Example #1
0
template<typename Scalar> void sparse_lu(int rows, int cols)
{
    double density = std::max(8./(rows*cols), 0.01);
    typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
    typedef Matrix<Scalar,Dynamic,1> DenseVector;

    DenseVector vec1 = DenseVector::Random(rows);

    std::vector<Vector2i> zeroCoords;
    std::vector<Vector2i> nonzeroCoords;

    SparseMatrix<Scalar> m2(rows, cols);
    DenseMatrix refMat2(rows, cols);

    DenseVector b = DenseVector::Random(cols);
    DenseVector refX(cols), x(cols);

    initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag, &zeroCoords, &nonzeroCoords);

    FullPivLU<DenseMatrix> refLu(refMat2);
    refX = refLu.solve(b);
#if defined(EIGEN_SUPERLU_SUPPORT) || defined(EIGEN_UMFPACK_SUPPORT)
    Scalar refDet = refLu.determinant();
#endif
    x.setZero();
    // // SparseLU<SparseMatrix<Scalar> > (m2).solve(b,&x);
    // // VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: default");

#ifdef EIGEN_UMFPACK_SUPPORT
    {
        // check solve
        x.setZero();
        SparseLU<SparseMatrix<Scalar>,UmfPack> lu(m2);
        VERIFY(lu.succeeded() && "umfpack LU decomposition failed");
        VERIFY(lu.solve(b,&x) && "umfpack LU solving failed");
        VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: umfpack");
        VERIFY_IS_APPROX(refDet,lu.determinant());
        // TODO check the extracted data
        //std::cerr << slu.matrixL() << "\n";
    }
#endif

#ifdef EIGEN_SUPERLU_SUPPORT
    {
        x.setZero();
        SparseLU<SparseMatrix<Scalar>,SuperLU> slu(m2);
        if (slu.succeeded())
        {
            if (slu.solve(b,&x)) {
                VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: SuperLU");
            }
            // std::cerr << refDet << " == " << slu.determinant() << "\n";
            if (slu.solve(b, &x, SvTranspose)) {
                VERIFY(b.isApprox(m2.transpose() * x, test_precision<Scalar>()));
            }

            if (slu.solve(b, &x, SvAdjoint)) {
                VERIFY(b.isApprox(m2.adjoint() * x, test_precision<Scalar>()));
            }

            if (!NumTraits<Scalar>::IsComplex) {
                VERIFY_IS_APPROX(refDet,slu.determinant()); // FIXME det is not very stable for complex
            }
        }
    }
#endif

}
template<typename Scalar> void sparse_solvers(int rows, int cols)
{
  double density = std::max(8./(rows*cols), 0.01);
  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
  typedef Matrix<Scalar,Dynamic,1> DenseVector;
  // Scalar eps = 1e-6;

  DenseVector vec1 = DenseVector::Random(rows);

  std::vector<Vector2i> zeroCoords;
  std::vector<Vector2i> nonzeroCoords;

  // test triangular solver
  {
    DenseVector vec2 = vec1, vec3 = vec1;
    SparseMatrix<Scalar> m2(rows, cols);
    DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);

    // lower
    initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, &zeroCoords, &nonzeroCoords);
    VERIFY_IS_APPROX(refMat2.template marked<LowerTriangular>().solveTriangular(vec2),
                     m2.template marked<LowerTriangular>().solveTriangular(vec3));

    // lower - transpose
    initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, &zeroCoords, &nonzeroCoords);
    VERIFY_IS_APPROX(refMat2.template marked<LowerTriangular>().transpose().solveTriangular(vec2),
                     m2.template marked<LowerTriangular>().transpose().solveTriangular(vec3));

    // upper
    initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, &zeroCoords, &nonzeroCoords);
    VERIFY_IS_APPROX(refMat2.template marked<UpperTriangular>().solveTriangular(vec2),
                     m2.template marked<UpperTriangular>().solveTriangular(vec3));

    // upper - transpose
    initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, &zeroCoords, &nonzeroCoords);
    VERIFY_IS_APPROX(refMat2.template marked<UpperTriangular>().transpose().solveTriangular(vec2),
                     m2.template marked<UpperTriangular>().transpose().solveTriangular(vec3));
  }

