static irqreturn_t rotary_encoder_irq(int irq, void *dev_id) { struct rotary_encoder *encoder = dev_id; int state; state = rotary_encoder_get_state(encoder->pdata); switch (state) { case 0x0: if (encoder->armed) { rotary_encoder_report_event(encoder); encoder->armed = false; } break; case 0x1: case 0x2: if (encoder->armed) encoder->dir = state - 1; break; case 0x3: encoder->armed = true; break; } return IRQ_HANDLED; }
static void rotary_encoder_irq(void * data) { struct input_t * input = (struct input_t *)data; struct rotary_encoder_pdata_t * pdat = (struct rotary_encoder_pdata_t *)input->priv; int state = rotary_encoder_get_state(pdat); switch(state) { case 0x0: if(pdat->state) { push_event_rotary_turn(input, pdat->dir ? 1 : -1); pdat->state = 0; } break; case 0x1: case 0x2: if(pdat->state) pdat->dir = state - 1; break; case 0x3: pdat->state = 1; break; default: break; } }
static void rotary_encoder_quarter_period_irq(void * data) { struct input_t * input = (struct input_t *)data; struct rotary_encoder_pdata_t * pdat = (struct rotary_encoder_pdata_t *)input->priv; int state = rotary_encoder_get_state(pdat); int sum = ((pdat->state << 4) + state) & 0xff; pdat->state = state; switch(sum) { case 0x31: case 0x10: case 0x02: case 0x23: pdat->dir = 0; break; case 0x13: case 0x01: case 0x20: case 0x32: pdat->dir = 1; break; default: return; } push_event_rotary_turn(input, pdat->dir ? 1 : -1); }
static void rotary_encoder_half_period_irq(void * data) { struct input_t * input = (struct input_t *)data; struct rotary_encoder_pdata_t * pdat = (struct rotary_encoder_pdata_t *)input->priv; int state = rotary_encoder_get_state(pdat); switch(state) { case 0x00: case 0x03: if(state != pdat->state) { push_event_rotary_turn(input, pdat->dir ? 1 : -1); pdat->state = state; } break; case 0x01: case 0x02: pdat->dir = (pdat->state + state) & 0x01; break; default: break; } }
static irqreturn_t rotary_encoder_irq(int irq, void *dev_id) { struct rotary_encoder *encoder = dev_id; unsigned int state; mutex_lock(&encoder->access_mutex); state = rotary_encoder_get_state(encoder); switch (state) { case 0x0: if (encoder->armed) { rotary_encoder_report_event(encoder); encoder->armed = false; } break; case 0x1: case 0x3: if (encoder->armed) encoder->dir = 2 - state; break; case 0x2: encoder->armed = true; break; } mutex_unlock(&encoder->access_mutex); return IRQ_HANDLED; }
static irqreturn_t rotary_encoder_half_period_irq(int irq, void *dev_id) { struct rotary_encoder *encoder = dev_id; unsigned int state; mutex_lock(&encoder->access_mutex); state = rotary_encoder_get_state(encoder); if (state & 1) { encoder->dir = ((encoder->last_stable - state + 1) % 4) - 1; } else { if (state != encoder->last_stable) { rotary_encoder_report_event(encoder); encoder->last_stable = state; } } mutex_unlock(&encoder->access_mutex); return IRQ_HANDLED; }
static irqreturn_t rotary_encoder_half_period_irq(int irq, void *dev_id) { struct rotary_encoder *encoder = dev_id; int state; state = rotary_encoder_get_state(encoder->pdata); switch (state) { case 0x00: case 0x03: if (state != encoder->last_stable) { rotary_encoder_report_event(encoder); encoder->last_stable = state; } break; case 0x01: case 0x02: encoder->dir = (encoder->last_stable + state) & 0x01; break; } return IRQ_HANDLED; }
static irqreturn_t rotary_encoder_quarter_period_irq(int irq, void *dev_id) { struct rotary_encoder *encoder = dev_id; unsigned int state; mutex_lock(&encoder->access_mutex); state = rotary_encoder_get_state(encoder); if ((encoder->last_stable + 1) % 4 == state) encoder->dir = 1; else if (encoder->last_stable == (state + 1) % 4) encoder->dir = -1; else goto out; rotary_encoder_report_event(encoder); out: encoder->last_stable = state; mutex_unlock(&encoder->access_mutex); return IRQ_HANDLED; }
