Example #1
0
void ff_aac_apply_main_pred(AACEncContext *s, SingleChannelElement *sce)
{
    int sfb, k;
    const int pmax = FFMIN(sce->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);

    if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
        for (sfb = 0; sfb < pmax; sfb++) {
            for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) {
                predict(&sce->predictor_state[k], &sce->coeffs[k], &sce->prcoeffs[k],
                        sce->ics.predictor_present && sce->ics.prediction_used[sfb]);
            }
        }
        if (sce->ics.predictor_reset_group) {
            reset_predictor_group(sce, sce->ics.predictor_reset_group);
        }
    } else {
        reset_all_predictors(sce->predictor_state);
    }
}
Example #2
0
static uint8_t allocate_channel_pair(NeAACDecHandle hDecoder,
                                     uint8_t channel, uint8_t paired_channel)
{
    uint8_t mul = 1;

#ifdef MAIN_DEC
    /* MAIN object type prediction */
    if (hDecoder->object_type == MAIN)
    {
        /* allocate the state only when needed */
        if (hDecoder->pred_stat[channel] == NULL)
        {
            hDecoder->pred_stat[channel] = (pred_state*)faad_malloc(hDecoder->frameLength * sizeof(pred_state));
            reset_all_predictors(hDecoder->pred_stat[channel], hDecoder->frameLength);
        }
        if (hDecoder->pred_stat[paired_channel] == NULL)
        {
            hDecoder->pred_stat[paired_channel] = (pred_state*)faad_malloc(hDecoder->frameLength * sizeof(pred_state));
            reset_all_predictors(hDecoder->pred_stat[paired_channel], hDecoder->frameLength);
        }
    }
#endif

#ifdef LTP_DEC
    if (is_ltp_ot(hDecoder->object_type))
    {
        /* allocate the state only when needed */
        if (hDecoder->lt_pred_stat[channel] == NULL)
        {
            hDecoder->lt_pred_stat[channel] = (int16_t*)faad_malloc(hDecoder->frameLength*4 * sizeof(int16_t));
            memset(hDecoder->lt_pred_stat[channel], 0, hDecoder->frameLength*4 * sizeof(int16_t));
        }
        if (hDecoder->lt_pred_stat[paired_channel] == NULL)
        {
            hDecoder->lt_pred_stat[paired_channel] = (int16_t*)faad_malloc(hDecoder->frameLength*4 * sizeof(int16_t));
            memset(hDecoder->lt_pred_stat[paired_channel], 0, hDecoder->frameLength*4 * sizeof(int16_t));
        }
    }
#endif

    if (hDecoder->time_out[channel] == NULL)
    {
        mul = 1;
#ifdef SBR_DEC
        hDecoder->sbr_alloced[hDecoder->fr_ch_ele] = 0;
        if ((hDecoder->sbr_present_flag == 1) || (hDecoder->forceUpSampling == 1))
        {
            /* SBR requires 2 times as much output data */
            mul = 2;
            hDecoder->sbr_alloced[hDecoder->fr_ch_ele] = 1;
        }
#endif
        hDecoder->time_out[channel] = (real_t*)faad_malloc(mul*hDecoder->frameLength*sizeof(real_t));
        memset(hDecoder->time_out[channel], 0, mul*hDecoder->frameLength*sizeof(real_t));
    }
    if (hDecoder->time_out[paired_channel] == NULL)
    {
        hDecoder->time_out[paired_channel] = (real_t*)faad_malloc(mul*hDecoder->frameLength*sizeof(real_t));
        memset(hDecoder->time_out[paired_channel], 0, mul*hDecoder->frameLength*sizeof(real_t));
    }

    if (hDecoder->fb_intermed[channel] == NULL)
    {
        hDecoder->fb_intermed[channel] = (real_t*)faad_malloc(hDecoder->frameLength*sizeof(real_t));
        memset(hDecoder->fb_intermed[channel], 0, hDecoder->frameLength*sizeof(real_t));
    }
    if (hDecoder->fb_intermed[paired_channel] == NULL)
    {
        hDecoder->fb_intermed[paired_channel] = (real_t*)faad_malloc(hDecoder->frameLength*sizeof(real_t));
        memset(hDecoder->fb_intermed[paired_channel], 0, hDecoder->frameLength*sizeof(real_t));
    }

#ifdef SSR_DEC
    if (hDecoder->object_type == SSR)
    {
        if (hDecoder->ssr_overlap[cpe->channel] == NULL)
        {
            hDecoder->ssr_overlap[cpe->channel] = (real_t*)faad_malloc(2*hDecoder->frameLength*sizeof(real_t));
            memset(hDecoder->ssr_overlap[cpe->channel], 0, 2*hDecoder->frameLength*sizeof(real_t));
        }
        if (hDecoder->ssr_overlap[cpe->paired_channel] == NULL)
        {
            hDecoder->ssr_overlap[cpe->paired_channel] = (real_t*)faad_malloc(2*hDecoder->frameLength*sizeof(real_t));
            memset(hDecoder->ssr_overlap[cpe->paired_channel], 0, 2*hDecoder->frameLength*sizeof(real_t));
        }
        if (hDecoder->prev_fmd[cpe->channel] == NULL)
        {
            uint16_t k;
            hDecoder->prev_fmd[cpe->channel] = (real_t*)faad_malloc(2*hDecoder->frameLength*sizeof(real_t));
            for (k = 0; k < 2*hDecoder->frameLength; k++)
                hDecoder->prev_fmd[cpe->channel][k] = REAL_CONST(-1);
        }
        if (hDecoder->prev_fmd[cpe->paired_channel] == NULL)
        {
            uint16_t k;
            hDecoder->prev_fmd[cpe->paired_channel] = (real_t*)faad_malloc(2*hDecoder->frameLength*sizeof(real_t));
            for (k = 0; k < 2*hDecoder->frameLength; k++)
                hDecoder->prev_fmd[cpe->paired_channel][k] = REAL_CONST(-1);
        }
    }
#endif