  // test LLT
  {
    // TODO fix the issue with complex (see SparseLLT::solveInPlace)
    SparseMatrix<Scalar> m2(rows, cols);
    DenseMatrix refMat2(rows, cols);

    DenseVector b = DenseVector::Random(cols);
    DenseVector refX(cols), x(cols);

    initSPD(density, refMat2, m2);

    refMat2.llt().solve(b, &refX);
    typedef SparseMatrix<Scalar,LowerTriangular|SelfAdjoint> SparseSelfAdjointMatrix;
    if (!NumTraits<Scalar>::IsComplex)
    {
      x = b;
      SparseLLT<SparseSelfAdjointMatrix> (m2).solveInPlace(x);
      VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: default");
    }
    #ifdef EIGEN_CHOLMOD_SUPPORT
    x = b;
    SparseLLT<SparseSelfAdjointMatrix,Cholmod>(m2).solveInPlace(x);
    VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod");
    #endif
    if (!NumTraits<Scalar>::IsComplex)
    {
      #ifdef EIGEN_TAUCS_SUPPORT
      x = b;
      SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,IncompleteFactorization).solveInPlace(x);
      VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (IncompleteFactorization)");
      x = b;
      SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,SupernodalMultifrontal).solveInPlace(x);
      VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalMultifrontal)");
      x = b;
      SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,SupernodalLeftLooking).solveInPlace(x);
      VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalLeftLooking)");
      #endif
    }
  }

  // test LDLT
  if (!NumTraits<Scalar>::IsComplex)
  {
    // TODO fix the issue with complex (see SparseLDLT::solveInPlace)
    SparseMatrix<Scalar> m2(rows, cols);
    DenseMatrix refMat2(rows, cols);

    DenseVector b = DenseVector::Random(cols);
    DenseVector refX(cols), x(cols);

    //initSPD(density, refMat2, m2);
    initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, 0, 0);
    refMat2 += refMat2.adjoint();
    refMat2.diagonal() *= 0.5;

    refMat2.ldlt().solve(b, &refX);
    typedef SparseMatrix<Scalar,UpperTriangular|SelfAdjoint> SparseSelfAdjointMatrix;
    x = b;
    SparseLDLT<SparseSelfAdjointMatrix> ldlt(m2);
    if (ldlt.succeeded())
      ldlt.solveInPlace(x);
    VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: default");
  }

  // test LU
  {
    static int count = 0;
    SparseMatrix<Scalar> m2(rows, cols);
    DenseMatrix refMat2(rows, cols);

    DenseVector b = DenseVector::Random(cols);
    DenseVector refX(cols), x(cols);

    initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag, &zeroCoords, &nonzeroCoords);

    LU<DenseMatrix> refLu(refMat2);
    refLu.solve(b, &refX);
    #if defined(EIGEN_SUPERLU_SUPPORT) || defined(EIGEN_UMFPACK_SUPPORT)
    Scalar refDet = refLu.determinant();
    #endif
    x.setZero();
    // // SparseLU<SparseMatrix<Scalar> > (m2).solve(b,&x);
    // // VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: default");
    #ifdef EIGEN_SUPERLU_SUPPORT
    {
      x.setZero();
      SparseLU<SparseMatrix<Scalar>,SuperLU> slu(m2);
      if (slu.succeeded())
      {
        if (slu.solve(b,&x)) {
          VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: SuperLU");
        }
        // std::cerr << refDet << " == " << slu.determinant() << "\n";
        if (count==0) {
          VERIFY_IS_APPROX(refDet,slu.determinant()); // FIXME det is not very stable for complex
        }
      }
    }
    #endif
    #ifdef EIGEN_UMFPACK_SUPPORT
    {
      // check solve
      x.setZero();
      SparseLU<SparseMatrix<Scalar>,UmfPack> slu(m2);
      if (slu.succeeded()) {
        if (slu.solve(b,&x)) {
          if (count==0) {
            VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: umfpack");  // FIXME solve is not very stable for complex
          }
        }
        VERIFY_IS_APPROX(refDet,slu.determinant());
        // TODO check the extracted data
        //std::cerr << slu.matrixL() << "\n";
      }
    }
    #endif
    count++;
  }

}