/*** * E2-54 * * Canonical-base64Binary ::= (B64 B64 B64 B64)*((B64 B64 B16 '=')|(B64 B04 '=='))? * B04 ::= [AQgw] * B16 ::= [AEIMQUYcgkosw048] * B64 ::= [A-Za-z0-9+/] * ***/ XMLCh* Base64::getCanonicalRepresentation(const XMLCh* const inputData , MemoryManager* const memMgr , Conformance conform) { if (!inputData || !*inputData) return 0; /*** * Move input data to a XMLByte buffer */ XMLSize_t srcLen = XMLString::stringLen(inputData); XMLByte *dataInByte = (XMLByte*) getExternalMemory(memMgr, (srcLen+1) * sizeof(XMLByte)); ArrayJanitor<XMLByte> janFill(dataInByte, memMgr ? memMgr : XMLPlatformUtils::fgMemoryManager); for (XMLSize_t i = 0; i < srcLen; i++) dataInByte[i] = (XMLByte)inputData[i]; dataInByte[srcLen] = 0; /*** * Forward to the actual decoding method to do the decoding */ XMLSize_t decodedLength = 0; XMLByte* canRepInByte = 0; XMLByte* retStr = decode( dataInByte , &decodedLength , canRepInByte , memMgr , conform); if (!retStr) return 0; /*** * Move canonical representation to a XMLCh buffer to return */ XMLSize_t canRepLen = XMLString::stringLen((char*)canRepInByte); XMLCh *canRepData = (XMLCh*) getExternalMemory(memMgr, (canRepLen + 1) * sizeof(XMLCh)); for (XMLSize_t j = 0; j < canRepLen; j++) canRepData[j] = (XMLCh)canRepInByte[j]; canRepData[canRepLen] = 0; /*** * Release the memory allocated in the actual decoding method */ returnExternalMemory(memMgr, retStr); returnExternalMemory(memMgr, canRepInByte); return canRepData; }
// // delete the buffer allocated by decode() if // decoding is successfully done. // // In previous version, we use XMLString::strLen(decodedData) // to get the length, this will fail for test case containing // consequtive "A", such "AAFF", or "ab56AA56". Instead of // returning 3/6, we have 0 and 3, indicating that "AA", after // decoded, is interpreted as <null> by the strLen(). // // Since decode() has track of length of the decoded data, we // will get this length from decode(), instead of strLen(). // int Base64::getDataLength(const XMLCh* const inputData , MemoryManager* const manager , Conformance conform ) { XMLSize_t retLen = 0; XMLByte* decodedData = decodeToXMLByte(inputData, &retLen, manager, conform); if ( !decodedData ) return -1; else { returnExternalMemory(manager, decodedData); return (int)retLen; } }
XMLCh* Base64::decode(const XMLCh* const inputData , unsigned int* decodedLen , MemoryManager* const memMgr , Conformance conform ) { if (!inputData) return 0; /*** * Move input data to a XMLByte buffer */ unsigned int srcLen = XMLString::stringLen(inputData); XMLByte *dataInByte = (XMLByte*) getExternalMemory(memMgr, (srcLen+1) * sizeof(XMLByte)); ArrayJanitor<XMLByte> janFill(dataInByte, memMgr ? memMgr : XMLPlatformUtils::fgMemoryManager); for (unsigned int i = 0; i < srcLen; i++) dataInByte[i] = (XMLByte)inputData[i]; dataInByte[srcLen] = 0; /*** * Forward to the actual decoding method to do the decoding */ *decodedLen = 0; XMLByte *DecodedBuf = decode(dataInByte, decodedLen, memMgr, conform); if (!DecodedBuf) return 0; /*** * Move decoded data to a XMLCh buffer to return */ XMLCh *toRet = (XMLCh*) getExternalMemory(memMgr, (*decodedLen+1) * sizeof(XMLCh)); for (unsigned int j = 0; j < *decodedLen; j++) toRet[j] = (XMLCh)DecodedBuf[j]; toRet[*decodedLen] = 0; /*** * Release the memory allocated in the actual decoding method */ returnExternalMemory(memMgr, DecodedBuf); return toRet; }
XMLByte* Base64::decode(const XMLByte* const inputData , XMLSize_t* decodedLength , MemoryManager* const memMgr , Conformance conform ) { XMLByte* canRepInByte = 0; XMLByte* retStr = decode( inputData , decodedLength , canRepInByte , memMgr , conform); /*** * Release the canRepData */ if (retStr) returnExternalMemory(memMgr, canRepInByte); return retStr; }
