Example #1
0
TEST_F(ResourceOffersTest, ResourcesGetReofferedWhenUnused)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  Owned<MasterDetector> detector = master.get()->createDetector();
  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get());
  ASSERT_SOME(slave);

  MockScheduler sched1;
  MesosSchedulerDriver driver1(
      &sched1, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched1, registered(&driver1, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched1, resourceOffers(&driver1, _))
    .WillOnce(FutureArg<1>(&offers));

  driver1.start();

  AWAIT_READY(offers);
  ASSERT_FALSE(offers->empty());

  vector<TaskInfo> tasks; // Use nothing!
  driver1.launchTasks(offers.get()[0].id(), tasks);

  MockScheduler sched2;
  MesosSchedulerDriver driver2(
      &sched2, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched2, registered(&driver2, _, _));

  EXPECT_CALL(sched2, resourceOffers(&driver2, _))
    .WillOnce(FutureArg<1>(&offers));

  driver2.start();

  AWAIT_READY(offers);

  // Stop first framework before second so no offers are sent.
  driver1.stop();
  driver1.join();

  driver2.stop();
  driver2.join();
}
TEST_F(ResourceOffersTest, ResourcesGetReofferedAfterFrameworkStops)
{
  Try<PID<Master>> master = StartMaster();
  ASSERT_SOME(master);

  Try<PID<Slave>> slave = StartSlave();
  ASSERT_SOME(slave);

  MockScheduler sched1;
  MesosSchedulerDriver driver1(
      &sched1, DEFAULT_FRAMEWORK_INFO, master.get(), DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched1, registered(&driver1, _, _))
    .Times(1);

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched1, resourceOffers(&driver1, _))
    .WillOnce(FutureArg<1>(&offers));

  driver1.start();

  AWAIT_READY(offers);
  EXPECT_NE(0u, offers.get().size());

  driver1.stop();
  driver1.join();

  MockScheduler sched2;
  MesosSchedulerDriver driver2(
      &sched2, DEFAULT_FRAMEWORK_INFO, master.get(), DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched2, registered(&driver2, _, _))
    .Times(1);

  EXPECT_CALL(sched2, resourceOffers(&driver2, _))
    .WillOnce(FutureArg<1>(&offers));

  driver2.start();

  AWAIT_READY(offers);

  driver2.stop();
  driver2.join();

  Shutdown();
}
// This is a simple end to end test that makes sure a master using log
// storage with ZooKeeper can successfully launch a task.
TEST_F(RegistrarZooKeeperTest, TaskRunning)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);
  TestContainerizer containerizer(&exec);

  Owned<MasterDetector> detector = master.get()->createDetector();
  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get(), &containerizer);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_NE(0u, offers->size());

  TaskInfo task = createTask(offers.get()[0], "dummy", DEFAULT_EXECUTOR_ID);

  EXPECT_CALL(exec, registered(_, _, _, _));

  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_RUNNING));

  Future<Nothing> resourcesUpdated;
  EXPECT_CALL(containerizer,
              update(_, Resources(offers.get()[0].resources())))
    .WillOnce(DoAll(FutureSatisfy(&resourcesUpdated),
                    Return(Nothing())));

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status));

  driver.launchTasks(offers.get()[0].id(), {task});

  AWAIT_READY(status);
  EXPECT_EQ(TASK_RUNNING, status->state());

  AWAIT_READY(resourcesUpdated);

  EXPECT_CALL(exec, shutdown(_))
    .Times(AtMost(1));

  driver.stop();
  driver.join();
}
// This test ensures that the command executor does not send
// TASK_KILLING to frameworks that do not support the capability.
TEST_P_TEMP_DISABLED_ON_WINDOWS(CommandExecutorTest, NoTaskKillingCapability)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  Owned<MasterDetector> detector = master.get()->createDetector();

  slave::Flags flags = CreateSlaveFlags();
  flags.http_command_executor = GetParam();

  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get(), flags);
  ASSERT_SOME(slave);

  // Start the framework without the task killing capability.
  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_EQ(1u, offers->size());

  // Launch a task with the command executor.
  TaskInfo task = createTask(
      offers->front().slave_id(),
      offers->front().resources(),
      "sleep 1000");

  Future<TaskStatus> statusRunning;
  EXPECT_CALL(sched, statusUpdate(_, _))
    .WillOnce(FutureArg<1>(&statusRunning));

  driver.launchTasks(offers->front().id(), {task});

  AWAIT_READY(statusRunning);
  EXPECT_EQ(TASK_RUNNING, statusRunning->state());

  // There should only be a TASK_KILLED update.
  Future<TaskStatus> statusKilled;
  EXPECT_CALL(sched, statusUpdate(_, _))
    .WillOnce(FutureArg<1>(&statusKilled));

  driver.killTask(task.task_id());

  AWAIT_READY(statusKilled);
  EXPECT_EQ(TASK_KILLED, statusKilled->state());

  driver.stop();
  driver.join();
}
// This test verifies that when the scheduler calls stop() before
// abort(), no pending acknowledgements are sent.
TEST_F(MesosSchedulerDriverTest, DropAckIfStopCalledBeforeAbort)
{
  Try<PID<Master>> master = StartMaster();
  ASSERT_SOME(master);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);
  TestContainerizer containerizer(&exec);
  Try<PID<Slave>> slave = StartSlave(&containerizer);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get(), DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(LaunchTasks(DEFAULT_EXECUTOR_INFO, 1, 1, 16, "*"))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  // When an update is received, stop the driver and then abort it.
  Future<Nothing> statusUpdate;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(DoAll(StopAndAbort(),
                    FutureSatisfy(&statusUpdate)));

  // Ensure no status update acknowledgements are sent from the driver
  // to the master.
  EXPECT_NO_FUTURE_CALLS(
      mesos::scheduler::Call(),
      mesos::scheduler::Call::ACKNOWLEDGE,
      _ ,
      master.get());

  EXPECT_CALL(exec, registered(_, _, _, _));

  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_RUNNING));

  EXPECT_CALL(exec, shutdown(_))
    .Times(AtMost(1));

  driver.start();

  AWAIT_READY(statusUpdate);

  // Settle the clock to ensure driver finishes processing the status
  // update and sends acknowledgement if necessary. In this test it
  // shouldn't send an acknowledgement.
  Clock::pause();
  Clock::settle();

  driver.stop();
  driver.join();

  Shutdown();
}
Example #6
0
TEST_F(ResourceOffersTest, ResourcesGetReofferedAfterFrameworkStops)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  Owned<MasterDetector> detector = master.get()->createDetector();
  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get());
  ASSERT_SOME(slave);

  MockScheduler sched1;
  MesosSchedulerDriver driver1(
      &sched1, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched1, registered(&driver1, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched1, resourceOffers(&driver1, _))
    .WillOnce(FutureArg<1>(&offers));

  driver1.start();

  AWAIT_READY(offers);
  EXPECT_FALSE(offers->empty());

  driver1.stop();
  driver1.join();

  MockScheduler sched2;
  MesosSchedulerDriver driver2(
      &sched2, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched2, registered(&driver2, _, _));

  EXPECT_CALL(sched2, resourceOffers(&driver2, _))
    .WillOnce(FutureArg<1>(&offers));

  driver2.start();

  AWAIT_READY(offers);

  driver2.stop();
  driver2.join();
}
Example #7
0
TEST_F_TEMP_DISABLED_ON_WINDOWS(
    ResourceOffersTest,
    ResourceOfferWithMultipleSlaves)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  Owned<MasterDetector> detector = master.get()->createDetector();
  vector<Owned<cluster::Slave>> slaves;

  // Start 10 slaves.
  for (int i = 0; i < 10; i++) {
    slave::Flags flags = CreateSlaveFlags();
    flags.launcher = "posix";

    flags.resources = Option<std::string>("cpus:2;mem:1024");

    Try<Owned<cluster::Slave>> slave = StartSlave(detector.get(), flags);
    ASSERT_SOME(slave);
    slaves.push_back(slave.get());
  }

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // All 10 slaves might not be in first offer.

  driver.start();

  AWAIT_READY(offers);
  ASSERT_FALSE(offers->empty());
  EXPECT_GE(10u, offers->size());

  Resources resources(offers.get()[0].resources());
  EXPECT_EQ(2, resources.get<Value::Scalar>("cpus")->value());
  EXPECT_EQ(1024, resources.get<Value::Scalar>("mem")->value());

  driver.stop();
  driver.join();
}
TEST_F(ResourceOffersTest, ResourceOfferWithMultipleSlaves)
{
  Try<PID<Master>> master = StartMaster();
  ASSERT_SOME(master);

  // Start 10 slaves.
  for (int i = 0; i < 10; i++) {
    slave::Flags flags = CreateSlaveFlags();

    flags.resources = Option<std::string>("cpus:2;mem:1024");

    Try<PID<Slave>> slave = StartSlave(flags);
    ASSERT_SOME(slave);
  }

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get(), DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _))
    .Times(1);

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // All 10 slaves might not be in first offer.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_NE(0u, offers.get().size());
  EXPECT_GE(10u, offers.get().size());

