Example #1
0
void sararfftnd_one_complex_to_real(
  sararfftnd_plan p, sarafft_complex *data
) {
#ifdef USE_GPUS
  // TODO: GPU implementation
#else // #ifndef USE_GPUS
  rfftwnd_one_complex_to_real( p, data, 0 );
#endif
}
Example #2
0
void Wavelet::invFFT1DInPlace()
{
  // use the operator version of the fourier transform
  if(!isReal_) {
    int flag;
    rfftwnd_plan plan;

    flag = FFTW_ESTIMATE | FFTW_IN_PLACE;
    plan= rfftwnd_create_plan(1,&nzp_,FFTW_COMPLEX_TO_REAL,flag);
    rfftwnd_one_complex_to_real(plan,cAmp_,rAmp_);
    fftwnd_destroy_plan(plan);
    isReal_=true;
    double scale= static_cast<double>(1.0/static_cast<double>(nzp_));
    for(int i=0; i < nzp_; i++)
      rAmp_[i] = static_cast<fftw_real>(rAmp_[i]*scale);
  }
}
Example #3
0
int 
gmx_fft_3d_real(gmx_fft_t                  fft,
                enum gmx_fft_direction     dir,
                void *                     in_data,
                void *                     out_data)
{
    int inplace   = (in_data == out_data);
    int isforward = (dir == GMX_FFT_REAL_TO_COMPLEX);
    int sz;
    
    if((fft->ndim != 3) ||
       ((dir != GMX_FFT_REAL_TO_COMPLEX) && (dir != GMX_FFT_COMPLEX_TO_REAL)))
    {
        gmx_fatal(FARGS,"FFT plan mismatch - bad plan or direction.");
        return EINVAL;
    }
    
    if(inplace == 0)
    {
        /* Copy data to avoid overwriting input, and redirect input ptr to work array */
        sz = fft->nx*fft->ny*(fft->nz/2 + 1)*2;
        memcpy(fft->work,in_data,sz*sizeof(real));
        in_data = fft->work;
    }    

    if(isforward)
    {
        rfftwnd_one_real_to_complex(fft->multi[inplace][isforward],(fftw_real *)in_data,(fftw_complex *)out_data);
    }
    else
    {
        rfftwnd_one_complex_to_real(fft->multi[inplace][isforward],(fftw_complex *)in_data,(fftw_real *)out_data);
    }
    
    return 0;
}
Example #4
0
/*
 * Class:     jfftw_real_nd_Plan
 * Method:    transform
 * Signature: ([D)[D
 */
JNIEXPORT jdoubleArray JNICALL Java_jfftw_real_nd_Plan_transform___3D( JNIEnv* env, jobject obj, jdoubleArray in )
{
	jdouble *cin, *cout;
	jdoubleArray out;
	int i;

	jclass clazz = (*env)->GetObjectClass( env, obj );
	jfieldID id = (*env)->GetFieldID( env, clazz, "plan", "[B" );
	jbyteArray arr = (jbyteArray)(*env)->GetObjectField( env, obj, id );
	unsigned char* carr = (*env)->GetByteArrayElements( env, arr, 0 );
	rfftwnd_plan plan = *(rfftwnd_plan*)carr;
	int length = 1;
	int clength = 2;
	for( i = 0; i < plan->rank; ++i ) length *= plan->plans[i]->n;
	for( i = 0; i < plan->rank; ++i ) clength *= plan->n[i];
	if( (plan->dir==FFTW_REAL_TO_COMPLEX?length:clength) != (*env)->GetArrayLength( env, in ) )
	{
		(*env)->ThrowNew( env, (*env)->FindClass( env, "java/lang/IndexOutOfBoundsException" ), "the Plan was created for a different length" );
		(*env)->ReleaseByteArrayElements( env, arr, carr, 0 );
		return NULL;
	}

	cin = (*env)->GetDoubleArrayElements( env, in, 0 );
	if( plan->is_in_place )
	{
		out = in;
		cout = NULL;
	}
	else
	{
		out = (*env)->NewDoubleArray( env, (plan->dir==FFTW_REAL_TO_COMPLEX?clength:length) );
		cout = (*env)->GetDoubleArrayElements( env, out, 0 );
	}

	if( plan->rank > 0 && ! plan->plans[0]->flags & FFTW_THREADSAFE )
	{
		// synchronization
		(*env)->MonitorEnter( env, obj );
	}

	if( plan->dir == FFTW_REAL_TO_COMPLEX )
	{
		rfftwnd_one_real_to_complex( plan, cin, (fftw_complex*)cout );
	}
	else
	{
		rfftwnd_one_complex_to_real( plan, (fftw_complex*)cin, cout );
	}

	if( plan->rank > 0 && ! plan->plans[0]->flags & FFTW_THREADSAFE )
	{
		// synchronization
		(*env)->MonitorExit( env, obj );
	}

	(*env)->ReleaseByteArrayElements( env, arr, carr, 0 );
	(*env)->ReleaseDoubleArrayElements( env, in, cin, 0 );
	if( plan->is_in_place )
	{
		(*env)->ReleaseDoubleArrayElements( env, out, cout, 0 );
	}
	return out;
}
Example #5
0
void F77_FUNC_(rfftwnd_f77_one_complex_to_real,RFFTWND_F77_ONE_COMPLEX_TO_REAL)
(fftwnd_plan *p, fftw_complex *in, fftw_real *out)
{
     rfftwnd_one_complex_to_real(*p,in,out);
}
Example #6
0
main (int argc, char *argv[])
{
  struct em_file inputdata1;
  struct em_file inputdata2;
  struct em_file inputdata3;
  struct em_file inputdata4;
  struct em_file outputdata;

  fftw_real *Vol_tmpl_sort, *Volume, *e3, *PointCorr, *sqconv;
  fftw_complex *C3, *PointVolume, *PointSq;
  rfftwnd_plan p3, pi3, r3, ri3;
  fftw_real scale;

  struct tm *zeit;
  struct tm start;
  char name[200];
  int Rx_max, Ry_max, Rz_max;
  int Rx_min, Ry_min, Rz_min;
  int Vx_min, Vy_min, Vz_min;
  int Vx_max, Vy_max, Vz_max;
  float Phi, Psi, Theta, winkel_lauf;
  float *Rot_tmpl, *Vol_tmpl;
  int i, j, k, tmpx, tmpy, tmpz,lauf_pe, ksub;
  int ijk;
  int lauf, n;
  float max, eps;
  time_t lt;
  float Ctmp, Ctmpim, Dtmp, Dtmpim;
  int dim_fft;
  int sub[3],range[3],range_sub[3],subc[3],offset[3],dimarray[3];
  int FullVolume_dims[3];
  int nr[3];
  int area[3];
  