static int rotary_encoder_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; const struct rotary_encoder_platform_data *pdata = dev_get_platdata(dev); struct rotary_encoder *encoder; struct input_dev *input; irq_handler_t handler; int err; if (!pdata) { pdata = rotary_encoder_parse_dt(dev); if (IS_ERR(pdata)) return PTR_ERR(pdata); if (!pdata) { dev_err(dev, "missing platform data\n"); return -EINVAL; } } encoder = kzalloc(sizeof(struct rotary_encoder), GFP_KERNEL); input = input_allocate_device(); if (!encoder || !input) { err = -ENOMEM; goto exit_free_mem; } encoder->input = input; encoder->pdata = pdata; input->name = pdev->name; input->id.bustype = BUS_HOST; input->dev.parent = dev; if (pdata->relative_axis) { input->evbit[0] = BIT_MASK(EV_REL); input->relbit[0] = BIT_MASK(pdata->axis); } else { input->evbit[0] = BIT_MASK(EV_ABS); input_set_abs_params(encoder->input, pdata->axis, 0, pdata->steps, 0, 1); } /* request the GPIOs */ err = gpio_request_one(pdata->gpio_a, GPIOF_IN, dev_name(dev)); if (err) { dev_err(dev, "unable to request GPIO %d\n", pdata->gpio_a); goto exit_free_mem; } err = gpio_request_one(pdata->gpio_b, GPIOF_IN, dev_name(dev)); if (err) { dev_err(dev, "unable to request GPIO %d\n", pdata->gpio_b); goto exit_free_gpio_a; } encoder->irq_a = gpio_to_irq(pdata->gpio_a); encoder->irq_b = gpio_to_irq(pdata->gpio_b); /* request the IRQs */ if (pdata->half_period) { handler = &rotary_encoder_half_period_irq; encoder->last_stable = rotary_encoder_get_state(pdata); } else { handler = &rotary_encoder_irq; } err = request_irq(encoder->irq_a, handler, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, DRV_NAME, encoder); if (err) { dev_err(dev, "unable to request IRQ %d\n", encoder->irq_a); goto exit_free_gpio_b; } err = request_irq(encoder->irq_b, handler, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, DRV_NAME, encoder); if (err) { dev_err(dev, "unable to request IRQ %d\n", encoder->irq_b); goto exit_free_irq_a; } err = input_register_device(input); if (err) { dev_err(dev, "failed to register input device\n"); goto exit_free_irq_b; } platform_set_drvdata(pdev, encoder); return 0; exit_free_irq_b: free_irq(encoder->irq_b, encoder); exit_free_irq_a: free_irq(encoder->irq_a, encoder); exit_free_gpio_b: gpio_free(pdata->gpio_b); exit_free_gpio_a: gpio_free(pdata->gpio_a); exit_free_mem: input_free_device(input); kfree(encoder); if (!dev_get_platdata(&pdev->dev)) kfree(pdata); return err; }
static int __devinit rotary_encoder_probe(struct platform_device *pdev) { struct rotary_encoder_platform_data *pdata = pdev->dev.platform_data; struct rotary_encoder *encoder; struct input_dev *input; irq_handler_t handler; int err; if (!pdata) { dev_err(&pdev->dev, "missing platform data\n"); return -ENOENT; } encoder = kzalloc(sizeof(struct rotary_encoder), GFP_KERNEL); input = input_allocate_device(); if (!encoder || !input) { dev_err(&pdev->dev, "failed to allocate memory for device\n"); err = -ENOMEM; goto exit_free_mem; } encoder->input = input; encoder->pdata = pdata; encoder->irq_a = gpio_to_irq(pdata->gpio_a); encoder->irq_b = gpio_to_irq(pdata->gpio_b); /* */ input->name = pdev->name; input->id.bustype = BUS_HOST; input->dev.parent = &pdev->dev; if (pdata->relative_axis) { input->evbit[0] = BIT_MASK(EV_REL); input->relbit[0] = BIT_MASK(pdata->axis); } else { input->evbit[0] = BIT_MASK(EV_ABS); input_set_abs_params(encoder->input, pdata->axis, 0, pdata->steps, 0, 1); } err = input_register_device(input); if (err) { dev_err(&pdev->dev, "failed to register input device\n"); goto exit_free_mem; } /* */ err = gpio_request(pdata->gpio_a, DRV_NAME); if (err) { dev_err(&pdev->dev, "unable to request GPIO %d\n", pdata->gpio_a); goto