ExSeq_ERROR
        //
        // Transition to this state from ...
        // 1. ExSeq_WORKING_READ - a child reply with the type SQLERROR.
        // 2. ExSeq_WORKING_RETURN
        // 3. ExSeq_OVERFLOW_READ
        // 4. ExSeq_OVERFLOW_WRITE
        // Remain in this state until ..
        // 1. The error row has been returned to the parent.
        //
        // Transition from this state to ...
        // 1. ExSeq_CANCELLED - In all cases.
        //
        case ExSeq_ERROR:
          {
            // If there is no room in the parent queue for the reply,
            // try again later.
            //
            if (qparent_.up->isFull())
              // LCOV_EXCL_START
              return WORK_OK;
              // LCOV_EXCL_STOP

            ex_queue_entry *pentry_up = qparent_.up->getTailEntry();

            // Cancel the child request - there must be a child request in
            // progress to get to the ExSeq_ERROR state.
            //
            qchild_.down->cancelRequestWithParentIndex
              (qparent_.down->getHeadIndex());

            // Construct and return the error row.
            //
            if (workAtp_->getDiagsArea()) {
              ComDiagsArea * da = workAtp_->getDiagsArea();
              pentry_up->setDiagsArea(da);
              da->incrRefCount();
              workAtp_->setDiagsArea(0);
            }
            pentry_up->upState.status = ex_queue::Q_SQLERROR;
            pentry_up->upState.parentIndex 
              = pentry_down->downState.parentIndex;
            pentry_up->upState.downIndex = qparent_.down->getHeadIndex();
            pentry_up->upState.setMatchNo(pstate->matchCount_);
            qparent_.up->insert();

            // Transition to the ExSeq_CANCELLED state.
            //
            pstate->step_ = ExSeq_CANCELLED;
            break;
          }

        // ExSeq_WORKING_READ
        //
        // Transition to this state from ...
        // 1. ExSeq_EMPTY - If a request is started.
        // 2. ExSeq_WORKING_RETURN - 
        // 3. ExSeq_OVERFLOW_WRITE - 
        // Remain in this state until ...
        // 1. All child replies including EOD have been processed.
        // 2. A SQLERROR row is received.
        // 3. Enough rows have been returned.
        // 4. The request is cancelled.
        // 5. End of partition is reached
        // Transition from this state to ...
	// 2. ExSeq_ERROR - If an SQLERROR rows is received.
        // 3. ExSeq_CANCELLED - If the request is cancelled.
        // 4. ExSeq_WORKING_RETURN
        // 5. ExSeq_OVERFLOW_WRITE - 
        case ExSeq_WORKING_READ:
          {
            if(!isUnboundedFollowing() && isHistoryFull()) {
              pstate->step_ = ExSeq_WORKING_RETURN;
              break;
            }
            // If there are no replies, try again later.
            //
            if (qchild_.up->isEmpty())
              return WORK_OK;

            ex_queue_entry * centry = qchild_.up->getHeadEntry();
            switch (centry->upState.status)
            {
              // A data row from the child.
              //
            case ex_queue::Q_OK_MMORE:
              {
                tupp_descriptor histTupp;
                workAtp_->copyAtp(pentry_down->getAtp());
                workAtp_->getTupp(myTdb().tuppIndex_) = &histTupp;

                if ( checkPartitionChangeExpr() &&
                       currentHistRowPtr_)
                {
                  workAtp_->getTupp
                    (myTdb().tuppIndex_).setDataPointer(currentHistRowPtr_);