/* MPI Variablen */
  int winkel_max, winkel_min;
  int winkel_max_pe, winkel_min_pe;
  int winkel_step_pe;
  int Phi_max, Psi_max, Theta_max;
  int Phi_min, Psi_min, Theta_min;
  int Phi_step, Psi_step, Theta_step;
  int Theta_winkel_start, Psi_winkel_start, Phi_winkel_start;
  int Theta_winkel_nr, Psi_winkel_nr, Phi_winkel_nr;
  int Theta_winkel_end, Psi_winkel_end, Phi_winkel_end;
  int Theta_steps, Psi_steps, Phi_steps;
  float Theta_winkel_rest_nr, Psi_winkel_rest_nr, Phi_winkel_rest_nr;
  int in_max;
  float rms_wedge, tempccf;
  float *Ergebnis, *conv;
  float cycles;
  int cycle;
  
/* MPI Variablen Ende*/

  if (argc < 15)
    {
      printf ("\n\n");
      printf (" 'OSCAR' is an Optimized SCanning AlgoRithm for \n");
      printf (" local correlation.\n");
      printf (" All files in EM-V-int4 format !!!\n\n");
      printf (" Input: Volume to be searched, Template mask for local \n ");
      printf ("   correlation, pointspread function and angular search \n");
      printf ("   range. \n");
      printf (" Output: locally normalized X-Correlation Function Out.ccf.norm, \n");
      printf ("   non-normalized X-Correlation Function Out.ccf, and Out.ang \n");
      printf ("   with the corresponding angles.\n\n");
      printf (" usage: oscar Volume Template Out ...\n");
      printf ("         ... Phi_min Phi_max Phi_step Psi_min Psi_max Psi_step The_min The_max The_step\n");
      printf ("    ... Poinspread-function mask-file dim_of_fft\n\n");
      printf (" with Message Passing Interface (MPI)\n");
      printf (" the total number of angles must be modulo\n");
      printf (" of used processors!\n\n");
      printf (" Linux:   	1.'lamboot' to start MPI\n");
      printf ("		2.'mpirun -np 2 oscar Volume Templ Out 30 180 30 30 180 30 30 180 30 Poinspread-function mask-file 256'\n\n");
      printf (" In this version asymmetric masks can be used ! \n");
      printf (" last revision  ,  11.11.03, Friedrich Foerster");
      printf (" \n\n");
      exit (1);
    }

  MPI_Init (&argc, &argv);
  MPI_Comm_size (MPI_COMM_WORLD, &mysize);
  MPI_Comm_rank (MPI_COMM_WORLD, &myrank);
  /* Dimensionen auslesen */
  // Dimension of fft
  dim_fft = atoi (argv[15]);
  nr[0]=1;
  nr[1]=1;
  nr[2]=1;
  area[0]=dim_fft;
  area[1]=dim_fft;
  area[2]=dim_fft;
  read_em_header(argv[1], &inputdata1); /* Searchvolume */
  read_em (argv[2], &inputdata2); /* Template */
  FullVolume_dims[0]=inputdata1.dims[0];
  FullVolume_dims[1]=inputdata1.dims[1];
  FullVolume_dims[2]=inputdata1.dims[2];
  Rx_min = 1;
  Ry_min = 1;
  Rz_min = 1;
  Rx_max = (inputdata2.dims[0]);
  Ry_max = (inputdata2.dims[1]);
  Rz_max = (inputdata2.dims[2]);
  Vx_min = 1;
  Vy_min = 1;
  Vz_min = 1;
  Vx_max = dim_fft;
  Vy_max = dim_fft;
  Vz_max = dim_fft;
  p3 = rfftw3d_create_plan (Vx_max, Vy_max, Vz_max, FFTW_REAL_TO_COMPLEX,
			    FFTW_MEASURE | FFTW_IN_PLACE);	/*FFTW_ESTIMATE FFTW_MEASURE */
  pi3 = rfftw3d_create_plan (Vx_max, Vy_max, Vz_max, FFTW_COMPLEX_TO_REAL,
			     FFTW_MEASURE | FFTW_IN_PLACE);
  r3 = rfftw3d_create_plan (Rx_max, Rx_max, Rx_max, FFTW_REAL_TO_COMPLEX,
  		    FFTW_MEASURE | FFTW_IN_PLACE);	/*FFTW_ESTIMATE FFTW_MEASURE */
  ri3 = rfftw3d_create_plan (Rx_max, Rx_max, Rx_max, FFTW_COMPLEX_TO_REAL,
  		     FFTW_MEASURE | FFTW_IN_PLACE);
  if (myrank == 0)
    {
      printf("Plans for FFTW created \n");fflush(stdout);
    }
  Volume = (fftw_real *) calloc (Vx_max * Vx_max * 2 * (Vx_max / 2 + 1),sizeof (fftw_real) );
  Rot_tmpl = (float *) malloc (sizeof (float) * Rx_max * Ry_max * Rz_max);
  Vol_tmpl = (float *) malloc (sizeof (float) * Vx_max * Vy_max * Vz_max);
  conv = (float *) malloc (sizeof (float) * Vx_max * Vy_max * Vz_max);
  sqconv = (fftw_real *) calloc(Vz_max * Vy_max * 2 * (Vx_max / 2 + 1), sizeof (fftw_real));
  if (!
      (inputdata1.floatdata =
       (float *) malloc (sizeof (float) * Vx_max * Vy_max * Vz_max)))
    {
      printf ("Memory allocation  failure in inputdata1.floatdata!!!");
      fflush (stdout);
      exit (1);
    }
  if (!
      (outputdata.floatdata =
       (float *) malloc (sizeof (float) * Vx_max * Vy_max * Vz_max)))
    {
      printf ("Memory allocation  failure in outputdata.floatdata!!!");
      fflush (stdout);
      exit (1);
    }
  