exit_unregister_input; } err = gpio_direction_input(pdata->gpio_a); if (err) { dev_err(&pdev->dev, "unable to set GPIO %d for input\n", pdata->gpio_a); goto exit_unregister_input; } err = gpio_request(pdata->gpio_b, DRV_NAME); if (err) { dev_err(&pdev->dev, "unable to request GPIO %d\n", pdata->gpio_b); goto exit_free_gpio_a; } err = gpio_direction_input(pdata->gpio_b); if (err) { dev_err(&pdev->dev, "unable to set GPIO %d for input\n", pdata->gpio_b); goto exit_free_gpio_a; } /* */ if (pdata->half_period) { handler = &rotary_encoder_half_period_irq; encoder->last_stable = rotary_encoder_get_state(pdata); } else { handler = &rotary_encoder_irq; } err = request_irq(encoder->irq_a, handler, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, DRV_NAME, encoder); if (err) { dev_err(&pdev->dev, "unable to request IRQ %d\n", encoder->irq_a); goto exit_free_gpio_b; } err = request_irq(encoder->irq_b, handler, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, DRV_NAME, encoder); if (err) { dev_err(&pdev->dev, "unable to request IRQ %d\n", encoder->irq_b); goto exit_free_irq_a; } platform_set_drvdata(pdev, encoder); return 0; exit_free_irq_a: free_irq(encoder->irq_a, encoder); exit_free_gpio_b: gpio_free(pdata->gpio_b); exit_free_gpio_a: gpio_free(pdata->gpio_a); exit_unregister_input: input_unregister_device(input); input = NULL; /* */ exit_free_mem: input_free_device(input); kfree(encoder); return err; }
static struct device_t * rotary_encoder_probe(struct driver_t * drv, struct dtnode_t * n) { struct rotary_encoder_pdata_t * pdat; struct input_t * input; struct device_t * dev; int a = dt_read_int(n, "a-gpio", -1); int b = dt_read_int(n, "b-gpio", -1); if(!gpio_is_valid(a) || !gpio_is_valid(b) || !irq_is_valid(gpio_to_irq(a)) || !irq_is_valid(gpio_to_irq(b))) return NULL; pdat = malloc(sizeof(struct rotary_encoder_pdata_t)); if(!pdat) return NULL; input = malloc(sizeof(struct input_t)); if(!input) { free(pdat); return NULL; } pdat->a = a; pdat->acfg = dt_read_int(n, "a-gpio-config", -1); pdat->b = b; pdat->bcfg = dt_read_int(n, "b-gpio-config", -1); pdat->c = dt_read_int(n, "c-gpio", -1); pdat->ccfg = dt_read_int(n, "c-gpio-config", -1); pdat->irqa = gpio_to_irq(pdat->a); pdat->irqb = gpio_to_irq(pdat->b); pdat->irqc = gpio_to_irq(pdat->c); pdat->inva = dt_read_bool(n, "a-inverted", 0); pdat->invb = dt_read_bool(n, "b-inverted", 0); pdat->invc = dt_read_bool(n, "c-inverted", 0); input->name = alloc_device_name(dt_read_name(n), dt_read_id(n)); input->ioctl = rotary_encoder_ioctl; input->priv = pdat; if(pdat->acfg >= 0) gpio_set_cfg(pdat->a, pdat->acfg); gpio_set_pull(pdat->a, pdat->inva ? GPIO_PULL_DOWN : GPIO_PULL_UP); gpio_direction_input(pdat->a); if(pdat->bcfg >= 0) gpio_set_cfg(pdat->b, pdat->bcfg); gpio_set_pull(pdat->b, pdat->invb ? GPIO_PULL_DOWN : GPIO_PULL_UP); gpio_direction_input(pdat->b); switch(dt_read_int(n, "step-per-period", 1)) { case 4: request_irq(pdat->irqa, rotary_encoder_quarter_period_irq, IRQ_TYPE_EDGE_BOTH, input); request_irq(pdat->irqb, rotary_encoder_quarter_period_irq, IRQ_TYPE_EDGE_BOTH, input); pdat->state = rotary_encoder_get_state(pdat); break; case 2: request_irq(pdat->irqa, rotary_encoder_half_period_irq, IRQ_TYPE_EDGE_BOTH, input); request_irq(pdat->irqb, rotary_encoder_half_period_irq, IRQ_TYPE_EDGE_BOTH, input); pdat->state = rotary_encoder_get_state(pdat); break; case 1: request_irq(pdat->irqa, rotary_encoder_irq, IRQ_TYPE_EDGE_BOTH, input); request_irq(pdat->irqb, rotary_encoder_irq, IRQ_TYPE_EDGE_BOTH, input); pdat->state = 0; break; default: request_irq(pdat->irqa, rotary_encoder_irq, IRQ_TYPE_EDGE_BOTH, input); request_irq(pdat->irqb, rotary_encoder_irq, IRQ_TYPE_EDGE_BOTH, input); pdat->state = 0; break; } if(gpio_is_valid(pdat->c) && irq_is_valid(pdat->irqc)) { if(pdat->ccfg >= 0) gpio_set_cfg(pdat->c, pdat->ccfg); gpio_set_pull(pdat->c, pdat->invc ? GPIO_PULL_DOWN : GPIO_PULL_UP); gpio_direction_input(pdat->c); request_irq(pdat->irqc, rotary_encoder_c_irq, IRQ_TYPE_EDGE_BOTH, input); } if(!register_input(&dev, input)) { free_irq(pdat->irqa); free_irq(pdat->irqb); if(gpio_is_valid(pdat->c) && irq_is_valid(pdat->irqc)) free_irq(pdat->irqc); free_device_name(input->name); free(input->priv); free(input); return NULL; } dev->driver = drv; return dev; }