  Resources resources(offers.get()[0].resources());
  EXPECT_EQ(2, resources.get<Value::Scalar>("cpus").get().value());
  EXPECT_EQ(1024, resources.get<Value::Scalar>("mem").get().value());

  driver.stop();
  driver.join();

  Shutdown();
}
// The purpose of this test is to ensure that when slaves are removed
// from the master, and then attempt to send status updates, we send
// a ShutdownMessage to the slave. Why? Because during a network
// partition, the master will remove a partitioned slave, thus sending
// its tasks to LOST. At this point, when the partition is removed,
// the slave may attempt to send updates if it was unaware that the
// master removed it. We've already notified frameworks that these
// tasks were LOST, so we have to have the slave shut down.
TEST_F(PartitionTest, PartitionedSlaveStatusUpdates)
{
  master::Flags masterFlags = CreateMasterFlags();
  Try<Owned<cluster::Master>> master = StartMaster(masterFlags);
  ASSERT_SOME(master);

  // Allow the master to PING the slave, but drop all PONG messages
  // from the slave. Note that we don't match on the master / slave
  // PIDs because it's actually the SlaveObserver Process that sends
  // the pings.
  Future<Message> ping = FUTURE_MESSAGE(
      Eq(PingSlaveMessage().GetTypeName()), _, _);

  DROP_PROTOBUFS(PongSlaveMessage(), _, _);

  Future<SlaveRegisteredMessage> slaveRegisteredMessage =
    FUTURE_PROTOBUF(SlaveRegisteredMessage(), _, _);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);
  TestContainerizer containerizer(&exec);

  Owned<MasterDetector> detector = master.get()->createDetector();
  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get(), &containerizer);
  ASSERT_SOME(slave);

  AWAIT_READY(slaveRegisteredMessage);
  SlaveID slaveId = slaveRegisteredMessage.get().slave_id();

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  Future<FrameworkID> frameworkId;
  EXPECT_CALL(sched, registered(&driver, _, _))
    .WillOnce(FutureArg<1>(&frameworkId));

  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillRepeatedly(Return());

  driver.start();

  AWAIT_READY(frameworkId);

  // Drop the first shutdown message from the master (simulated
  // partition), allow the second shutdown message to pass when
  // the slave sends an update.
  Future<ShutdownMessage> shutdownMessage =
    DROP_PROTOBUF(ShutdownMessage(), _, slave.get()->pid);

  EXPECT_CALL(sched, offerRescinded(&driver, _))
    .WillRepeatedly(Return());

  Future<Nothing> slaveLost;
  EXPECT_CALL(sched, slaveLost(&driver, _))
    .WillOnce(FutureSatisfy(&slaveLost));

  Clock::pause();

  // Now, induce a partition of the slave by having the master
  // timeout the slave.
  size_t pings = 0;
  while (true) {
    AWAIT_READY(ping);
    pings++;
    if (pings == masterFlags.max_slave_ping_timeouts) {
     break;
    }
    ping = FUTURE_MESSAGE(Eq(PingSlaveMessage().GetTypeName()), _, _);
    Clock::advance(masterFlags.slave_ping_timeout);
    Clock::settle();
  }

  Clock::advance(masterFlags.slave_ping_timeout);
  Clock::settle();

  // Wait for the master to attempt to shut down the slave.
  AWAIT_READY(shutdownMessage);

  // The master will notify the framework that the slave was lost.
  AWAIT_READY(slaveLost);

  shutdownMessage = FUTURE_PROTOBUF(ShutdownMessage(), _, slave.get()->pid);

  // At this point, the slave still thinks it's registered, so we
  // simulate a status update coming from the slave.
  TaskID taskId;
  taskId.set_value("task_id");
  const StatusUpdate& update = protobuf::createStatusUpdate(
      frameworkId.get(),
      slaveId,
      taskId,
      TASK_RUNNING,
      TaskStatus::SOURCE_SLAVE,
      UUID::random());

  StatusUpdateMessage message;
  message.mutable_update()->CopyFrom(update);
  message.set_pid(stringify(slave.get()->pid));

  process::post(master.get()->pid, message);

  // The master should shutdown the slave upon receiving the update.
  AWAIT_READY(shutdownMessage);

  Clock::resume();

  driver.stop();
  driver.join();
}
Example #10
0
// The purpose of this test is to ensure that when slaves are removed
// from the master, and then attempt to re-register, we deny the
// re-registration by sending a ShutdownMessage to the slave.
// Why? Because during a network partition, the master will remove a
// partitioned slave, thus sending its tasks to LOST. At this point,
// when the partition is removed, the slave will attempt to
// re-register with its running tasks. We've already notified
// frameworks that these tasks were LOST, so we have to have the slave
// slave shut down.
TEST_F(PartitionTest, PartitionedSlaveReregistration)
{
  master::Flags masterFlags = CreateMasterFlags();
  Try<Owned<cluster::Master>> master = StartMaster(masterFlags);
  ASSERT_SOME(master);

  // Allow the master to PING the slave, but drop all PONG messages
  // from the slave. Note that we don't match on the master / slave
  // PIDs because it's actually the SlaveObserver Process that sends
  // the pings.
  Future<Message> ping = FUTURE_MESSAGE(
      Eq(PingSlaveMessage().GetTypeName()), _, _);

  DROP_PROTOBUFS(PongSlaveMessage(), _, _);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);
  TestContainerizer containerizer(&exec);

  StandaloneMasterDetector detector(master.get()->pid);

  Try<Owned<cluster::Slave>> slave = StartSlave(&detector, &containerizer);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return());

  driver.start();

  AWAIT_READY(offers);
  ASSERT_NE(0u, offers.get().size());

  // Launch a task. This is to ensure the task is killed by the slave,
  // during shutdown.
  TaskID taskId;
  taskId.set_value("1");

  TaskInfo task;
  task.set_name("");
  task.mutable_task_id()->MergeFrom(taskId);
  task.mutable_slave_id()->MergeFrom(offers.get()[0].slave_id());
  task.mutable_resources()->MergeFrom(offers.get()[0].resources());
  task.mutable_executor()->MergeFrom(DEFAULT_EXECUTOR_INFO);
  task.mutable_executor()->mutable_command()->set_value("sleep 60");

  // Set up the expectations for launching the task.
  EXPECT_CALL(exec, registered(_, _, _, _));
  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_RUNNING));

  Future<TaskStatus> runningStatus;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&runningStatus));

  Future<Nothing> statusUpdateAck = FUTURE_DISPATCH(
      slave.get()->pid, &Slave::_statusUpdateAcknowledgement);

  driver.launchTasks(offers.get()[0].id(), {task});

  AWAIT_READY(runningStatus);
  EXPECT_EQ(TASK_RUNNING, runningStatus.get().state());

  // Wait for the slave to have handled the acknowledgment prior
  // to pausing the clock.
  AWAIT_READY(statusUpdateAck);

  // Drop the first shutdown message from the master (simulated
  // partition), allow the second shutdown message to pass when
  // the slave re-registers.
  Future<ShutdownMessage> shutdownMessage =
    DROP_PROTOBUF(ShutdownMessage(), _, slave.get()->pid);

  Future<TaskStatus> lostStatus;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&lostStatus));

  Future<Nothing> slaveLost;
  EXPECT_CALL(sched, slaveLost(&driver, _))
    .WillOnce(FutureSatisfy(&slaveLost));

  Clock::pause();

  // Now, induce a partition of the slave by having the master
  // timeout the slave.
  size_t pings = 0;
  while (true) {
    AWAIT_READY(ping);
    pings++;
    if (pings == masterFlags.max_slave_ping_timeouts) {
     break;
    }
    ping = FUTURE_MESSAGE(Eq(PingSlaveMessage().GetTypeName()), _, _);
    Clock::advance(masterFlags.slave_ping_timeout);
    Clock::settle();
  }

  Clock::advance(masterFlags.slave_ping_timeout);
  Clock::settle();

  // The master will have notified the framework of the lost task.
  AWAIT_READY(lostStatus);
  EXPECT_EQ(TASK_LOST, lostStatus.get().state());

  // Wait for the master to attempt to shut down the slave.
  AWAIT_READY(shutdownMessage);

  // The master will notify the framework that the slave was lost.
  AWAIT_READY(slaveLost);

  Clock::resume();

  // We now complete the partition on the slave side as well. This
  // is done by simulating a master loss event which would normally
  // occur during a network partition.
  detector.appoint(None());

  Future<Nothing> shutdown;
  EXPECT_CALL(exec, shutdown(_))
    .WillOnce(FutureSatisfy(&shutdown));

  shutdownMessage = FUTURE_PROTOBUF(ShutdownMessage(), _, slave.get()->pid);

  // Have the slave re-register with the master.
  detector.appoint(master.get()->pid);

  // Upon re-registration, the master will shutdown the slave.
  // The slave will then shut down the executor.
  AWAIT_READY(shutdownMessage);
  AWAIT_READY(shutdown);

  driver.stop();
  driver.join();
}
Example #11
0
// This is an end-to-end test that verfies that the slave returns the
// correct ResourceUsage based on the currently running executors, and
// the values get from the statistics endpoint are as expected.
TEST_F(MonitorIntegrationTest, RunningExecutor)
{
  Try<PID<Master>> master = StartMaster();
  ASSERT_SOME(master);