  if (!
      (Vol_tmpl_sort = (fftw_real *) calloc (Vz_max*Vy_max*2*(Vx_max / 2 + 1), sizeof (fftw_real) )))
    {
      printf ("Memory allocation  failure in Volume_tmpl_sort!!!");
      printf ("Nx = %i, Ny = %i, Nz = %i, bytes = %i \n",2 *(Vx_max / 2 + 1),Vy_max, Vz_max, sizeof (fftw_real));
      fflush (stdout);
      exit (1);
    }
  Ergebnis = (float *) calloc (Vz_max * Vy_max * Vx_max, sizeof (float));
   /* Winkelraum */
  Phi_min = atof (argv[4]);
  Phi_max = atof (argv[5]);
  Phi_step = atof (argv[6]);
  Psi_min = atof (argv[7]);
  Psi_max = atof (argv[8]);
  Psi_step = atof (argv[9]);
  Theta_min = atof (argv[10]);
  Theta_max = atof (argv[11]);
  Theta_step = atof (argv[12]);
  /* Pointspread Function*/
  read_em (argv[13], &inputdata3);
  /* mask function */
  read_em (argv[14], &inputdata4);
  Phi_steps = (Phi_max - Phi_min) / Phi_step + 1;
  Psi_steps = (Psi_max - Psi_min) / Psi_step + 1;
  Theta_steps = (Theta_max - Theta_min) / Theta_step + 1;
  winkel_max = Phi_steps * Psi_steps * Theta_steps;
  winkel_min = 0;
  range[0]=dim_fft-1;
  range[1]=dim_fft-1;
  range[2]=dim_fft-1;
  range_sub[0]=range[0]-Rx_max;
  range_sub[1]=range[1]-Rx_max;
  range_sub[2]=range[2]-Rx_max;
  sub[0]=1;
  sub[1]=1;
  sub[2]=1;
  cycles=(int)(FullVolume_dims[2]/(dim_fft-Rx_max)+0.5);
  cycles=(int)(FullVolume_dims[1]/(dim_fft-Rx_max)+0.5)*cycles;
  cycles=(int)(FullVolume_dims[0]/(dim_fft-Rx_max)+0.5)*cycles;
  cycle=0;
  if (myrank == 0)
    {
      printf ("\n oscar starts to run ... ");tack (&start);fflush (stdout);
      /* prepare Output */
      strcpy (name, argv[3]);
      strcat (name, ".ccf");
      printf ("\nCreate outputfile: %s ... \n", name);fflush(stdout);
      create_em (name, FullVolume_dims);
      strcpy (name, argv[3]);
      strcat (name, ".ang");
      printf ("Create outputfile: %s ... \n", name);fflush(stdout);
      create_em (name, FullVolume_dims);
      strcpy (name, argv[3]);
      strcat (name, ".ccf.norm");
      printf ("Create outputfile: %s ... \n", name);fflush(stdout);
      create_em (name, FullVolume_dims);
    }
  for (sub[2]=1; sub[2] < FullVolume_dims[2]-Rz_max;sub[2]=sub[2]+dim_fft-Rz_max)
    {		  
    if (myrank == 0)
	{
	tack (&start);
	printf ("%f%%..", (float) (cycle / cycles * 100));
	fflush (stdout);
	}