                  // Check whether the partition changed
                  ex_expr::exp_return_type retCode = checkPartitionChangeExpr()->eval(workAtp_, centry->getAtp());
                  
                  if (retCode == ex_expr::EXPR_ERROR)
                  {
                    // LCOV_EXCL_START
                    updateDiagsArea(centry);
                    pstate->step_ = ExSeq_ERROR;
                    break;
                    // LCOV_EXCL_STOP
                  }
                  if ( retCode == ex_expr::EXPR_FALSE)
                  {
                    setPartitionEnd(TRUE);
                    pstate->step_ = ExSeq_END_OF_PARTITION;
                    break;
                  }
                }


                if (isUnboundedFollowing() )
                {
                  if (OLAPBuffersFlushed_)
                  {
                    OLAPBuffersFlushed_ = FALSE;// current row is the first one in first buffer already
                  }
                  else
                  {
                    NABoolean noMemory = 
		      advanceHistoryRow( TRUE /* checkMemoryPressure */);
                    if (noMemory)
                    {
                      pstate->step_ = ExSeq_OVERFLOW_WRITE;
                      cluster_->nextBufferToFlush_ = firstOLAPBuffer_;
		      cluster_->afterLastBufferToFlush_ = NULL;//flush them all

		      // If it is the first overflow, for this partition
		      if ( ! memoryPressureDetected_ ) {
			memoryPressureDetected_ = TRUE;
			
		      } // memory pressure detected

                      break;
                    }
                  }
                }
                else
                {
                  advanceHistoryRow();
                }
 
                workAtp_->getTupp
                  (myTdb().tuppIndex_).setDataPointer(currentHistRowPtr_);

                ex_expr::exp_return_type retCode = ex_expr::EXPR_OK;

                // Apply the read phase sequence function expression to compute 
                // the values of the sequence functions.
                if (sequenceExpr())
                {
                  retCode = sequenceExpr()->eval(workAtp_, centry->getAtp());
                  if (retCode == ex_expr::EXPR_ERROR)
                  {
                    updateDiagsArea(centry);
                    pstate->step_ = ExSeq_ERROR;
                    break;
                  }
                }

                // merge the child's diags area into the work atp
                updateDiagsArea(centry);

                qchild_.up->removeHead();

                break;
              }

              // The EOD from the child. Transition to ExSeq_DONE.
              //
            case ex_queue::Q_NO_DATA:
              {
                setPartitionEnd(TRUE);
                if (isHistoryEmpty())
                {
                  pstate->step_ = ExSeq_DONE;
                  qchild_.up->removeHead();
                }
                else
                {
                  pstate->step_ = ExSeq_END_OF_PARTITION;
                }
              }
              break;

              // An SQLERROR from the child. Transition to ExSeq_ERROR.
              //
            case ex_queue::Q_SQLERROR:
              updateDiagsArea(centry);
              pstate->step_ = ExSeq_ERROR;
              break;
            }
          }
          break;
        // ExSeq_WORKING_RETURN
        //
        // Transition to this state from ...
        // 1. ExSeq_WORKING_READ - 
        // 2. ExSeq_OVERFLOW_READ - 
        // 3. ExSeq_END_OF_PARTITION - 
        // Remain in this state until ...
        // 1. All rows are returned.
        // 2. A SQLERROR row is received.
        // 3. Enough rows have been returned.
        //
        // Transition from this state to ...
        // 1. ExSeq_DONE - If all the child rows including EOD have 
        //    been processed.
        // 2. ExSeq_ERROR - If an SQLERROR rows is received.
        // 3. ExSeq_CANCELLED - If enough rows have been returned.
        // 4. ExSeq_CANCELLED - If the request is cancelled.
        // 5. ExSeq_WORKING_RETURN        
        // 6. ExSeq_DONE   
	// 7. ExSeq_OVERFLOW_READ     
        case ExSeq_WORKING_RETURN:
          {
            // If there is not room in the parent Queue for the reply,
            // try again later.
            //
            if (qparent_.up->isFull())
              return WORK_OK;

            if(isHistoryEmpty()) 
            {
              ex_queue_entry * centry = NULL;
              if(!qchild_.up->isEmpty()) 
              {
                centry = qchild_.up->getHeadEntry();
              }
              if(centry && (centry->upState.status == ex_queue::Q_NO_DATA)) 
              {
                pstate->step_ = ExSeq_DONE;
                qchild_.up->removeHead();
              } 
              else 
              {
                pstate->step_ = ExSeq_WORKING_READ;