  Try<PID<Slave>> slave = StartSlave();
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get(), DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return());        // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_FALSE(offers.get().empty());

  const Offer& offer = offers.get()[0];

  // Launch a task and wait until it is in RUNNING status.
  TaskInfo task = createTask(
      offer.slave_id(),
      Resources::parse("cpus:1;mem:32").get(),
      "sleep 1000");

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status));

  driver.launchTasks(offer.id(), {task});

  AWAIT_READY(status);
  EXPECT_EQ(task.task_id(), status.get().task_id());
  EXPECT_EQ(TASK_RUNNING, status.get().state());

  // Hit the statistics endpoint and expect the response contains the
  // resource statistics for the running container.
  UPID upid("monitor", process::address());

  Future<http::Response> response = http::get(upid, "statistics");
  AWAIT_READY(response);

  AWAIT_EXPECT_RESPONSE_STATUS_EQ(http::OK().status, response);
  AWAIT_EXPECT_RESPONSE_HEADER_EQ(
      "application/json",
      "Content-Type",
      response);

  // Verify that the statistics in the response contains the proper
  // resource limits for the container.
  Try<JSON::Value> value = JSON::parse(response.get().body);
  ASSERT_SOME(value);

  Try<JSON::Value> expected = JSON::parse(strings::format(
      "[{"
          "\"statistics\":{"
              "\"cpus_limit\":%g,"
              "\"mem_limit_bytes\":%lu"
          "}"
      "}]",
      1 + slave::DEFAULT_EXECUTOR_CPUS,
      (Megabytes(32) + slave::DEFAULT_EXECUTOR_MEM).bytes()).get());

  ASSERT_SOME(expected);
  EXPECT_TRUE(value.get().contains(expected.get()));

  driver.stop();
  driver.join();

  Shutdown();
}
TEST_F(MemoryPressureMesosTest, CGROUPS_ROOT_Statistics)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  slave::Flags flags = CreateSlaveFlags();

  // We only care about memory cgroup for this test.
  flags.isolation = "cgroups/mem";
  flags.agent_subsystems = None();

  Fetcher fetcher;

  Try<MesosContainerizer*> _containerizer =
    MesosContainerizer::create(flags, true, &fetcher);

  ASSERT_SOME(_containerizer);
  Owned<MesosContainerizer> containerizer(_containerizer.get());

  Owned<MasterDetector> detector = master.get()->createDetector();

  Try<Owned<cluster::Slave>> slave =
    StartSlave(detector.get(), containerizer.get(), flags);
  ASSERT_SOME(slave);

  MockScheduler sched;

  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(_, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(_, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return());      // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_NE(0u, offers.get().size());

  Offer offer = offers.get()[0];

  // Run a task that triggers memory pressure event. We request 1G
  // disk because we are going to write a 512 MB file repeatedly.
  TaskInfo task = createTask(
      offer.slave_id(),
      Resources::parse("cpus:1;mem:256;disk:1024").get(),
      "while true; do dd count=512 bs=1M if=/dev/zero of=./temp; done");

  Future<TaskStatus> running;
  Future<TaskStatus> killed;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&running))
    .WillOnce(FutureArg<1>(&killed))
    .WillRepeatedly(Return());       // Ignore subsequent updates.

  driver.launchTasks(offer.id(), {task});

  AWAIT_READY(running);
  EXPECT_EQ(task.task_id(), running.get().task_id());
  EXPECT_EQ(TASK_RUNNING, running.get().state());

  Future<hashset<ContainerID>> containers = containerizer->containers();
  AWAIT_READY(containers);
  ASSERT_EQ(1u, containers.get().size());

  ContainerID containerId = *(containers.get().begin());

  // Wait a while for some memory pressure events to occur.
  Duration waited = Duration::zero();
  do {
    Future<ResourceStatistics> usage = containerizer->usage(containerId);
    AWAIT_READY(usage);

    if (usage.get().mem_low_pressure_counter() > 0) {
      // We will check the correctness of the memory pressure counters
      // later, because the memory-hammering task is still active
      // and potentially incrementing these counters.
      break;
    }

    os::sleep(Milliseconds(100));
    waited += Milliseconds(100);
  } while (waited < Seconds(5));

  EXPECT_LE(waited, Seconds(5));

  // Pause the clock to ensure that the reaper doesn't reap the exited
  // command executor and inform the containerizer/slave.
  Clock::pause();
  Clock::settle();

  // Stop the memory-hammering task.
  driver.killTask(task.task_id());

  AWAIT_READY_FOR(killed, Seconds(120));
  EXPECT_EQ(task.task_id(), killed->task_id());
  EXPECT_EQ(TASK_KILLED, killed->state());

  // Now check the correctness of the memory pressure counters.
  Future<ResourceStatistics> usage = containerizer->usage(containerId);
  AWAIT_READY(usage);

  EXPECT_GE(usage.get().mem_low_pressure_counter(),
            usage.get().mem_medium_pressure_counter());
  EXPECT_GE(usage.get().mem_medium_pressure_counter(),
            usage.get().mem_critical_pressure_counter());

  Clock::resume();

  driver.stop();
  driver.join();
}
Example #13
0
// This test ensures that the command executor sends TASK_KILLING
// to frameworks that support the capability.
TEST_F(CommandExecutorTest, TaskKillingCapability)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  Owned<MasterDetector> detector = master.get()->createDetector();
  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get());
  ASSERT_SOME(slave);

  // Start the framework with the task killing capability.
  FrameworkInfo::Capability capability;
  capability.set_type(FrameworkInfo::Capability::TASK_KILLING_STATE);

  FrameworkInfo frameworkInfo = DEFAULT_FRAMEWORK_INFO;
  frameworkInfo.add_capabilities()->CopyFrom(capability);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, frameworkInfo, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_EQ(1u, offers->size());

  // Launch a task with the command executor.
  TaskInfo task = createTask(
      offers->front().slave_id(),
      offers->front().resources(),
      "sleep 1000");

  Future<TaskStatus> statusRunning;
  EXPECT_CALL(sched, statusUpdate(_, _))
    .WillOnce(FutureArg<1>(&statusRunning));

  driver.launchTasks(offers->front().id(), {task});

  AWAIT_READY(statusRunning);
  EXPECT_EQ(TASK_RUNNING, statusRunning->state());

  Future<TaskStatus> statusKilling, statusKilled;
  EXPECT_CALL(sched, statusUpdate(_, _))
    .WillOnce(FutureArg<1>(&statusKilling))
    .WillOnce(FutureArg<1>(&statusKilled));

  driver.killTask(task.task_id());

  AWAIT_READY(statusKilling);
  EXPECT_EQ(TASK_KILLING, statusKilling->state());

  AWAIT_READY(statusKilled);
  EXPECT_EQ(TASK_KILLED, statusKilled->state());

  driver.stop();
  driver.join();
}
// This test verifies if the executor is able to receive a Subscribed
// event in response to a Subscribe call request.
TEST_P(ExecutorHttpApiTest, Subscribe)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  ExecutorID executorId = DEFAULT_EXECUTOR_ID;
  MockExecutor exec(executorId);
  TestContainerizer containerizer(&exec);

  Owned<MasterDetector> detector = master.get()->createDetector();
  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get(), &containerizer);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  Future<FrameworkID> frameworkId;
  EXPECT_CALL(sched, registered(&driver, _, _))
    .WillOnce(FutureArg<1>(&frameworkId));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers));

  driver.start();

  AWAIT_READY(frameworkId);
  AWAIT_READY(offers);

  ASSERT_EQ(1u, offers.get().size());

  Future<Message> registerExecutorMessage =
    DROP_MESSAGE(Eq(RegisterExecutorMessage().GetTypeName()), _, _);

  TaskInfo taskInfo = createTask(offers.get()[0], "", executorId);
  driver.launchTasks(offers.get()[0].id(), {taskInfo});

  // Drop the `RegisterExecutorMessage` and then send a `Subscribe` request
  // from the HTTP based executor.
  AWAIT_READY(registerExecutorMessage);

  Call call;
  call.mutable_framework_id()->CopyFrom(evolve(frameworkId.get()));
  call.mutable_executor_id()->CopyFrom(evolve(executorId));

  call.set_type(Call::SUBSCRIBE);

  call.mutable_subscribe();

  // Retrieve the parameter passed as content type to this test.
  const ContentType contentType = GetParam();
  const string contentTypeString = stringify(contentType);

  process::http::Headers headers;
  headers["Accept"] = contentTypeString;

  Future<Response> response = process::http::streaming::post(
      slave.get()->pid,
      "api/v1/executor",
      headers,
      serialize(contentType, call),
      contentTypeString);

  AWAIT_EXPECT_RESPONSE_STATUS_EQ(OK().status, response);
  AWAIT_EXPECT_RESPONSE_HEADER_EQ("chunked", "Transfer-Encoding", response);
  AWAIT_EXPECT_RESPONSE_HEADER_EQ(contentTypeString, "Content-Type", response);

  ASSERT_EQ(Response::PIPE, response.get().type);