      for (sub[1]=1; sub[1] < FullVolume_dims[1]-Ry_max;sub[1]=sub[1]+dim_fft-Ry_max)
        {
	  for (sub[0]=1; sub[0] < FullVolume_dims[0]-Rx_max;sub[0]=sub[0]+dim_fft-Rx_max)
	    {
	      cycle=cycle+1;
	      subc[0]=sub[0];
	      subc[1]=sub[1];
	      subc[2]=sub[2]; 
	      if (sub[2] + range[2] > FullVolume_dims[2]) subc[2]=FullVolume_dims[2]-range[2];  /* we are at the corner ?!*/
	      if (sub[1] + range[1] > FullVolume_dims[1]) subc[1]=FullVolume_dims[1]-range[1];  /* we are at the corner ?!*/
	      if (sub[0] + range[0] > FullVolume_dims[0]) subc[0]=FullVolume_dims[0]-range[0];  /* we are at the corner ?!*/
	      read_em_subregion (argv[1], &inputdata1,subc,range);
	      read_em_subregion (argv[1], &outputdata,subc,range);
	      /* Umsortieren der Daten */
	      lauf = 0;
	      for (k = 0; k < Vz_max; k++)
		{
		  for (j = 0; j < Vy_max; j++)
		    {
		      for (i = 0; i < Vx_max; i++)
			{
			  /* square - needed for normalization */
			  sqconv[i + 2 * (Vx_max / 2 + 1) * (j + Vy_max * k)] = inputdata1.floatdata[lauf]*inputdata1.floatdata[lauf];
			  Volume[i + 2 * (Vx_max / 2 + 1) * (j + Vy_max * k)] = inputdata1.floatdata[lauf];
			  inputdata1.floatdata[lauf] = -1.0; /* kleine Zahl wg Max-Op , hier kommen die CCFs rein*/
			  outputdata.floatdata[lauf] = -1.0; /* hier kommen die Winkel rein*/
			  lauf++;
			}
		    }
		}
	      rfftwnd_one_real_to_complex (p3, &Volume[0], NULL); /* einmalige fft von Suchvolumen */
	      rfftwnd_one_real_to_complex (p3, &sqconv[0], NULL); /* FFT of square*/
	      winkel_step_pe = (int) winkel_max / mysize;
	      winkel_min_pe = myrank * winkel_step_pe;
	      winkel_max_pe = winkel_min_pe + winkel_step_pe;
	      Theta_winkel_nr = (int) winkel_min_pe / (Psi_steps * Phi_steps);
	      Theta_winkel_rest_nr = winkel_min_pe - Theta_winkel_nr * (Psi_steps * Phi_steps);
	      Psi_winkel_nr = (int) Theta_winkel_rest_nr / (Phi_steps);
	      Psi_winkel_rest_nr = Theta_winkel_rest_nr - Psi_winkel_nr * (Phi_steps);
	      Phi_winkel_nr = (int) Psi_winkel_rest_nr;
	      Theta = Theta_winkel_nr * Theta_step + Theta_min;
	      Phi = Phi_winkel_nr * Phi_step + Phi_min - Phi_step;
	      Psi = Psi_winkel_nr * Psi_step + Psi_min;
	      eps = 0.001;
	      n = 0;
	      //Friedrich -> Zaehlung der voxels 
	      n = countvoxel(inputdata4.dims[0], inputdata4.floatdata, eps);
	      eps = 0.001;
	      for (winkel_lauf = winkel_min_pe; winkel_lauf < winkel_max_pe;winkel_lauf++)
		{
		  if (Phi < Phi_max)
		    Phi = Phi + Phi_step;
		  else
		    {
		      Phi = Phi_min;
		      Psi = Psi + Psi_step;
		    }
		  if (Psi > Psi_max)
		    {
		      Psi = Psi_min;
		      Theta = Theta + Theta_step;
		    }
		  tom_rotate3d (&Rot_tmpl[0], &inputdata2.floatdata[0], Phi, Psi, Theta, Rx_max, Ry_max, Rz_max);
		  /*calculate Ref variance */
		  rms_wedge = energizer (Rx_min, Rx_max, n, &Rot_tmpl[0], &inputdata3.floatdata[0], &inputdata4.floatdata[0], r3, ri3); 
		  pastes (&Rot_tmpl[0], &Vol_tmpl[0], 1, 1, 1, Rx_max, Ry_max, Rz_max, Vx_max);
		  scale = 1.0 / ((double)Vx_max * (double)Vy_max * (double)Vz_max * ((double) rms_wedge) );
		  //printf("hippo1: scale = %.10f \n",scale);
		  sort4fftw(&Vol_tmpl_sort[0],&Vol_tmpl[0],Vx_max, Vy_max, Vz_max);
		  rfftwnd_one_real_to_complex (p3, &Vol_tmpl_sort[0], NULL);
		  PointVolume = (fftw_complex *) & Volume[0];
		  C3 = (fftw_complex *) & Vol_tmpl_sort[0];
		  /* Correlation */
		  correl(&PointVolume[0], &C3[0], Vx_max, Vy_max, Vz_max, scale);
		  /* back to real space */
		  rfftwnd_one_complex_to_real (pi3, &C3[0], NULL);
		  PointCorr = (fftw_real *) & C3[0];
		  /* Umsortieren der Daten */
		  sortback4fftw( &PointCorr[0], &Ergebnis[0], Vx_max, Vy_max, Vz_max);
		  // crossen 
		  cross(&Ergebnis[0], Vx_max);
		  /* 3rd: divide */
		  lauf = 0;
		  for (k = 0 ; k < Vz_max  ; k++)
		    {
		      for (j = 0; j < Vy_max; j++)
			{
			  for (i = 0; i < Vx_max; i++)
			    {
			      if (inputdata1.floatdata[lauf] < Ergebnis[lauf] )
				{
				  inputdata1.floatdata[lauf] = Ergebnis[lauf];
				  outputdata.floatdata[lauf] = (int) winkel_lauf;
				}
			      lauf++;
			    }
			}
		    }
		}				/* Ende winkel_lauf */
	      //FF
	      MPI_Barrier (MPI_COMM_WORLD);
	      /* Ergebnisse einsammeln (myrank 0)*/
	      if (myrank == 0)
		{
		  for (lauf_pe = 1; lauf_pe < mysize; lauf_pe++)
		    {
		      MPI_Recv (&Ergebnis[0], Vx_max * Vy_max * Vz_max, MPI_FLOAT, lauf_pe,
				99, MPI_COMM_WORLD, &status);
		      MPI_Recv (&conv[0], Vx_max * Vy_max * Vz_max, MPI_FLOAT,
				lauf_pe, 98, MPI_COMM_WORLD, &status);
		      /* use conv as temporary memory for angles  */
		      for (lauf = 0; lauf < Vx_max * Vy_max * Vz_max; lauf++)
			{
			  if (inputdata1.floatdata[lauf] < Ergebnis[lauf])
			    {
			      inputdata1.floatdata[lauf] = Ergebnis[lauf];
			      outputdata.floatdata[lauf] = conv[lauf];
			    }
			}
		    }
		  /*Ergebnisse eingesammelt */
		  