    return 0;
}
Example #3
0
void ff_aac_search_for_pred(AACEncContext *s, SingleChannelElement *sce)
{
    int sfb, i, count = 0, cost_coeffs = 0, cost_pred = 0;
    const int pmax = FFMIN(sce->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
    float *O34  = &s->scoefs[128*0], *P34 = &s->scoefs[128*1];
    float *SENT = &s->scoefs[128*2], *S34 = &s->scoefs[128*3];
    float *QERR = &s->scoefs[128*4];

    if (sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
        sce->ics.predictor_present = 0;
        return;
    }

    if (!sce->ics.predictor_initialized) {
        reset_all_predictors(sce->predictor_state);
        sce->ics.predictor_initialized = 1;
        memcpy(sce->prcoeffs, sce->coeffs, 1024*sizeof(float));
        for (i = 1; i < 31; i++)
            sce->ics.predictor_reset_count[i] = i;
    }

    update_pred_resets(sce);
    memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type));

    for (sfb = PRED_SFB_START; sfb < pmax; sfb++) {
        int cost1, cost2, cb_p;
        float dist1, dist2, dist_spec_err = 0.0f;
        const int cb_n = sce->band_type[sfb];
        const int start_coef = sce->ics.swb_offset[sfb];
        const int num_coeffs = sce->ics.swb_offset[sfb + 1] - start_coef;
        const FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[sfb];

        if (start_coef + num_coeffs > MAX_PREDICTORS ||
            (s->cur_channel && sce->band_type[sfb] >= INTENSITY_BT2) ||
            sce->band_type[sfb] == NOISE_BT)
            continue;

        /* Normal coefficients */
        abs_pow34_v(O34, &sce->coeffs[start_coef], num_coeffs);
        dist1 = quantize_and_encode_band_cost(s, NULL, &sce->coeffs[start_coef], NULL,
                                              O34, num_coeffs, sce->sf_idx[sfb],
                                              cb_n, s->lambda / band->threshold, INFINITY, &cost1, NULL, 0);
        cost_coeffs += cost1;

        /* Encoded coefficients - needed for #bits, band type and quant. error */
        for (i = 0; i < num_coeffs; i++)
            SENT[i] = sce->coeffs[start_coef + i] - sce->prcoeffs[start_coef + i];
        abs_pow34_v(S34, SENT, num_coeffs);
        if (cb_n < RESERVED_BT)
            cb_p = find_min_book(find_max_val(1, num_coeffs, S34), sce->sf_idx[sfb]);
        else
            cb_p = cb_n;
        quantize_and_encode_band_cost(s, NULL, SENT, QERR, S34, num_coeffs,
                                      sce->sf_idx[sfb], cb_p, s->lambda / band->threshold, INFINITY,
                                      &cost2, NULL, 0);

        /* Reconstructed coefficients - needed for distortion measurements */
        for (i = 0; i < num_coeffs; i++)
            sce->prcoeffs[start_coef + i] += QERR[i] != 0.0f ? (sce->prcoeffs[start_coef + i] - QERR[i]) : 0.0f;
        abs_pow34_v(P34, &sce->prcoeffs[start_coef], num_coeffs);
        if (cb_n < RESERVED_BT)
            cb_p = find_min_book(find_max_val(1, num_coeffs, P34), sce->sf_idx[sfb]);
        else
            cb_p = cb_n;
        dist2 = quantize_and_encode_band_cost(s, NULL, &sce->prcoeffs[start_coef], NULL,
                                              P34, num_coeffs, sce->sf_idx[sfb],
                                              cb_p, s->lambda / band->threshold, INFINITY, NULL, NULL, 0);
        for (i = 0; i < num_coeffs; i++)
            dist_spec_err += (O34[i] - P34[i])*(O34[i] - P34[i]);
        dist_spec_err *= s->lambda / band->threshold;
        dist2 += dist_spec_err;

        if (dist2 <= dist1 && cb_p <= cb_n) {
            cost_pred += cost2;
            sce->ics.prediction_used[sfb] = 1;
            sce->band_alt[sfb]  = cb_n;
            sce->band_type[sfb] = cb_p;
            count++;
        } else {
            cost_pred += cost1;
            sce->band_alt[sfb] = cb_p;
        }
    }

    if (count && cost_coeffs < cost_pred) {
        count = 0;
        for (sfb = PRED_SFB_START; sfb < pmax; sfb++)
            RESTORE_PRED(sce, sfb);
        memset(&sce->ics.prediction_used, 0, sizeof(sce->ics.prediction_used));
    }

    sce->ics.predictor_present = !!count;
}