  Option<Pipe::Reader> reader = response.get().reader;
  ASSERT_SOME(reader);

  auto deserializer =
    lambda::bind(deserialize<Event>, contentType, lambda::_1);

  Reader<Event> responseDecoder(
      Decoder<Event>(deserializer),
      reader.get());

  Future<Result<Event>> event = responseDecoder.read();
  AWAIT_READY(event);
  ASSERT_SOME(event.get());

  // Check event type is subscribed and if the ExecutorID matches.
  ASSERT_EQ(Event::SUBSCRIBED, event.get().get().type());
  ASSERT_EQ(event.get().get().subscribed().executor_info().executor_id(),
            call.executor_id());

  reader.get().close();

  driver.stop();
  driver.join();
}
// This test ensures that when explicit acknowledgements are enabled,
// acknowledgements for master-generated updates are dropped by the
// driver. We test this by creating an invalid task that uses no
// resources.
TEST_F(MesosSchedulerDriverTest, ExplicitAcknowledgementsMasterGeneratedUpdate)
{
  Try<PID<Master>> master = StartMaster();
  ASSERT_SOME(master);

  Try<PID<Slave>> slave = StartSlave();
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get(), false, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  // Ensure no status update acknowledgements are sent to the master.
  EXPECT_NO_FUTURE_CALLS(
      mesos::scheduler::Call(),
      mesos::scheduler::Call::ACKNOWLEDGE,
      _ ,
      master.get());

  driver.start();

  AWAIT_READY(offers);
  EXPECT_NE(0u, offers.get().size());

  // Launch a task using no resources.
  TaskInfo task;
  task.set_name("");
  task.mutable_task_id()->set_value("1");
  task.mutable_slave_id()->MergeFrom(offers.get()[0].slave_id());
  task.mutable_executor()->MergeFrom(DEFAULT_EXECUTOR_INFO);

  vector<TaskInfo> tasks;
  tasks.push_back(task);

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status));

  driver.launchTasks(offers.get()[0].id(), tasks);

  AWAIT_READY(status);
  ASSERT_EQ(TASK_ERROR, status.get().state());
  ASSERT_EQ(TaskStatus::SOURCE_MASTER, status.get().source());
  ASSERT_EQ(TaskStatus::REASON_TASK_INVALID, status.get().reason());

  // Now send the acknowledgement.
  driver.acknowledgeStatusUpdate(status.get());

  // Settle the clock to ensure driver processes the acknowledgement,
  // which should get dropped due to having come from the master.
  Clock::pause();
  Clock::settle();

  driver.stop();
  driver.join();

  Shutdown();
}
// This test ensures that the HTTP command executor can self terminate
// after it gets the ACK for the terminal status update from agent.
TEST_F_TEMP_DISABLED_ON_WINDOWS(HTTPCommandExecutorTest, TerminateWithACK)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  slave::Flags flags = CreateSlaveFlags();
  flags.http_command_executor = true;

  Fetcher fetcher;

  Try<MesosContainerizer*> _containerizer =
    MesosContainerizer::create(flags, false, &fetcher);

  CHECK_SOME(_containerizer);
  Owned<MesosContainerizer> containerizer(_containerizer.get());

  StandaloneMasterDetector detector(master.get()->pid);

  MockSlave slave(flags, &detector, containerizer.get());
  spawn(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_EQ(1u, offers->size());

  // Launch a short lived task.
  TaskInfo task = createTask(
      offers->front().slave_id(),
      offers->front().resources(),
      "sleep 1");

  Future<TaskStatus> statusRunning;
  Future<TaskStatus> statusFinished;

  EXPECT_CALL(sched, statusUpdate(_, _))
    .WillOnce(FutureArg<1>(&statusRunning))
    .WillOnce(FutureArg<1>(&statusFinished));

  Future<Future<Option<ContainerTermination>>> termination;
  EXPECT_CALL(slave, executorTerminated(_, _, _))
    .WillOnce(FutureArg<2>(&termination));

  driver.launchTasks(offers->front().id(), {task});

  // Scheduler should first receive TASK_RUNNING followed by TASK_FINISHED.
  AWAIT_READY(statusRunning);
  EXPECT_EQ(TASK_RUNNING, statusRunning->state());

  AWAIT_READY(statusFinished);
  EXPECT_EQ(TASK_FINISHED, statusFinished->state());

  // The executor should self terminate with 0 as exit status once
  // it gets the ACK for the terminal status update from agent.
  AWAIT_READY(termination);
  ASSERT_TRUE(termination.get().isReady());
  EXPECT_EQ(0, termination.get().get().get().status());

  driver.stop();
  driver.join();

  terminate(slave);
  wait(slave);
}
Example #17
0
TEST_P(CpuIsolatorTest, ROOT_UserCpuUsage)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  slave::Flags flags = CreateSlaveFlags();
  flags.isolation = GetParam();

  Fetcher fetcher(flags);

  Try<MesosContainerizer*> _containerizer =
    MesosContainerizer::create(flags, true, &fetcher);

  ASSERT_SOME(_containerizer);

  Owned<MesosContainerizer> containerizer(_containerizer.get());

  Owned<MasterDetector> detector = master.get()->createDetector();

  Try<Owned<cluster::Slave>> slave = StartSlave(
      detector.get(),
      containerizer.get());

  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched,
      DEFAULT_FRAMEWORK_INFO,
      master.get()->pid,
      DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  ASSERT_FALSE(offers->empty());

  // Max out a single core in userspace. This will run for at most one
  // second.
  TaskInfo task = createTask(
      offers.get()[0],
      "while true ; do true ; done & sleep 60");

  Future<TaskStatus> statusRunning;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&statusRunning));

  driver.launchTasks(offers.get()[0].id(), {task});

  AWAIT_READY(statusRunning);
  EXPECT_EQ(TASK_RUNNING, statusRunning->state());

  Future<hashset<ContainerID>> containers = containerizer->containers();
  AWAIT_READY(containers);
  ASSERT_EQ(1u, containers->size());

  ContainerID containerId = *(containers->begin());

  // Wait up to 1 second for the child process to induce 1/8 of a
  // second of user cpu time.
  ResourceStatistics statistics;
  Duration waited = Duration::zero();
  do {
    Future<ResourceStatistics> usage = containerizer->usage(containerId);
    AWAIT_READY(usage);

    statistics = usage.get();

    // If we meet our usage expectations, we're done!
    if (statistics.cpus_user_time_secs() >= 0.125) {
      break;
    }

    os::sleep(Milliseconds(200));
    waited += Milliseconds(200);
  } while (waited < Seconds(1));

  EXPECT_LE(0.125, statistics.cpus_user_time_secs());

  driver.stop();
  driver.join();
}
// This test verifies that docker image default cmd is executed correctly.
// This corresponds to the case in runtime isolator logic table: sh=0,
// value=0, argv=1, entrypoint=0, cmd=1.
TEST_F(DockerRuntimeIsolatorTest, ROOT_DockerDefaultCmdLocalPuller)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  const string directory = path::join(os::getcwd(), "archives");

  Future<Nothing> testImage =
    DockerArchive::create(directory, "alpine", "null", "[\"sh\"]");

  AWAIT_READY(testImage);

  ASSERT_TRUE(os::exists(path::join(directory, "alpine.tar")));

  slave::Flags flags = CreateSlaveFlags();
  flags.isolation = "docker/runtime,filesystem/linux";
  flags.image_providers = "docker";
  flags.docker_registry = directory;

  // Make docker store directory as a temparary directory. Because the
  // manifest of the test image is changeable, the image cached on
  // previous tests should never be used.
  flags.docker_store_dir = path::join(os::getcwd(), "store");

  Owned<MasterDetector> detector = master.get()->createDetector();

  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get(), flags);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  ASSERT_EQ(1u, offers->size());

  const Offer& offer = offers.get()[0];

  TaskInfo task;
  task.set_name("test-task");
  task.mutable_task_id()->set_value(UUID::random().toString());
  task.mutable_slave_id()->CopyFrom(offer.slave_id());
  task.mutable_resources()->CopyFrom(Resources::parse("cpus:1;mem:128").get());
  task.mutable_command()->set_shell(false);
  task.mutable_command()->add_arguments("-c");
  task.mutable_command()->add_arguments("echo 'hello world'");

  Image image;
  image.set_type(Image::DOCKER);
  image.mutable_docker()->set_name("alpine");

  ContainerInfo* container = task.mutable_container();
  container->set_type(ContainerInfo::MESOS);
  container->mutable_mesos()->mutable_image()->CopyFrom(image);

  Future<TaskStatus> statusRunning;
  Future<TaskStatus> statusFinished;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&statusRunning))
    .WillOnce(FutureArg<1>(&statusFinished));

  driver.launchTasks(offer.id(), {task});

  AWAIT_READY_FOR(statusRunning, Seconds(60));
  EXPECT_EQ(task.task_id(), statusRunning->task_id());
  EXPECT_EQ(TASK_RUNNING, statusRunning->state());