		}
	      // myrank > 0: Ergebnisse senden
	      else
		{
		  MPI_Send (inputdata1.floatdata, Vx_max * Vy_max * Vz_max, MPI_FLOAT, 0,
			    99, MPI_COMM_WORLD);
		  MPI_Send (outputdata.floatdata, Vx_max * Vy_max * Vz_max, MPI_FLOAT, 0,
			    98, MPI_COMM_WORLD);
		}
	      MPI_Barrier (MPI_COMM_WORLD);
	      // nicht normalisiertes Volumen und Winkel rausschreiben
	      subc[0]=subc[0]+Rx_max/2;
	      subc[1]=subc[1]+Rx_max/2;
	      subc[2]=subc[2]+Rx_max/2;
	      if (myrank==0)
		{
		  offset[0]=Rx_max/2;
		  offset[1]=Rx_max/2;
		  offset[2]=Rx_max/2;
		  dimarray[0]=dim_fft;
		  dimarray[1]=dim_fft;
		  dimarray[2]=dim_fft;
		  strcpy (name, argv[3]);
		  strcat (name, ".ccf");
		  write_em_subsubregion (name, &inputdata1,subc,range_sub,offset,dimarray); 
		  strcpy (name, argv[3]);
		  strcat (name, ".ang");
		  write_em_subsubregion (name, &outputdata,subc,range_sub,offset,dimarray);
		  /* ------------------- normalization - here only PE 0 ---------- */
		  pastes (&inputdata4.floatdata[0], &Vol_tmpl[0], 1, 1, 1, Rx_max, Ry_max, Rz_max, Vx_max); /* paste mask into zero volume*/
		  /* 1st local mean */
		  sort4fftw(&Vol_tmpl_sort[0], &Vol_tmpl[0], Vx_max, Vy_max, Vz_max);
		  rfftwnd_one_real_to_complex (p3, &Vol_tmpl_sort[0], NULL);
		  C3 = (fftw_complex *) & Vol_tmpl_sort[0];
		  /* Convolution of volume and mask */
		  scale = 1.0 / ((double)Vx_max * (double)Vy_max * (double)Vz_max );
		  convolve( &PointVolume[0], &C3[0], Vx_max, Vy_max, Vz_max, scale);
		  rfftwnd_one_complex_to_real (pi3, &C3[0], NULL);
		  PointCorr = (fftw_real *) & C3[0];
		  /* Umsortieren der Daten */
		  sortback4fftw( &PointCorr[0], &conv[0], Vx_max, Vy_max, Vz_max);
		  /* 2nd : convolution of square and resorting*/
		  pastes (&inputdata4.floatdata[0], &Vol_tmpl[0], 1, 1, 1, Rx_max, Ry_max, Rz_max, Vx_max); /* paste mask into zero volume*/
		  sort4fftw( &Vol_tmpl_sort[0], &Vol_tmpl[0], Vx_max, Vy_max, Vz_max);
		  rfftwnd_one_real_to_complex (p3, &Vol_tmpl_sort[0], NULL);
		  C3 = (fftw_complex *) & Vol_tmpl_sort[0];
		  PointSq = (fftw_complex *) & sqconv[0];// set pointer to FFT of square
		  convolve( &PointSq[0], &C3[0], Vx_max, Vy_max, Vz_max, scale);
		  rfftwnd_one_complex_to_real (pi3, &C3[0], NULL);
		  PointCorr = (fftw_real *) &C3[0];
		  //FF
		  lauf = 0;
		  for (k = 0; k < Vz_max; k++)
		    {
		      for (j = 0; j < Vy_max; j++)
			{
			  for (i = 0; i < Vx_max; i++)
			    {
			      conv[lauf] = sqrt(PointCorr[i + 2 * (Vx_max / 2 + 1) * (j + Vy_max * k)] - conv[lauf]*conv[lauf]/((float) n) ) ;/*local variance*/
			      lauf++;
			    }
			}
		    }
		  cross(&conv[0], Vx_max);
		  /* perform division */
		  for (lauf = 0; k < Vz_max*Vy_max*Vz_max; lauf++)
		    {
		      if (conv[lauf] > eps)
			{
			  inputdata1[lauf].floatdata = inputdata1[lauf].floatdata/conv[lauf];
			}
		      else
			{
			  inputdata1[lauf].floatdata = 0;
			}
		    }
		  strcpy (name, argv[3]);
		  strcat (name, ".ccf.norm");
		  write_em_subsubregion (name, &inputdata1,subc,range_sub,offset,dimarray);
		}
	      MPI_Barrier (MPI_COMM_WORLD);
	    }
	} /* these are the new brackets from the subregion_read , SN */
    }
  free(Ergebnis);
  free(inputdata1.floatdata);  
  free(inputdata2.floatdata);
  free(inputdata3.floatdata);
  free(inputdata4.floatdata);
  rfftwnd_destroy_plan(p3);
  rfftwnd_destroy_plan(pi3);
  rfftwnd_destroy_plan(r3);
  rfftwnd_destroy_plan(ri3);
  free(Volume);
  free(sqconv);
  free(conv);
  free(Rot_tmpl);
  free(Vol_tmpl_sort);
  free(outputdata.floatdata);
  if (myrank==0)
    {
      printf ("oscar finished. ");
      tack (&start); fflush(stdout);
    }
  MPI_Finalize();

  /* end main */
}
void testnd_in_place(int rank, int *n, fftwnd_plan validated_plan,
		     int alternate_api, int specific)
{
     int istride, ostride, howmany;
     int N, dim, i, j, k;
     int nc, nhc, nr;
     fftw_real *in1, *out3;
     fftw_complex *in2, *out1, *out2;
     fftwnd_plan p, ip;
     int flags = measure_flag | wisdom_flag | FFTW_IN_PLACE;

     if (coinflip())
	  flags |= FFTW_THREADSAFE;

     N = nc = nr = nhc = 1;
     for (dim = 0; dim < rank; ++dim)
	  N *= n[dim];
     if (rank > 0) {
	  nr = n[rank - 1];
	  nc = N / nr;
	  nhc = nr / 2 + 1;
     }
     in1 = (fftw_real *) fftw_malloc(2 * nhc * nc * MAX_STRIDE * sizeof(fftw_real));
     out3 = in1;
     out1 = (fftw_complex *) in1;
     in2 = (fftw_complex *) fftw_malloc(N * sizeof(fftw_complex));
     out2 = (fftw_complex *) fftw_malloc(N * sizeof(fftw_complex));

     if (alternate_api && specific && (rank == 2 || rank == 3)) {
	  if (rank == 2) {
	       p = rfftw2d_create_plan_specific(n[0], n[1],
					     FFTW_REAL_TO_COMPLEX, flags,
						in1, MAX_STRIDE, 0, 0);
	       ip = rfftw2d_create_plan_specific(n[0], n[1],
					     FFTW_COMPLEX_TO_REAL, flags,
						 in1, MAX_STRIDE, 0, 0);
	  } else {
	       p = rfftw3d_create_plan_specific(n[0], n[1], n[2],
					     FFTW_REAL_TO_COMPLEX, flags,
						in1, MAX_STRIDE, 0, 0);
	       ip = rfftw3d_create_plan_specific(n[0], n[1], n[2],
					     FFTW_COMPLEX_TO_REAL, flags,
						 in1, MAX_STRIDE, 0, 0);
	  }
     } else if (specific) {
	  p = rfftwnd_create_plan_specific(rank, n, FFTW_REAL_TO_COMPLEX,
					   flags,
				       in1, MAX_STRIDE, in1, MAX_STRIDE);
	  ip = rfftwnd_create_plan_specific(rank, n, FFTW_COMPLEX_TO_REAL,
					    flags,
				       in1, MAX_STRIDE, in1, MAX_STRIDE);
     } else if (alternate_api && (rank == 2 || rank == 3)) {
	  if (rank == 2) {
	       p = rfftw2d_create_plan(n[0], n[1], FFTW_REAL_TO_COMPLEX,
				       flags);
	       ip = rfftw2d_create_plan(n[0], n[1], FFTW_COMPLEX_TO_REAL,
					flags);
	  } else {
	       p = rfftw3d_create_plan(n[0], n[1], n[2], FFTW_REAL_TO_COMPLEX,
				       flags);
	       ip = rfftw3d_create_plan(n[0], n[1], n[2], FFTW_COMPLEX_TO_REAL,
					flags);
	  }
     } else {
	  p = rfftwnd_create_plan(rank, n, FFTW_REAL_TO_COMPLEX, flags);
	  ip = rfftwnd_create_plan(rank, n, FFTW_COMPLEX_TO_REAL, flags);
     }