                if (getPartitionEnd())
                {
                  initializeHistory();
                }
              }
              break;
            }

            if(!canReturnRows() && 
               !getPartitionEnd() &&
               !isUnboundedFollowing() &&
               !isOverflowStarted()) // redundant? because not unbounded ... 
            {
              pstate->step_ = ExSeq_WORKING_READ;
              break;
            }
            
            ex_queue_entry * pentry_up = qparent_.up->getTailEntry();
                
            pentry_up->copyAtp(pentry_down);
            // Try to allocate a tupp.
            //
            if (pool_->get_free_tuple(pentry_up->getTupp(myTdb().tuppIndex_),
                                      recLen()))
              // LCOV_EXCL_START
              return WORK_POOL_BLOCKED;
              // LCOV_EXCL_STOP 

            char *tuppData = pentry_up->getTupp
              (myTdb().tuppIndex_).getDataPointer();

            advanceReturnHistoryRow();

            char *histData = currentRetHistRowPtr_; 
            pentry_up->getTupp
              (myTdb().tuppIndex_).setDataPointer(histData);

            ex_expr::exp_return_type retCode = ex_expr::EXPR_OK;
            // Apply the return phase expression
            if(returnExpr())
            {
              retCode = returnExpr()->eval(pentry_up->getAtp(),workAtp_);
              if (retCode == ex_expr::EXPR_ERROR)
              {
                // LCOV_EXCL_START
                pstate->step_ = ExSeq_ERROR;
                break;
                // LCOV_EXCL_STOP
              }
            }

            retCode = ex_expr::EXPR_OK;
            //Apply post predicate expression  
            if (postPred()) 
            {
              retCode = postPred()->eval(pentry_up->getAtp(),pentry_up->getAtp());
              if (retCode == ex_expr::EXPR_ERROR)
              {
                // LCOV_EXCL_START
                pstate->step_ = ExSeq_ERROR;
                break;
                // LCOV_EXCL_STOP
              }
            }

//pentry_up->getAtp()->display("return eval result", myTdb().getCriDescUp());

            //
            // Case-10-030724-7963: we are done pointing the tupp at the
            // history buffer, so point it back to the SQL buffer.
            //
            pentry_up->getTupp
              (myTdb().tuppIndex_).setDataPointer(tuppData);

            switch(retCode) {
            case ex_expr::EXPR_OK:
            case ex_expr::EXPR_TRUE:
            case ex_expr::EXPR_NULL:

              // Copy the row that was computed in the history buffer,
              // to the space previously allocated in the SQL buffer.

              str_cpy_all(tuppData, histData, recLen());

              // Return the processed row.
              //

              // Finalize the queue entry, then insert it
              //
              pentry_up->upState.status = ex_queue::Q_OK_MMORE;
              pentry_up->upState.parentIndex 
                = pentry_down->downState.parentIndex;
              pentry_up->upState.downIndex =
                qparent_.down->getHeadIndex();
              pstate->matchCount_++;
              pentry_up->upState.setMatchNo(pstate->matchCount_);
              qparent_.up->insert();
              break;

              // If the selection predicate returns FALSE,
              // do not return the child row.
              //
            case ex_expr::EXPR_FALSE:
              break;
                    
              // If the selection predicate returns an ERROR,
              // go to the error processing state.
              //
            case ex_expr::EXPR_ERROR:
              // LCOV_EXCL_START
              pstate->step_ = ExSeq_ERROR;
              // LCOV_EXCL_STOP
              break;
            }

            // MV --
            // Now, if there are no errors so far, evaluate the
            // cancel expression
            if ((pstate->step_ != ExSeq_ERROR) && cancelExpr()) 
              {