  AWAIT_READY(statusFinished);
  EXPECT_EQ(task.task_id(), statusFinished->task_id());
  EXPECT_EQ(TASK_FINISHED, statusFinished->state());

  driver.stop();
  driver.join();
}
// This test verifies that docker image default entrypoint is executed
// correctly using registry puller. This corresponds to the case in runtime
// isolator logic table: sh=0, value=0, argv=1, entrypoint=1, cmd=0.
TEST_F(DockerRuntimeIsolatorTest,
       ROOT_CURL_INTERNET_DockerDefaultEntryptRegistryPuller)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  slave::Flags flags = CreateSlaveFlags();
  flags.isolation = "docker/runtime,filesystem/linux";
  flags.image_providers = "docker";
  flags.docker_store_dir = path::join(os::getcwd(), "store");

  Owned<MasterDetector> detector = master.get()->createDetector();

  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get(), flags);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  ASSERT_EQ(1u, offers->size());

  const Offer& offer = offers.get()[0];

  TaskInfo task;
  task.set_name("test-task");
  task.mutable_task_id()->set_value(UUID::random().toString());
  task.mutable_slave_id()->CopyFrom(offer.slave_id());
  task.mutable_resources()->CopyFrom(Resources::parse("cpus:1;mem:128").get());
  task.mutable_command()->set_shell(false);
  task.mutable_command()->add_arguments("hello world");

  Image image;
  image.set_type(Image::DOCKER);

  // 'mesosphere/inky' image is used in docker containerizer test, which
  // contains entrypoint as 'echo' and cmd as null.
  image.mutable_docker()->set_name("mesosphere/inky");

  ContainerInfo* container = task.mutable_container();
  container->set_type(ContainerInfo::MESOS);
  container->mutable_mesos()->mutable_image()->CopyFrom(image);

  Future<TaskStatus> statusRunning;
  Future<TaskStatus> statusFinished;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&statusRunning))
    .WillOnce(FutureArg<1>(&statusFinished));

  driver.launchTasks(offer.id(), {task});

  AWAIT_READY_FOR(statusRunning, Seconds(60));
  EXPECT_EQ(task.task_id(), statusRunning->task_id());
  EXPECT_EQ(TASK_RUNNING, statusRunning->state());

  AWAIT_READY(statusFinished);
  EXPECT_EQ(task.task_id(), statusFinished->task_id());
  EXPECT_EQ(TASK_FINISHED, statusFinished->state());

  driver.stop();
  driver.join();
}
// Test that memory pressure listening is restarted after recovery.
TEST_F(MemoryPressureMesosTest, CGROUPS_ROOT_SlaveRecovery)
{
  Try<PID<Master>> master = StartMaster();
  ASSERT_SOME(master);

  slave::Flags flags = CreateSlaveFlags();

  // We only care about memory cgroup for this test.
  flags.isolation = "cgroups/mem";
  flags.slave_subsystems = None();

  Fetcher fetcher;

  Try<MesosContainerizer*> containerizer1 =
    MesosContainerizer::create(flags, true, &fetcher);

  ASSERT_SOME(containerizer1);

  Try<PID<Slave>> slave = StartSlave(containerizer1.get(), flags);
  ASSERT_SOME(slave);

  MockScheduler sched;

  // Enable checkpointing for the framework.
  FrameworkInfo frameworkInfo = DEFAULT_FRAMEWORK_INFO;
  frameworkInfo.set_checkpoint(true);

  MesosSchedulerDriver driver(
      &sched, frameworkInfo, master.get(), DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(_, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(_, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return());      // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_NE(0u, offers.get().size());

  Offer offer = offers.get()[0];

  // Run a task that triggers memory pressure event. We request 1G
  // disk because we are going to write a 512 MB file repeatedly.
  TaskInfo task = createTask(
      offer.slave_id(),
      Resources::parse("cpus:1;mem:256;disk:1024").get(),
      "while true; do dd count=512 bs=1M if=/dev/zero of=./temp; done");

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status))
    .WillRepeatedly(Return());       // Ignore subsequent updates.

  driver.launchTasks(offers.get()[0].id(), {task});

  AWAIT_READY(status);
  EXPECT_EQ(task.task_id(), status.get().task_id());
  EXPECT_EQ(TASK_RUNNING, status.get().state());

  // We restart the slave to let it recover.
  Stop(slave.get());
  delete containerizer1.get();

  // Set up so we can wait until the new slave updates the container's
  // resources (this occurs after the executor has re-registered).
  Future<Nothing> update =
    FUTURE_DISPATCH(_, &MesosContainerizerProcess::update);

  // Use the same flags.
  Try<MesosContainerizer*> containerizer2 =
    MesosContainerizer::create(flags, true, &fetcher);
  ASSERT_SOME(containerizer2);

  slave = StartSlave(containerizer2.get(), flags);
  ASSERT_SOME(slave);

  // Wait until the containerizer is updated.
  AWAIT_READY(update);

  Future<hashset<ContainerID>> containers = containerizer2.get()->containers();
  AWAIT_READY(containers);
  ASSERT_EQ(1u, containers.get().size());

  ContainerID containerId = *(containers.get().begin());

  // Wait a while for some memory pressure events to occur.
  Duration waited = Duration::zero();
  do {
    Future<ResourceStatistics> usage = containerizer2.get()->usage(containerId);
    AWAIT_READY(usage);

    if (usage.get().mem_low_pressure_counter() > 0) {
      // We will check the correctness of the memory pressure counters
      // later, because the memory-hammering task is still active
      // and potentially incrementing these counters.
      break;
    }

    os::sleep(Milliseconds(100));
    waited += Milliseconds(100);
  } while (waited < Seconds(5));

  EXPECT_LE(waited, Seconds(5));

  // Stop the memory-hammering task.
  driver.killTask(task.task_id());

  // Process any queued up events through before proceeding.
  process::Clock::pause();
  process::Clock::settle();
  process::Clock::resume();

  // Now check the correctness of the memory pressure counters.
  Future<ResourceStatistics> usage = containerizer2.get()->usage(containerId);
  AWAIT_READY(usage);

  EXPECT_GE(usage.get().mem_low_pressure_counter(),
            usage.get().mem_medium_pressure_counter());
  EXPECT_GE(usage.get().mem_medium_pressure_counter(),
            usage.get().mem_critical_pressure_counter());

  driver.stop();
  driver.join();

  Shutdown();
  delete containerizer2.get();
}
Example #21
0
// Test that memory pressure listening is restarted after recovery.
TEST_F(MemoryPressureMesosTest, CGROUPS_ROOT_SlaveRecovery)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  slave::Flags flags = CreateSlaveFlags();

  // We only care about memory cgroup for this test.
  flags.isolation = "cgroups/mem";

  Fetcher fetcher(flags);

  Try<MesosContainerizer*> _containerizer =
    MesosContainerizer::create(flags, true, &fetcher);

  ASSERT_SOME(_containerizer);
  Owned<MesosContainerizer> containerizer(_containerizer.get());

  Owned<MasterDetector> detector = master.get()->createDetector();

  Try<Owned<cluster::Slave>> slave =
    StartSlave(detector.get(), containerizer.get(), flags);
  ASSERT_SOME(slave);

  MockScheduler sched;

  // Enable checkpointing for the framework.
  FrameworkInfo frameworkInfo = DEFAULT_FRAMEWORK_INFO;
  frameworkInfo.set_checkpoint(true);

  MesosSchedulerDriver driver(
      &sched, frameworkInfo, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(_, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(_, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return());      // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  ASSERT_FALSE(offers->empty());

  Offer offer = offers.get()[0];

  // Run a task that triggers memory pressure event. We request 1G
  // disk because we are going to write a 512 MB file repeatedly.
  TaskInfo task = createTask(
      offer.slave_id(),
      Resources::parse("cpus:1;mem:256;disk:1024").get(),
      "while true; do dd count=512 bs=1M if=/dev/zero of=./temp; done");

  Future<TaskStatus> starting;
  Future<TaskStatus> running;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&starting))
    .WillOnce(FutureArg<1>(&running))
    .WillRepeatedly(Return()); // Ignore subsequent updates.