     CHECK(p != NULL && ip != NULL, "can't create plan");

     for (i = 0; i < nc * nhc * 2 * MAX_STRIDE; ++i)
	  out3[i] = 0;

     for (istride = 1; istride <= MAX_STRIDE; ++istride) {
	  /* generate random inputs */
	  for (i = 0; i < nc; ++i)
	       for (j = 0; j < nr; ++j) {
		    c_re(in2[i * nr + j]) = DRAND();
		    c_im(in2[i * nr + j]) = 0.0;
		    for (k = 0; k < istride; ++k)
			 in1[(i * nhc * 2 + j) * istride + k]
			     = c_re(in2[i * nr + j]);
	       }

	  fftwnd(validated_plan, 1, in2, 1, 1, out2, 1, 1);

	  howmany = ostride = istride;

	  WHEN_VERBOSE(2, printf("\n    testing in-place stride %d...",
				 istride));

	  if (howmany != 1 || istride != 1 || ostride != 1 || coinflip())
	       rfftwnd_real_to_complex(p, howmany, in1, istride, 1,
				       out1, ostride, 1);
	  else
	       rfftwnd_one_real_to_complex(p, in1, NULL);

	  for (i = 0; i < nc; ++i)
	       for (k = 0; k < howmany; ++k)
		    CHECK(compute_error_complex(out1 + i * nhc * ostride + k,
						ostride,
						out2 + i * nr, 1,
						nhc) < TOLERANCE,
			  "in-place (r2c): wrong answer");

	  if (howmany != 1 || istride != 1 || ostride != 1 || coinflip())
	       rfftwnd_complex_to_real(ip, howmany, out1, ostride, 1,
				       out3, istride, 1);
	  else
	       rfftwnd_one_complex_to_real(ip, out1, NULL);

	  for (i = 0; i < nc * nhc * 2 * istride; ++i)
	       out3[i] *= 1.0 / N;

	  for (i = 0; i < nc; ++i)
	       for (k = 0; k < howmany; ++k)
		    CHECK(compute_error(out3 + i * nhc * 2 * istride + k,
					istride,
					(fftw_real *) (in2 + i * nr), 2,
					nr) < TOLERANCE,
			  "in-place (c2r): wrong answer (check 2)");
     }

     rfftwnd_destroy_plan(p);
     rfftwnd_destroy_plan(ip);

     fftw_free(out2);
     fftw_free(in2);
     fftw_free(in1);
}
void testnd_out_of_place(int rank, int *n, fftwnd_plan validated_plan)
{
     int istride, ostride;
     int N, dim, i, j, k;
     int nc, nhc, nr;
     fftw_real *in1, *out3;
     fftw_complex *in2, *out1, *out2;
     fftwnd_plan p, ip;
     int flags = measure_flag | wisdom_flag;

     if (coinflip())
	  flags |= FFTW_THREADSAFE;

     N = nc = nr = nhc = 1;
     for (dim = 0; dim < rank; ++dim)
	  N *= n[dim];
     if (rank > 0) {
	  nr = n[rank - 1];
	  nc = N / nr;
	  nhc = nr / 2 + 1;
     }
     in1 = (fftw_real *) fftw_malloc(N * MAX_STRIDE * sizeof(fftw_real));
     out3 = (fftw_real *) fftw_malloc(N * MAX_STRIDE * sizeof(fftw_real));
     out1 = (fftw_complex *) fftw_malloc(nhc * nc * MAX_STRIDE
					 * sizeof(fftw_complex));
     in2 = (fftw_complex *) fftw_malloc(N * sizeof(fftw_complex));
     out2 = (fftw_complex *) fftw_malloc(N * sizeof(fftw_complex));

     p = rfftwnd_create_plan(rank, n, FFTW_REAL_TO_COMPLEX, flags);
     ip = rfftwnd_create_plan(rank, n, FFTW_COMPLEX_TO_REAL, flags);
     CHECK(p != NULL && ip != NULL, "can't create plan");

     for (istride = 1; istride <= MAX_STRIDE; ++istride) {
	  /* generate random inputs */
	  for (i = 0; i < nc; ++i)
	       for (j = 0; j < nr; ++j) {
		    c_re(in2[i * nr + j]) = DRAND();
		    c_im(in2[i * nr + j]) = 0.0;
		    for (k = 0; k < istride; ++k)
			 in1[(i * nr + j) * istride + k]
			     = c_re(in2[i * nr + j]);
	       }
	  for (i = 0; i < N * istride; ++i)
	       out3[i] = 0.0;

	  fftwnd(validated_plan, 1, in2, 1, 1, out2, 1, 1);

	  for (ostride = 1; ostride <= MAX_STRIDE; ++ostride) {
	       int howmany = (istride < ostride) ? istride : ostride;