                // Temporarily point the tupp to the tail of the
                // history buffer for evaluating the
                // expressions.
                //
                pentry_up->getTupp
                  (myTdb().tuppIndex_).setDataPointer(histData);

                retCode = 
                  cancelExpr()->eval(pentry_up->getAtp(),pentry_up->getAtp());
        
                // We are done pointing the tupp at the history
                // buffer, so point it back to the SQL buffer.
                //
                pentry_up->getTupp
                  (myTdb().tuppIndex_).setDataPointer(tuppData);

                if (retCode == ex_expr::EXPR_TRUE)
                  {
                    qchild_.down->cancelRequestWithParentIndex
                      (qparent_.down->getHeadIndex());
                    pstate->step_ = ExSeq_CANCELLED;
                  }
              }

            updateHistRowsToReturn();
            if ( isOverflowStarted() )
            {
              numberOfRowsReturnedBeforeReadOF_ ++;
              if (numberOfRowsReturnedBeforeReadOF_ == maxNumberOfRowsReturnedBeforeReadOF_)
              {
                firstOLAPBufferFromOF_ = currentRetOLAPBuffer_->getNext();
                if (firstOLAPBufferFromOF_ == NULL)
                {
                  firstOLAPBufferFromOF_ = firstOLAPBuffer_;
                }
                for( Int32 i = 0; i < numberOfWinOLAPBuffers_; i++)
                {
                  firstOLAPBufferFromOF_ = firstOLAPBufferFromOF_->getNext();
                  if (firstOLAPBufferFromOF_ == NULL)
                  {
                    firstOLAPBufferFromOF_ = firstOLAPBuffer_;
                  }
                }
                numberOfOLAPBuffersFromOF_ = numberOfOLAPBuffers_ - numberOfWinOLAPBuffers_;

		cluster_->nextBufferToRead_ = firstOLAPBufferFromOF_;
		HashBuffer * afterLast = firstOLAPBufferFromOF_; 
		// last buffer to read into is the current buffer - maybe ?
		for ( Lng32 bufcount = numberOfOLAPBuffersFromOF_ ;
		      bufcount ;
		      bufcount-- ) {
		  afterLast = afterLast->getNext() ;
		  // Don't cycle back if bufcount == 1 because the logic in
		  // Cluster::read relies on the NULL ptr to stop reading
		  if ( bufcount > 1 && ! afterLast ) 
		    afterLast = firstOLAPBuffer_; // cycle back
		}
		// The last buffer to read to is always the current buffer
		// ex_assert ( afterLast == currentRetOLAPBuffer_->getNext(),
		//	    "Miscalculated the last buffer to read into"); 

		cluster_->afterLastBufferToRead_ = afterLast;

                pstate->step_ = ExSeq_OVERFLOW_READ;
              }
            }
          }
          break;

        // ExSeq_END_OF_PARTITION
        //
        // Transition to this state from ...
        // 1. ExSeq_WORKING_READ - 
        // Transition from this state to ...
        // 1. ExSeq_OVERFLOW_WRITE
        // 2. ExSeq_WORKING_RETURN        

        case ExSeq_END_OF_PARTITION:
        {
          setPartitionEnd(TRUE);
          if (lastRow_  && isUnboundedFollowing())
          {
            ex_assert(currentHistRowPtr_ != NULL, "ExSequenceTcb::work() - currentHistRowPtr_ is a NULL pointer");
            str_cpy_all(lastRow_, currentHistRowPtr_, recLen()); 
          }

          if ( isOverflowStarted() ) // we are overflowing
          {
            cluster_->nextBufferToFlush_ = firstOLAPBuffer_;
	    // do not flush beyond the current buffer
	    cluster_->afterLastBufferToFlush_ = currentOLAPBuffer_->getNext();
            pstate->step_ = ExSeq_OVERFLOW_WRITE;
          }
          else
          {
            pstate->step_ = ExSeq_WORKING_RETURN;
          }
        }
        break;