static int rotary_encoder_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct rotary_encoder *encoder; struct input_dev *input; irq_handler_t handler; u32 steps_per_period; unsigned int i; int err; encoder = devm_kzalloc(dev, sizeof(struct rotary_encoder), GFP_KERNEL); if (!encoder) return -ENOMEM; mutex_init(&encoder->access_mutex); device_property_read_u32(dev, "rotary-encoder,steps", &encoder->steps); err = device_property_read_u32(dev, "rotary-encoder,steps-per-period", &steps_per_period); if (err) { /* * The 'half-period' property has been deprecated, you must * use 'steps-per-period' and set an appropriate value, but * we still need to parse it to maintain compatibility. If * neither property is present we fall back to the one step * per period behavior. */ steps_per_period = device_property_read_bool(dev, "rotary-encoder,half-period") ? 2 : 1; } encoder->rollover = device_property_read_bool(dev, "rotary-encoder,rollover"); if (!device_property_present(dev, "rotary-encoder,encoding") || !device_property_match_string(dev, "rotary-encoder,encoding", "gray")) { dev_info(dev, "gray"); encoder->encoding = ROTENC_GRAY; } else if (!device_property_match_string(dev, "rotary-encoder,encoding", "binary")) { dev_info(dev, "binary"); encoder->encoding = ROTENC_BINARY; } else { dev_err(dev, "unknown encoding setting\n"); return -EINVAL; } device_property_read_u32(dev, "linux,axis", &encoder->axis); encoder->relative_axis = device_property_read_bool(dev, "rotary-encoder,relative-axis"); encoder->gpios = devm_gpiod_get_array(dev, NULL, GPIOD_IN); if (IS_ERR(encoder->gpios)) { dev_err(dev, "unable to get gpios\n"); return PTR_ERR(encoder->gpios); } if (encoder->gpios->ndescs < 2) { dev_err(dev, "not enough gpios found\n"); return -EINVAL; } input = devm_input_allocate_device(dev); if (!input) return -ENOMEM; encoder->input = input; input->name = pdev->name; input->id.bustype = BUS_HOST; input->dev.parent = dev; if (encoder->relative_axis) input_set_capability(input, EV_REL, encoder->axis); else input_set_abs_params(input, encoder->axis, 0, encoder->steps, 0, 1); switch (steps_per_period >> (encoder->gpios->ndescs - 2)) { case 4: handler = &rotary_encoder_quarter_period_irq; encoder->last_stable = rotary_encoder_get_state(encoder); break; case 2: handler = &rotary_encoder_half_period_irq; encoder->last_stable = rotary_encoder_get_state(encoder); break; case 1: handler = &rotary_encoder_irq; break; default: dev_err(dev, "'%d' is not a valid steps-per-period value\n", steps_per_period); return -EINVAL; } encoder->irq = devm_kcalloc(dev, encoder->gpios->ndescs, sizeof(*encoder->irq), GFP_KERNEL); if (!encoder->irq) return -ENOMEM; for (i = 0; i < encoder->gpios->ndescs; ++i) { encoder->irq[i] = gpiod_to_irq(encoder->gpios->desc[i]); err = devm_request_threaded_irq(dev, encoder->irq[i], NULL, handler, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT, DRV_NAME, encoder); if (err) { dev_err(dev, "unable to request IRQ %d (gpio#%d)\n", encoder->irq[i], i); return err; } } err = input_register_device(input); if (err) { dev_err(dev, "failed to register input device\n"); return err; } device_init_wakeup(dev, device_property_read_bool(dev, "wakeup-source")); platform_set_drvdata(pdev, encoder); return 0; }