	       WHEN_VERBOSE(2, printf("\n    testing stride %d/%d...",
				      istride, ostride));

	       if (howmany != 1 || istride != 1 || ostride != 1 || coinflip())
		    rfftwnd_real_to_complex(p, howmany, in1, istride, 1,
					    out1, ostride, 1);
	       else
		    rfftwnd_one_real_to_complex(p, in1, out1);

	       for (i = 0; i < nc; ++i)
		    for (k = 0; k < howmany; ++k)
			 CHECK(compute_error_complex(out1 + i * nhc * ostride + k,
						     ostride,
						     out2 + i * nr, 1,
						     nhc) < TOLERANCE,
			       "out-of-place (r2c): wrong answer");

	       if (howmany != 1 || istride != 1 || ostride != 1 || coinflip())
		    rfftwnd_complex_to_real(ip, howmany, out1, ostride, 1,
					    out3, istride, 1);
	       else
		    rfftwnd_one_complex_to_real(ip, out1, out3);

	       for (i = 0; i < N * istride; ++i)
		    out3[i] *= 1.0 / N;

	       if (istride == howmany)
		    CHECK(compute_error(out3, 1, in1, 1, N * istride)
			< TOLERANCE, "out-of-place (c2r): wrong answer");
	       for (i = 0; i < nc; ++i)
		    for (k = 0; k < howmany; ++k)
			 CHECK(compute_error(out3 + i * nr * istride + k,
					     istride,
					 (fftw_real *) (in2 + i * nr), 2,
					     nr) < TOLERANCE,
			   "out-of-place (c2r): wrong answer (check 2)");
	  }
     }

     rfftwnd_destroy_plan(p);
     rfftwnd_destroy_plan(ip);

     fftw_free(out3);
     fftw_free(out2);
     fftw_free(in2);
     fftw_free(out1);
     fftw_free(in1);
}
Example #9
0
void Grid::ifft(bool) {
    rfftwnd_one_complex_to_real(ifft_plan, data, NULL);
}
Example #10
0
/* Use fftw2.
 */
static int 
invfft1( IMAGE *dummy, IMAGE *in, IMAGE *out )
{
	IMAGE *cmplx = im_open_local( dummy, "invfft1-1", "t" );
	IMAGE *real = im_open_local( out, "invfft1-2", "t" );
	const int half_width = in->Xsize / 2 + 1;

	/* Transform to halfcomplex here.
	 */
	double *half_complex = IM_ARRAY( dummy, 
		in->Ysize * half_width * 2, double );

	rfftwnd_plan plan;
	int x, y;
	double *q, *p;

	if( !cmplx || !real || !half_complex || im_pincheck( in ) || 
		im_poutcheck( out ) )
		return( -1 );
	if( in->Coding != IM_CODING_NONE || in->Bands != 1 ) {
                im_error( "im_invfft", _( "one band uncoded only" ) );
                return( -1 );
	}

	/* Make dp complex image for input.
	 */
	if( im_clip2fmt( in, cmplx, IM_BANDFMT_DPCOMPLEX ) )
                return( -1 );

	/* Make mem buffer real image for output.
	 */
        if( im_cp_desc( real, in ) )
                return( -1 );
	real->BandFmt = IM_BANDFMT_DOUBLE;
        if( im_setupout( real ) )
                return( -1 );

	/* Build half-complex image.
	 */
	q = half_complex;
	for( y = 0; y < cmplx->Ysize; y++ ) {
		p = ((double *) cmplx->data) + y * in->Xsize * 2; 

		for( x = 0; x < half_width; x++ ) {
			q[0] = p[0];
			q[1] = p[1];
			p += 2;
			q += 2;
		}
	}

	/* Make the plan for the transform. Yes, they really do use nx for
	 * height and ny for width.
	 */
	if( !(plan = rfftw2d_create_plan( in->Ysize, in->Xsize,
		FFTW_BACKWARD, FFTW_MEASURE | FFTW_USE_WISDOM )) ) {
                im_error( "im_invfft", _( "unable to create transform plan" ) );
		return( -1 );
	}

	rfftwnd_one_complex_to_real( plan, 
		(fftw_complex *) half_complex, (fftw_real *) real->data );

	rfftwnd_destroy_plan( plan );

	/* Copy to out.
	 */
        if( im_copy( real, out ) )
                return( -1 );

	return( 0 );
}
void
RockPhysicsInversion4D::DivideAndSmoothTable(int tableInd,std::vector<std::vector<double> > priorDistribution, std::vector<fftw_complex*> smoothingFilter)
{
  for (int j=0; j<nf_[0]; j++){
      meanRockPrediction_(tableInd,j)->setAccessMode(FFTGrid::RANDOMACCESS);
   }

  int cnfp=nfp_/2+1;
  int rnfp=2*cnfp;

  fftw_real*    rTemp = static_cast<fftw_real*>(fftw_malloc(sizeof(float)*rnfp));
  fftw_complex* cTemp = reinterpret_cast<fftw_complex*>(rTemp);

  double minDivisor = 1e-3;

  LogKit::LogFormatted(LogKit::Low,"\n Smoothing direction 1 of 4\n");
  float monitorSize = std::max(1.0f, static_cast<float>(nf_[0]*nf_[1]*nf_[2]*nf_[3])*0.02f);
  float nextMonitor = monitorSize;
  std::cout
    << "\n  0%       20%       40%       60%       80%      100%"
    << "\n  |    |    |    |    |    |    |    |    |    |    |  "
    << "\n  ^";

  // divide and smooth direction1
  for(int i1=0;i1<nf_[1];i1++)
    for(int i2=0;i2<nf_[2];i2++)
      for(int i3=0;i3<nf_[3];i3++)
      {
        for(int i0=0;i0<nf_[0];i0++)
        {
          double divisor=std::max(minDivisor,priorDistribution_[0][i0]);
          rTemp[i0]=float(GetGridValue(tableInd,i0,i1,i2,i3)/ divisor);
        }
        for(int i0=nf_[0];i0<nfp_;i0++)
          rTemp[i0]=0.0f;

        rfftwnd_one_real_to_complex(fftplan1_,rTemp,cTemp);

        for(int i0=0;i0<cnfp;i0++)
        {
          cTemp[i0].re=cTemp[i0].re*smoothingFilter[0][i0].re;
          cTemp[i0].im=cTemp[i0].im*smoothingFilter[0][i0].re;
        }

        rfftwnd_one_complex_to_real(fftplan2_,cTemp,rTemp);
        for(int i0=0;i0<nf_[0];i0++)
        {
          SetGridValue(tableInd,i0,i1,i2,i3, rTemp[i0]);
          if ( i1*nf_[2]*nf_[3]*nf_[0] +i2*nf_[3]*nf_[0]+ i3*nf_[0] + i0 + 1 >= static_cast<int>(nextMonitor)) {
            nextMonitor += monitorSize;
            std::cout << "^";
          }
        }
      }