        // ExSeq_OVERFLOW_WRITE
        //
        // Transition to this state from ...
        // 1. ExSeq_WORKING_READ - 
        // 2. ExSeq_END_OF_PARTITION - 
        // Remain in this state until ...
        // 1. OLAPbuffers are written to oveflow space.
        // 2. An error occurs
        //
        // Transition from this state to ...
        // 1. ExSeq_OVERFLOW_READ
        // 2. ExSeq_ERROR - If an error occurs
        case ExSeq_OVERFLOW_WRITE:
        {
          if (!overflowEnabled_)
          {
           // LCOV_EXCL_START
           // used for debugging when CmpCommon::getDefault(EXE_BMO_DISABLE_OVERFLOW)is set to off ;
            updateDiagsArea(EXE_OLAP_OVERFLOW_NOT_SUPPORTED);
            pstate->step_ = ExSeq_ERROR;
            break;
            // LCOV_EXCL_STOP
          }
          ex_assert(isUnboundedFollowing(),"");
 
	  if ( ! cluster_->flush(&rc_) ) {  // flush the buffers
            // LCOV_EXCL_START
            // if no errors this code path is not visited
	    if ( rc_ ) 
            { // some error
              updateDiagsArea( rc_);
              pstate->step_ = ExSeq_ERROR;
	      break;
	    }
            // LCOV_EXCL_STOP
	    // not all the buffers are completely flushed. An I/O is pending
            // LCOV_EXCL_START
            // maybe we cane remove in the future
	    return WORK_OK; 
            // LCOV_EXCL_STOP
	  }

	  // At this point -- all the buffers were completely flushed

	  OLAPBuffersFlushed_ = TRUE;

          if (getPartitionEnd())
          {
            firstOLAPBufferFromOF_ = firstOLAPBuffer_;
            numberOfOLAPBuffersFromOF_ = numberOfOLAPBuffers_;

	    cluster_->nextBufferToRead_ = firstOLAPBufferFromOF_;
	    // First time we read and fill all the buffers
	    cluster_->afterLastBufferToRead_ = NULL; 

            pstate->step_ = ExSeq_OVERFLOW_READ;  
          }
          else
          {
            pstate->step_ = ExSeq_WORKING_READ;
          }
        }
        break;
        // ExSeq_OVERFLOW_READ
        //
        // Transition to this state from ...
        // 1. ExSeq_OVERFLOW_WRITE  
        // 2. ExSeq_WORKING_RETURN 
        // Remain in this state until ...
        // 1. OLAPbuffers are read from oveflow space.
        // 2. An error occurs
        //
        // Transition from this state to ...
        // 1. ExSeq_WORKING_RETURN
        // 2. ExSeq_ERROR - If an error occurs
         case ExSeq_OVERFLOW_READ:
        {

            assert(firstOLAPBufferFromOF_ &&
                    isUnboundedFollowing() );

	    if ( ! cluster_->read(&rc_) ) {
              // LCOV_EXCL_START
	      if ( rc_ ) { // some error
                updateDiagsArea( rc_);
		pstate->step_ = ExSeq_ERROR;
		break;
	      }
              // LCOV_EXCL_STOP
	      // not all the buffers are completely read. An I/O is pending
              // LCOV_EXCL_START
	      return WORK_OK;
              // LCOV_EXCL_STOP 
	    }

            numberOfRowsReturnedBeforeReadOF_ = 0;
            pstate->step_ = ExSeq_WORKING_RETURN;
	}
	break;