  Future<Nothing> runningAck =
    FUTURE_DISPATCH(_, &Slave::_statusUpdateAcknowledgement);

  Future<Nothing> startingAck =
    FUTURE_DISPATCH(_, &Slave::_statusUpdateAcknowledgement);

  driver.launchTasks(offers.get()[0].id(), {task});

  AWAIT_READY(starting);
  EXPECT_EQ(task.task_id(), starting->task_id());
  EXPECT_EQ(TASK_STARTING, starting->state());

  AWAIT_READY(startingAck);

  AWAIT_READY(running);
  EXPECT_EQ(task.task_id(), running->task_id());
  EXPECT_EQ(TASK_RUNNING, running->state());

  // Wait for the ACK to be checkpointed.
  AWAIT_READY_FOR(runningAck, Seconds(120));

  // We restart the slave to let it recover.
  slave.get()->terminate();

  // Set up so we can wait until the new slave updates the container's
  // resources (this occurs after the executor has re-registered).
  Future<Nothing> update =
    FUTURE_DISPATCH(_, &MesosContainerizerProcess::update);

  // Use the same flags.
  _containerizer = MesosContainerizer::create(flags, true, &fetcher);
  ASSERT_SOME(_containerizer);
  containerizer.reset(_containerizer.get());

  Future<SlaveReregisteredMessage> reregistered =
      FUTURE_PROTOBUF(SlaveReregisteredMessage(), master.get()->pid, _);

  slave = StartSlave(detector.get(), containerizer.get(), flags);
  ASSERT_SOME(slave);

  AWAIT_READY(reregistered);

  // Wait until the containerizer is updated.
  AWAIT_READY(update);

  Future<hashset<ContainerID>> containers = containerizer->containers();
  AWAIT_READY(containers);
  ASSERT_EQ(1u, containers->size());

  ContainerID containerId = *(containers->begin());

  // Wait a while for some memory pressure events to occur.
  Duration waited = Duration::zero();
  do {
    Future<ResourceStatistics> usage = containerizer->usage(containerId);
    AWAIT_READY(usage);

    if (usage->mem_low_pressure_counter() > 0) {
      // We will check the correctness of the memory pressure counters
      // later, because the memory-hammering task is still active
      // and potentially incrementing these counters.
      break;
    }

    os::sleep(Milliseconds(100));
    waited += Milliseconds(100);
  } while (waited < Seconds(5));

  EXPECT_LE(waited, Seconds(5));

  // Pause the clock to ensure that the reaper doesn't reap the exited
  // command executor and inform the containerizer/slave.
  Clock::pause();
  Clock::settle();

  Future<TaskStatus> killed;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&killed));

  // Stop the memory-hammering task.
  driver.killTask(task.task_id());

  AWAIT_READY_FOR(killed, Seconds(120));
  EXPECT_EQ(task.task_id(), killed->task_id());
  EXPECT_EQ(TASK_KILLED, killed->state());

  // Now check the correctness of the memory pressure counters.
  Future<ResourceStatistics> usage = containerizer->usage(containerId);
  AWAIT_READY(usage);

  EXPECT_GE(usage->mem_low_pressure_counter(),
            usage->mem_medium_pressure_counter());
  EXPECT_GE(usage->mem_medium_pressure_counter(),
            usage->mem_critical_pressure_counter());

  Clock::resume();

  driver.stop();
  driver.join();
}
Example #22
0
// The purpose of this test is to ensure that when slaves are removed
// from the master, and then attempt to send exited executor messages,
// we send a ShutdownMessage to the slave. Why? Because during a
// network partition, the master will remove a partitioned slave, thus
// sending its tasks to LOST. At this point, when the partition is
// removed, the slave may attempt to send exited executor messages if
// it was unaware that the master removed it. We've already
// notified frameworks that the tasks under the executors were LOST,
// so we have to have the slave shut down.
TEST_F(PartitionTest, PartitionedSlaveExitedExecutor)
{
  master::Flags masterFlags = CreateMasterFlags();
  Try<Owned<cluster::Master>> master = StartMaster(masterFlags);
  ASSERT_SOME(master);

  // Allow the master to PING the slave, but drop all PONG messages
  // from the slave. Note that we don't match on the master / slave
  // PIDs because it's actually the SlaveObserver Process that sends
  // the pings.
  Future<Message> ping = FUTURE_MESSAGE(
      Eq(PingSlaveMessage().GetTypeName()), _, _);

  DROP_PROTOBUFS(PongSlaveMessage(), _, _);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);
  TestContainerizer containerizer(&exec);

  Owned<MasterDetector> detector = master.get()->createDetector();
  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get(), &containerizer);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  Future<FrameworkID> frameworkId;
  EXPECT_CALL(sched, registered(&driver, _, _))
    .WillOnce(FutureArg<1>(&frameworkId));\

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return());

  driver.start();

  AWAIT_READY(frameworkId);
  AWAIT_READY(offers);
  ASSERT_NE(0u, offers.get().size());

  // Launch a task. This allows us to have the slave send an
  // ExitedExecutorMessage.
  TaskID taskId;
  taskId.set_value("1");

  TaskInfo task;
  task.set_name("");
  task.mutable_task_id()->MergeFrom(taskId);
  task.mutable_slave_id()->MergeFrom(offers.get()[0].slave_id());
  task.mutable_resources()->MergeFrom(offers.get()[0].resources());
  task.mutable_executor()->MergeFrom(DEFAULT_EXECUTOR_INFO);
  task.mutable_executor()->mutable_command()->set_value("sleep 60");

  // Set up the expectations for launching the task.
  EXPECT_CALL(exec, registered(_, _, _, _));

  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_RUNNING));

  // Drop all the status updates from the slave, so that we can
  // ensure the ExitedExecutorMessage is what triggers the slave
  // shutdown.
  DROP_PROTOBUFS(StatusUpdateMessage(), _, master.get()->pid);

  driver.launchTasks(offers.get()[0].id(), {task});

  // Drop the first shutdown message from the master (simulated
  // partition) and allow the second shutdown message to pass when
  // triggered by the ExitedExecutorMessage.
  Future<ShutdownMessage> shutdownMessage =
    DROP_PROTOBUF(ShutdownMessage(), _, slave.get()->pid);

  Future<TaskStatus> lostStatus;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&lostStatus));

  Future<Nothing> slaveLost;
  EXPECT_CALL(sched, slaveLost(&driver, _))
    .WillOnce(FutureSatisfy(&slaveLost));

  Clock::pause();

  // Now, induce a partition of the slave by having the master
  // timeout the slave.
  size_t pings = 0;
  while (true) {
    AWAIT_READY(ping);
    pings++;
    if (pings == masterFlags.max_slave_ping_timeouts) {
     break;
    }
    ping = FUTURE_MESSAGE(Eq(PingSlaveMessage().GetTypeName()), _, _);
    Clock::advance(masterFlags.slave_ping_timeout);
    Clock::settle();
  }

  Clock::advance(masterFlags.slave_ping_timeout);
  Clock::settle();

  // The master will have notified the framework of the lost task.
  AWAIT_READY(lostStatus);
  EXPECT_EQ(TASK_LOST, lostStatus.get().state());

  // Wait for the master to attempt to shut down the slave.
  AWAIT_READY(shutdownMessage);

  // The master will notify the framework that the slave was lost.
  AWAIT_READY(slaveLost);

  shutdownMessage = FUTURE_PROTOBUF(ShutdownMessage(), _, slave.get()->pid);

  // Induce an ExitedExecutorMessage from the slave.
  containerizer.destroy(
      frameworkId.get(), DEFAULT_EXECUTOR_INFO.executor_id());

  // Upon receiving the message, the master will shutdown the slave.
  AWAIT_READY(shutdownMessage);

  Clock::resume();

  driver.stop();
  driver.join();
}
// This test does not set any Accept header for the subscribe call.
// The default response media type should be "application/json" in
// this case.
TEST_P(ExecutorHttpApiTest, NoAcceptHeader)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  ExecutorID executorId = DEFAULT_EXECUTOR_ID;
  MockExecutor exec(executorId);
  TestContainerizer containerizer(&exec);

  Owned<MasterDetector> detector = master.get()->createDetector();
  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get(), &containerizer);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  Future<FrameworkID> frameworkId;
  EXPECT_CALL(sched, registered(&driver, _, _))
    .WillOnce(FutureArg<1>(&frameworkId));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers));

  Future<Nothing> statusUpdate;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureSatisfy(&statusUpdate));

  driver.start();

  AWAIT_READY(frameworkId);
  AWAIT_READY(offers);

  ASSERT_EQ(1u, offers.get().size());

  EXPECT_CALL(exec, registered(_, _, _, _))
    .Times(1);

  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_RUNNING));

  TaskInfo taskInfo = createTask(offers.get()[0], "", executorId);
  driver.launchTasks(offers.get()[0].id(), {taskInfo});

  // Wait until status update is received on the scheduler before sending
  // an executor subscribe request.
  AWAIT_READY(statusUpdate);

  // Only subscribe needs to 'Accept' JSON or protobuf.
  Call call;
  call.mutable_framework_id()->CopyFrom(evolve(frameworkId.get()));
  call.mutable_executor_id()->CopyFrom(evolve(executorId));

  call.set_type(Call::SUBSCRIBE);

  call.mutable_subscribe();

  // Retrieve the parameter passed as content type to this test.
  const ContentType contentType = GetParam();

  // No 'Accept' header leads to all media types considered
  // acceptable. JSON will be chosen by default.
  process::http::Headers headers;

  Future<Response> response = process::http::streaming::post(
      slave.get()->pid,
      "api/v1/executor",
      headers,
      serialize(contentType, call),
      stringify(contentType));

  AWAIT_EXPECT_RESPONSE_STATUS_EQ(OK().status, response);
  AWAIT_EXPECT_RESPONSE_HEADER_EQ(APPLICATION_JSON, "Content-Type", response);

  driver.stop();
  driver.join();
}
// Ensures that when a scheduler enables explicit acknowledgements
// on the driver, there are no implicit acknowledgements sent, and
// the call to 'acknowledgeStatusUpdate' sends the ack to the master.
TEST_F(MesosSchedulerDriverTest, ExplicitAcknowledgements)
{
  Try<PID<Master>> master = StartMaster();
  ASSERT_SOME(master);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);
  TestContainerizer containerizer(&exec);
  Try<PID<Slave>> slave = StartSlave(&containerizer);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get(), false, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(LaunchTasks(DEFAULT_EXECUTOR_INFO, 1, 1, 16, "*"))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status));