  LogKit::LogFormatted(LogKit::Low,"\n\n Smoothing direction 2 of 4\n");
  monitorSize = std::max(1.0f, static_cast<float>(nf_[0]*nf_[1]*nf_[2]*nf_[3])*0.02f);
  nextMonitor = monitorSize;
  std::cout
    << "\n  0%       20%       40%       60%       80%      100%"
    << "\n  |    |    |    |    |    |    |    |    |    |    |  "
    << "\n  ^";

  // divide and smoothdirection2
  for(int i0=0;i0<nf_[0];i0++)
    for(int i2=0;i2<nf_[2];i2++)
      for(int i3=0;i3<nf_[3];i3++)
      {
        for(int i1=0;i1<nf_[1];i1++)
        {
          double divisor=std::max(minDivisor,priorDistribution_[1][i1]);
          rTemp[i1]=float(GetGridValue(tableInd,i0,i1,i2,i3)/divisor);
        }
        for(int i1=nf_[1];i1<nfp_;i1++)
          rTemp[i1]=0.0f;

        rfftwnd_one_real_to_complex(fftplan1_,rTemp,cTemp);

        for(int i1=0;i1<cnfp;i1++)
        {
          cTemp[i1].re=cTemp[i1].re*smoothingFilter[1][i1].re;
          cTemp[i1].im=cTemp[i1].im*smoothingFilter[1][i1].re;
        }

        rfftwnd_one_complex_to_real(fftplan2_,cTemp,rTemp);
        for(int i1=0;i1<nf_[1];i1++)
        {
          SetGridValue(tableInd,i0,i1,i2,i3, rTemp[i1]);
          if ( i0*nf_[2]*nf_[3]*nf_[1] +i2*nf_[3]*nf_[1]+ i3*nf_[1] + i1 + 1 >= static_cast<int>(nextMonitor)) {
            nextMonitor += monitorSize;
            std::cout << "^";
          }
        }
      }

  LogKit::LogFormatted(LogKit::Low,"\n\n Smoothing direction 3 of 4\n");
  monitorSize = std::max(1.0f, static_cast<float>(nf_[0]*nf_[1]*nf_[2]*nf_[3])*0.02f);
  nextMonitor = monitorSize;
  std::cout
    << "\n  0%       20%       40%       60%       80%      100%"
    << "\n  |    |    |    |    |    |    |    |    |    |    |  "
    << "\n  ^";

  //  divide and smoothdirection 3
  for(int i0=0;i0<nf_[0];i0++)
    for(int i1=0;i1<nf_[1];i1++)
      for(int i3=0;i3<nf_[3];i3++)
      {
        for(int i2=0;i2<nf_[2];i2++)
        {
          double divisor=std::max(minDivisor,priorDistribution_[2][i2]);
          rTemp[i2]=float(GetGridValue(tableInd,i0,i1,i2,i3)/divisor);

        }
        for(int i2=nf_[2];i2<nfp_;i2++)
          rTemp[i2]=0.0f;

        rfftwnd_one_real_to_complex(fftplan1_,rTemp,cTemp);

        for(int i2=0;i2<cnfp;i2++)
        {
          cTemp[i2].re=cTemp[i2].re*smoothingFilter[2][i2].re;
          cTemp[i2].im=cTemp[i2].im*smoothingFilter[2][i2].re;
        }

        rfftwnd_one_complex_to_real(fftplan2_,cTemp,rTemp);
        for(int i2=0;i2<nf_[2];i2++)
        {
          SetGridValue(tableInd,i0,i1,i2,i3, rTemp[i2]);
          if ( i0*nf_[1]*nf_[3]*nf_[2] +i1*nf_[3]*nf_[2]+ i3*nf_[2] + i2 + 1 >= static_cast<int>(nextMonitor)) {
            nextMonitor += monitorSize;
            std::cout << "^";
          }
        }
      }

  LogKit::LogFormatted(LogKit::Low,"\n Smoothing last direction \n");
  monitorSize = std::max(1.0f, static_cast<float>(nf_[0]*nf_[1]*nf_[2]*nf_[3])*0.02f);
  nextMonitor = monitorSize;
  std::cout
    << "\n  0%       20%       40%       60%       80%      100%"
    << "\n  |    |    |    |    |    |    |    |    |    |    |  "
    << "\n  ^";
 //  divide and smoothdirection 4
   for(int i0=0;i0<nf_[0];i0++)
    for(int i1=0;i1<nf_[1];i1++)
      for(int i2=0;i2<nf_[2];i2++)
      {
        for(int i3=0;i3<nf_[3];i3++)
        {
          double divisor=std::max(minDivisor,priorDistribution_[3][i3]);
          rTemp[i3]=float(GetGridValue(tableInd,i0,i1,i2,i3)/divisor);
        }
        for(int i3=nf_[3];i3<nfp_;i3++)
          rTemp[i3]=0.0f;

        rfftwnd_one_real_to_complex(fftplan1_,rTemp,cTemp);

        for(int i3=0;i3<cnfp;i3++)
        {
          cTemp[i3].re=cTemp[i3].re*smoothingFilter[3][i3].re;
          cTemp[i3].im=cTemp[i3].im*smoothingFilter[3][i3].re;
        }

        rfftwnd_one_complex_to_real(fftplan2_,cTemp,rTemp);
        for(int i3=0;i3<nf_[3];i3++)
        {
          SetGridValue(tableInd,i0,i1,i2,i3, rTemp[i3]);
          if ( i0*nf_[1]*nf_[2]*nf_[3] +i1*nf_[2]*nf_[3]+ i2*nf_[3] + i3 + 1 >= static_cast<int>(nextMonitor)) {
            nextMonitor += monitorSize;
            std::cout << "^";
          }
        }
      }

  for (int j=0; j<nf_[0]; j++){
      meanRockPrediction_(tableInd,j)->endAccess();
  }

  fftw_free(rTemp);

}