        // ExSeq_DONE
        //
        // Transition to the state from ...
        // 1. ExSeq_WORKING_RETURN - if all child rows have been processed.
        // 2. ExSeq_CANCELLED - if all child rows have been consumed.
        // 3. ExSeq_EMPTY - if the request was DOA.
        //
        // Remain in this state until ...
        // 1. The EOD is returned to the parent.
        //
        // Transition from this state to ...
        // 1. ExSeq_EMPTY - In all cases.
        //
        case ExSeq_DONE:
          {
            // If there is not any room in the parent's queue, 
            // try again later.
            //
            if (qparent_.up->isFull())
              // LCOV_EXCL_START
              return WORK_OK;
              // LCOV_EXCL_STOP
            
            ex_queue_entry * pentry_up = qparent_.up->getTailEntry();
            pentry_up->upState.status = ex_queue::Q_NO_DATA;
            pentry_up->upState.parentIndex 
              = pentry_down->downState.parentIndex;
            pentry_up->upState.downIndex = qparent_.down->getHeadIndex();
            pentry_up->upState.setMatchNo(pstate->matchCount_);
            
            qparent_.down->removeHead();
            qparent_.up->insert();

            // Re-initialize pstate
            //
            pstate->step_ = ExSeq_EMPTY;
            pstate->matchCount_ = 0;
            workAtp_->release();

            // Initialize the history buffer in preparation for the
            // next request.
            //
            initializeHistory();

            // If there are no more requests, simply return.
            //
            if (qparent_.down->isEmpty())
              return WORK_OK;
           
            // LCOV_EXCL_START
            // If we haven't given to our child the new head
            // index return and ask to be called again.
            //
            if (qparent_.down->getHeadIndex() == processedInputs_)
              return WORK_CALL_AGAIN;

            // Position at the new head of the request queue.
            //
            pentry_down = qparent_.down->getHeadEntry();
            pstate = (ExSequencePrivateState*) pentry_down->pstate;
            request = pentry_down->downState.request; 
            // LCOV_EXCL_STOP
          }
        break;
        } // switch pstate->step_
    } // while
}
void ExSequenceTcb::initializeHistory()
{
  currentOLAPBuffer_ = NULL;
  currentHistRowInOLAPBuffer_ = 0;
  currentHistRowPtr_ = NULL;

  currentRetOLAPBuffer_ = NULL;
  currentRetHistRowInOLAPBuffer_ = 0;
  currentRetHistRowPtr_ = NULL;

  numberHistoryRows_ = 0;
  histRowsToReturn_ = 0;
  partitionEnd_ = FALSE;

  // allocate the minimum number of olap buffers
  if (firstOLAPBuffer_ == NULL)
  {
    for (Int32 i = 0 ; i < minNumberOfOLAPBuffers_; i++)
    {
      if ( ! addNewOLAPBuffer( FALSE /* No Memory Pressure Check */ ) ) 
        // LCOV_EXCL_START
        ex_assert(0, "No memory for minimal OLAP window!");
        // LCOV_EXCL_STOP
    }
  }  
  else
  {
    if (!shrinkOLAPBufferList())
      // LCOV_EXCL_START
      ex_assert(0,"initializeHistory-- can not shrink buffer list");
       // LCOV_EXCL_STOP
  }

  // Initialize all the settings needed for unbounded following (and overflow)
  if ( isUnboundedFollowing() )
  {
      //last row in partition
    if (lastRow_ == NULL)
    {
      lastRow_ = new(heap_) char[recLen()];
      ex_assert( lastRow_ , "No memory available for OLAP Operator");
    }

    // initialize parameters needed for overflow handling
    OLAPBuffersFlushed_ = FALSE;
    
    firstOLAPBufferFromOF_ = NULL;
    numberOfOLAPBuffersFromOF_ = 0;
    
    memoryPressureDetected_ = FALSE;
    numberOfRowsReturnedBeforeReadOF_ = 0;

    createCluster();

    // Cluster needs to know the first buffer in the OLAP list of buffers
    // (Currently only used when reading buffers from overflow for
    //  "bounded following", where Cluster::read() may need to jump back to
    //  first buffer in the list.)
    cluster_->firstBufferInList_ = firstOLAPBuffer_ ;

  } // if ( isUnboundedFollowing() )
}