  // Ensure no status update acknowledgements are sent from the driver
  // to the master until the explicit acknowledgement is sent.
  EXPECT_NO_FUTURE_CALLS(
      mesos::scheduler::Call(),
      mesos::scheduler::Call::ACKNOWLEDGE,
      _ ,
      master.get());

  EXPECT_CALL(exec, registered(_, _, _, _));

  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_RUNNING));

  EXPECT_CALL(exec, shutdown(_))
    .Times(AtMost(1));

  driver.start();

  AWAIT_READY(status);

  // Settle the clock to ensure driver finishes processing the status
  // update, we want to ensure that no implicit acknowledgement gets
  // sent.
  Clock::pause();
  Clock::settle();

  // Now send the acknowledgement.
  Future<mesos::scheduler::Call> acknowledgement = FUTURE_CALL(
      mesos::scheduler::Call(),
      mesos::scheduler::Call::ACKNOWLEDGE,
      _,
      master.get());

  driver.acknowledgeStatusUpdate(status.get());

  AWAIT_READY(acknowledgement);

  driver.stop();
  driver.join();

  Shutdown();
}
// This test ensures that a task will transition straight from `TASK_KILLING` to
// `TASK_KILLED`, even if the health check begins to fail during the kill policy
// grace period.
//
// TODO(gkleiman): this test takes about 7 seconds to run, consider using mock
// tasks and health checkers to speed it up.
TEST_P(CommandExecutorTest, NoTransitionFromKillingToRunning)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  Owned<MasterDetector> detector = master.get()->createDetector();

  slave::Flags flags = CreateSlaveFlags();
  flags.http_command_executor = GetParam();

  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get(), flags);
  ASSERT_SOME(slave);

  // Start the framework with the task killing capability.
  FrameworkInfo::Capability capability;
  capability.set_type(FrameworkInfo::Capability::TASK_KILLING_STATE);

  FrameworkInfo frameworkInfo = DEFAULT_FRAMEWORK_INFO;
  frameworkInfo.add_capabilities()->CopyFrom(capability);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, frameworkInfo, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_EQ(1u, offers->size());

  const string command = strings::format(
      "%s %s --sleep_duration=15",
      getTestHelperPath("test-helper"),
      KillPolicyTestHelper::NAME).get();

  TaskInfo task = createTask(offers->front(), command);

  // Create a health check that succeeds until a temporary file is removed.
  Try<string> temporaryPath = os::mktemp(path::join(os::getcwd(), "XXXXXX"));
  ASSERT_SOME(temporaryPath);
  const string tmpPath = temporaryPath.get();

  HealthCheck healthCheck;
  healthCheck.set_type(HealthCheck::COMMAND);
  healthCheck.mutable_command()->set_value("ls " + tmpPath + " >/dev/null");
  healthCheck.set_delay_seconds(0);
  healthCheck.set_grace_period_seconds(0);
  healthCheck.set_interval_seconds(0);

  task.mutable_health_check()->CopyFrom(healthCheck);

  // Set the kill policy grace period to 5 seconds.
  KillPolicy killPolicy;
  killPolicy.mutable_grace_period()->set_nanoseconds(Seconds(5).ns());

  task.mutable_kill_policy()->CopyFrom(killPolicy);

  vector<TaskInfo> tasks;
  tasks.push_back(task);

  Future<TaskStatus> statusRunning;
  Future<TaskStatus> statusHealthy;
  Future<TaskStatus> statusKilling;
  Future<TaskStatus> statusKilled;

  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&statusRunning))
    .WillOnce(FutureArg<1>(&statusHealthy))
    .WillOnce(FutureArg<1>(&statusKilling))
    .WillOnce(FutureArg<1>(&statusKilled));

  driver.launchTasks(offers->front().id(), tasks);

  AWAIT_READY(statusRunning);
  EXPECT_EQ(TASK_RUNNING, statusRunning.get().state());

  AWAIT_READY(statusHealthy);
  EXPECT_EQ(TASK_RUNNING, statusHealthy.get().state());
  EXPECT_TRUE(statusHealthy.get().has_healthy());
  EXPECT_TRUE(statusHealthy.get().healthy());

  driver.killTask(task.task_id());

  AWAIT_READY(statusKilling);
  EXPECT_EQ(TASK_KILLING, statusKilling->state());
  EXPECT_FALSE(statusKilling.get().has_healthy());

  // Remove the temporary file, so that the health check fails.
  os::rm(tmpPath);

  AWAIT_READY(statusKilled);
  EXPECT_EQ(TASK_KILLED, statusKilled->state());
  EXPECT_FALSE(statusKilled.get().has_healthy());

  driver.stop();
  driver.join();
}
TEST_F(ResourceOffersTest, ResourcesGetReofferedAfterTaskInfoError)
{
  Try<PID<Master>> master = StartMaster();
  ASSERT_SOME(master);

  Try<PID<Slave>> slave = StartSlave();
  ASSERT_SOME(slave);

  MockScheduler sched1;
  MesosSchedulerDriver driver1(
      &sched1, DEFAULT_FRAMEWORK_INFO, master.get(), DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched1, registered(&driver1, _, _))
    .Times(1);

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched1, resourceOffers(&driver1, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver1.start();

  AWAIT_READY(offers);
  EXPECT_NE(0u, offers.get().size());

  TaskInfo task;
  task.set_name("");
  task.mutable_task_id()->set_value("1");
  task.mutable_slave_id()->MergeFrom(offers.get()[0].slave_id());
  task.mutable_executor()->MergeFrom(DEFAULT_EXECUTOR_INFO);

  Resource* cpus = task.add_resources();
  cpus->set_name("cpus");
  cpus->set_type(Value::SCALAR);
  cpus->mutable_scalar()->set_value(-1);

  Resource* mem = task.add_resources();
  mem->set_name("mem");
  mem->set_type(Value::SCALAR);
  mem->mutable_scalar()->set_value(Gigabytes(1).bytes());

  vector<TaskInfo> tasks;
  tasks.push_back(task);

  Future<TaskStatus> status;
  EXPECT_CALL(sched1, statusUpdate(&driver1, _))
    .WillOnce(FutureArg<1>(&status));

  driver1.launchTasks(offers.get()[0].id(), tasks);

  AWAIT_READY(status);
  EXPECT_EQ(task.task_id(), status.get().task_id());
  EXPECT_EQ(TASK_ERROR, status.get().state());
  EXPECT_EQ(TaskStatus::REASON_TASK_INVALID, status.get().reason());
  EXPECT_TRUE(status.get().has_message());
  EXPECT_TRUE(strings::startsWith(
        status.get().message(), "Task uses invalid resources"));

  MockScheduler sched2;
  MesosSchedulerDriver driver2(
      &sched2, DEFAULT_FRAMEWORK_INFO, master.get(), DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched2, registered(&driver2, _, _))
    .Times(1);

  EXPECT_CALL(sched2, resourceOffers(&driver2, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver2.start();

  AWAIT_READY(offers);

  driver1.stop();
  driver1.join();

  driver2.stop();
  driver2.join();

  Shutdown();
}
// This test ensures that driver based schedulers using explicit
// acknowledgements can acknowledge status updates sent from
// HTTP based executors.
TEST_F_TEMP_DISABLED_ON_WINDOWS(
    HTTPCommandExecutorTest,
    ExplicitAcknowledgements)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  Owned<MasterDetector> detector = master.get()->createDetector();

  slave::Flags flags = CreateSlaveFlags();
  flags.http_command_executor = true;

  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get(), flags);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched,
      DEFAULT_FRAMEWORK_INFO,
      master.get()->pid,
      false,
      DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_EQ(1u, offers->size());

  // Launch a task with the command executor.
  TaskInfo task = createTask(
      offers->front().slave_id(),
      offers->front().resources(),
      "sleep 1000");

  Future<TaskStatus> statusRunning;
  EXPECT_CALL(sched, statusUpdate(_, _))
    .WillOnce(FutureArg<1>(&statusRunning));

  // Ensure no status update acknowledgements are sent from the driver
  // to the master until the explicit acknowledgement is sent.
  EXPECT_NO_FUTURE_CALLS(
      mesos::scheduler::Call(),
      mesos::scheduler::Call::ACKNOWLEDGE,
      _ ,
      master.get()->pid);

  driver.launchTasks(offers->front().id(), {task});

  AWAIT_READY(statusRunning);
  EXPECT_TRUE(statusRunning->has_slave_id());
  EXPECT_EQ(TASK_RUNNING, statusRunning->state());

  // Now send the acknowledgement.
  Future<mesos::scheduler::Call> acknowledgement = FUTURE_CALL(
      mesos::scheduler::Call(),
      mesos::scheduler::Call::ACKNOWLEDGE,
      _,
      master.get()->pid);

  driver.acknowledgeStatusUpdate(statusRunning.get());

  AWAIT_READY(acknowledgement);

  driver.stop();
  driver.join();
}
Example #28
0
TEST_F(ResourceOffersTest, ResourcesGetReofferedAfterTaskInfoError)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  Owned<MasterDetector> detector = master.get()->createDetector();
  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get());
  ASSERT_SOME(slave);