XMLByte* Base64::decode ( const XMLByte* const inputData , XMLSize_t* decodedLength , XMLByte*& canRepData , MemoryManager* const memMgr , Conformance conform ) { if ((!inputData) || (!*inputData)) return 0; // // remove all XML whitespaces from the base64Data // XMLSize_t inputLength = XMLString::stringLen( (const char*)inputData ); XMLByte* rawInputData = (XMLByte*) getExternalMemory(memMgr, (inputLength+1) * sizeof(XMLByte)); ArrayJanitor<XMLByte> jan(rawInputData, memMgr ? memMgr : XMLPlatformUtils::fgMemoryManager); XMLSize_t inputIndex = 0; XMLSize_t rawInputLength = 0; bool inWhiteSpace = false; switch (conform) { case Conf_RFC2045: while ( inputIndex < inputLength ) { if (!XMLChar1_0::isWhitespace(inputData[inputIndex])) { rawInputData[ rawInputLength++ ] = inputData[ inputIndex ]; } // RFC2045 does not explicitly forbid more than ONE whitespace // before, in between, or after base64 octects. // Besides, S? allows more than ONE whitespace as specified in the production // [3] S ::= (#x20 | #x9 | #xD | #xA)+ // therefore we do not detect multiple ws inputIndex++; } break; case Conf_Schema: // no leading #x20 if (chSpace == inputData[inputIndex]) return 0; while ( inputIndex < inputLength ) { if (chSpace != inputData[inputIndex]) { rawInputData[ rawInputLength++ ] = inputData[ inputIndex ]; inWhiteSpace = false; } else { if (inWhiteSpace) return 0; // more than 1 #x20 encountered else inWhiteSpace = true; } inputIndex++; } // no trailing #x20 if (inWhiteSpace) return 0; break; default: break; } //now rawInputData contains canonical representation //if the data is valid Base64 rawInputData[ rawInputLength ] = 0; // the length of raw data should be divisible by four if (( rawInputLength % FOURBYTE ) != 0 ) return 0; int quadrupletCount = (int)rawInputLength / FOURBYTE; if ( quadrupletCount == 0 ) return 0; // // convert the quadruplet(s) to triplet(s) // XMLByte d1, d2, d3, d4; // base64 characters XMLByte b1, b2, b3, b4; // base64 binary codes ( 0..64 ) XMLSize_t rawInputIndex = 0; XMLSize_t outputIndex = 0; XMLByte *decodedData = (XMLByte*) getExternalMemory(memMgr, (quadrupletCount*3+1) * sizeof(XMLByte)); // // Process all quadruplet(s) except the last // int quad = 1; for (; quad <= quadrupletCount-1; quad++ ) { // read quadruplet from the input stream if (!isData( (d1 = rawInputData[ rawInputIndex++ ]) ) || !isData( (d2 = rawInputData[ rawInputIndex++ ]) ) || !isData( (d3 = rawInputData[ rawInputIndex++ ]) ) || !isData( (d4 = rawInputData[ rawInputIndex++ ]) )) { // if found "no data" just return NULL returnExternalMemory(memMgr, decodedData); return 0; } b1 = base64Inverse[ d1 ]; b2 = base64Inverse[ d2 ]; b3 = base64Inverse[ d3 ]; b4 = base64Inverse[ d4 ]; // write triplet to the output stream decodedData[ outputIndex++ ] = set1stOctet(b1, b2); decodedData[ outputIndex++ ] = set2ndOctet(b2, b3); decodedData[ outputIndex++ ] = set3rdOctet(b3, b4); } // // process the last Quadruplet // // first two octets are present always, process them if (!isData( (d1 = rawInputData[ rawInputIndex++ ]) ) || !isData( (d2 = rawInputData[ rawInputIndex++ ]) )) { // if found "no data" just return NULL returnExternalMemory(memMgr, decodedData); return 0; } b1 = base64Inverse[ d1 ]; b2 = base64Inverse[ d2 ]; // try to process last two octets d3 = rawInputData[ rawInputIndex++ ]; d4 = rawInputData[ rawInputIndex++ ]; if (!isData( d3 ) || !isData( d4 )) { // check if last two are PAD characters if (isPad( d3 ) && isPad( d4 )) { // two PAD e.g. 3c== if ((b2 & 0xf) != 0) // last 4 bits should be zero { returnExternalMemory(memMgr, decodedData); return 0; } decodedData[ outputIndex++ ] = set1stOctet(b1, b2); } else if (!isPad( d3 ) && isPad( d4 )) { // one PAD e.g. 3cQ= b3 = base64Inverse[ d3 ]; if (( b3 & 0x3 ) != 0 ) // last 2 bits should be zero { returnExternalMemory(memMgr, decodedData); return 0; } decodedData[ outputIndex++ ] = set1stOctet( b1, b2 ); decodedData[ outputIndex++ ] = set2ndOctet( b2, b3 ); } else { // an error like "3c[Pad]r", "3cdX", "3cXd", "3cXX" where X is non data returnExternalMemory(memMgr, decodedData); return 0; } } else { // no PAD e.g 3cQl b3 = base64Inverse[ d3 ]; b4 = base64Inverse[ d4 ]; decodedData[ outputIndex++ ] = set1stOctet( b1, b2 ); decodedData[ outputIndex++ ] = set2ndOctet( b2, b3 ); decodedData[ outputIndex++ ] = set3rdOctet( b3, b4 ); } // write out the end of string decodedData[ outputIndex ] = 0; *decodedLength = outputIndex; //allow the caller to have access to the canonical representation jan.release(); canRepData = rawInputData; return decodedData; }