  MockScheduler sched1;
  MesosSchedulerDriver driver1(
      &sched1, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched1, registered(&driver1, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched1, resourceOffers(&driver1, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver1.start();

  AWAIT_READY(offers);
  ASSERT_FALSE(offers->empty());

  TaskInfo task;
  task.set_name("");
  task.mutable_task_id()->set_value("1");
  task.mutable_slave_id()->MergeFrom(offers.get()[0].slave_id());
  task.mutable_executor()->MergeFrom(DEFAULT_EXECUTOR_INFO);

  Resource* cpus = task.add_resources();
  cpus->set_name("cpus");
  cpus->set_type(Value::SCALAR);
  cpus->mutable_scalar()->set_value(-1);

  Resource* mem = task.add_resources();
  mem->set_name("mem");
  mem->set_type(Value::SCALAR);
  mem->mutable_scalar()->set_value(static_cast<double>(Gigabytes(1).bytes()));

  vector<TaskInfo> tasks;
  tasks.push_back(task);

  Future<TaskStatus> status;
  EXPECT_CALL(sched1, statusUpdate(&driver1, _))
    .WillOnce(FutureArg<1>(&status));

  driver1.launchTasks(offers.get()[0].id(), tasks);

  AWAIT_READY(status);
  EXPECT_EQ(task.task_id(), status->task_id());
  EXPECT_EQ(TASK_ERROR, status->state());
  EXPECT_EQ(TaskStatus::REASON_TASK_INVALID, status->reason());
  EXPECT_TRUE(status->has_message());
  EXPECT_TRUE(strings::contains(status->message(), "Invalid scalar resource"))
    << status->message();

  MockScheduler sched2;
  MesosSchedulerDriver driver2(
      &sched2, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched2, registered(&driver2, _, _));

  EXPECT_CALL(sched2, resourceOffers(&driver2, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver2.start();

  AWAIT_READY(offers);

  driver1.stop();
  driver1.join();

  driver2.stop();
  driver2.join();
}
// This test has been temporarily disabled due to MESOS-1257.
TEST_F(ExternalContainerizerTest, DISABLED_Launch)
{
  Try<PID<Master> > master = this->StartMaster();
  ASSERT_SOME(master);

  Flags testFlags;

  slave::Flags flags = this->CreateSlaveFlags();

  flags.isolation = "external";
  flags.containerizer_path =
    testFlags.build_dir + "/src/examples/python/test-containerizer";

  MockExternalContainerizer containerizer(flags);

  Try<PID<Slave> > slave = this->StartSlave(&containerizer, flags);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get(), DEFAULT_CREDENTIAL);

  Future<FrameworkID> frameworkId;
  EXPECT_CALL(sched, registered(&driver, _, _))
    .WillOnce(FutureArg<1>(&frameworkId));

  Future<vector<Offer> > offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(frameworkId);
  AWAIT_READY(offers);

  EXPECT_NE(0u, offers.get().size());

  TaskInfo task;
  task.set_name("isolator_test");
  task.mutable_task_id()->set_value("1");
  task.mutable_slave_id()->CopyFrom(offers.get()[0].slave_id());
  task.mutable_resources()->CopyFrom(offers.get()[0].resources());

  Resources resources(offers.get()[0].resources());
  Option<Bytes> mem = resources.mem();
  ASSERT_SOME(mem);
  Option<double> cpus = resources.cpus();
  ASSERT_SOME(cpus);

  const std::string& file = path::join(flags.work_dir, "ready");

  // This task induces user/system load in a child process by
  // running top in a child process for ten seconds.
  task.mutable_command()->set_value(
#ifdef __APPLE__
      // Use logging mode with 30,000 samples with no interval.
      "top -l 30000 -s 0 2>&1 > /dev/null & "
#else
      // Batch mode, with 30,000 samples with no interval.
      "top -b -d 0 -n 30000 2>&1 > /dev/null & "
#endif
      "touch " + file +  "; " // Signals that the top command is running.
      "sleep 60");

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status))
    .WillRepeatedly(Return()); // Ignore rest for now.

  Future<ContainerID> containerId;
  EXPECT_CALL(containerizer, launch(_, _, _, _, _, _, _, _))
    .WillOnce(DoAll(FutureArg<0>(&containerId),
                    Invoke(&containerizer,
                           &MockExternalContainerizer::_launch)));

  driver.launchTasks(offers.get()[0].id(), {task});

  AWAIT_READY(containerId);

  AWAIT_READY(status);

  EXPECT_EQ(TASK_RUNNING, status.get().state());

  // Wait for the task to begin inducing cpu time.
  while (!os::exists(file));

  ExecutorID executorId;
  executorId.set_value(task.task_id().value());

  // We'll wait up to 10 seconds for the child process to induce
  // 1/8 of a second of user and system cpu time in total.
  // TODO(bmahler): Also induce rss memory consumption, by re-using
  // the balloon framework.
  ResourceStatistics statistics;
  Duration waited = Duration::zero();
  do {
    Future<ResourceStatistics> usage = containerizer.usage(containerId.get());
    AWAIT_READY(usage);

    statistics = usage.get();

    // If we meet our usage expectations, we're done!
    // NOTE: We are currently getting dummy-data from the test-
    // containerizer python script matching these expectations.
    // TODO(tillt): Consider working with real data.
    if (statistics.cpus_user_time_secs() >= 0.120 &&
        statistics.cpus_system_time_secs() >= 0.05 &&
        statistics.mem_rss_bytes() >= 1024u) {
      break;
    }

    os::sleep(Milliseconds(100));
    waited += Milliseconds(100);
  } while (waited < Seconds(10));

  EXPECT_GE(statistics.cpus_user_time_secs(), 0.120);
  EXPECT_GE(statistics.cpus_system_time_secs(), 0.05);
  EXPECT_EQ(statistics.cpus_limit(), cpus.get());
  EXPECT_GE(statistics.mem_rss_bytes(), 1024u);
  EXPECT_EQ(statistics.mem_limit_bytes(), mem.get().bytes());

  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status));

  driver.killTask(task.task_id());

  AWAIT_READY(status);

  EXPECT_EQ(TASK_KILLED, status.get().state());

  driver.stop();
  driver.join();

  this->Shutdown();
}
// This test verifies that a re-registering slave sends the terminal
// unacknowledged tasks for a terminal executor. This is required
// for the master to correctly reconcile its view with the slave's
// view of tasks. This test drops a terminal update to the master
// and then forces the slave to re-register.
TEST_F(MasterSlaveReconciliationTest, SlaveReregisterTerminatedExecutor)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);
  TestContainerizer containerizer(&exec);

  StandaloneMasterDetector detector(master.get()->pid);

  Try<Owned<cluster::Slave>> slave = StartSlave(&detector, &containerizer);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  Future<FrameworkID> frameworkId;
  EXPECT_CALL(sched, registered(&driver, _, _))
    .WillOnce(FutureArg<1>(&frameworkId));

  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(LaunchTasks(DEFAULT_EXECUTOR_INFO, 1, 1, 512, "*"))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  ExecutorDriver* execDriver;
  EXPECT_CALL(exec, registered(_, _, _, _))
    .WillOnce(SaveArg<0>(&execDriver));

  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_RUNNING));

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status));

  Future<StatusUpdateAcknowledgementMessage> statusUpdateAcknowledgementMessage
    = FUTURE_PROTOBUF(
        StatusUpdateAcknowledgementMessage(),
        master.get()->pid,
        slave.get()->pid);

  driver.start();

  AWAIT_READY(status);
  EXPECT_EQ(TASK_RUNNING, status.get().state());

  // Make sure the acknowledgement reaches the slave.
  AWAIT_READY(statusUpdateAcknowledgementMessage);

  // Drop the TASK_FINISHED status update sent to the master.
  Future<StatusUpdateMessage> statusUpdateMessage =
    DROP_PROTOBUF(StatusUpdateMessage(), _, master.get()->pid);

  Future<ExitedExecutorMessage> executorExitedMessage =
    FUTURE_PROTOBUF(ExitedExecutorMessage(), _, _);

  TaskStatus finishedStatus;
  finishedStatus = status.get();
  finishedStatus.set_state(TASK_FINISHED);
  execDriver->sendStatusUpdate(finishedStatus);

  // Ensure the update was sent.
  AWAIT_READY(statusUpdateMessage);

  EXPECT_CALL(sched, executorLost(&driver, DEFAULT_EXECUTOR_ID, _, _));

  // Now kill the executor.
  containerizer.destroy(frameworkId.get(), DEFAULT_EXECUTOR_ID);

  Future<TaskStatus> status2;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status2));

  // We drop the 'UpdateFrameworkMessage' from the master to slave to
  // stop the status update manager from retrying the update that was
  // already sent due to the new master detection.
  DROP_PROTOBUFS(UpdateFrameworkMessage(), _, _);

  detector.appoint(master.get()->pid);

  AWAIT_READY(status2);
  EXPECT_EQ(TASK_FINISHED, status2.get().state());

  driver.stop();
  driver.join();
}