int main(int argc, char** argv) { double taubin_radius = 0.03; // radius of curvature-estimation neighborhood double hand_radius = 0.08; // radius of hand configuration neighborhood // std::string file = "/home/andreas/data/mlaffordance/round21l_reg.pcd"; std::string file = "/home/andreas/data/mlaffordance/training/rect31l_reg.pcd"; PointCloud::Ptr cloud(new PointCloud); if (pcl::io::loadPCDFile<pcl::PointXYZ>(file, *cloud) == -1) //* load the file { PCL_ERROR("Couldn't read input PCD file\n"); return (-1); } pcl::search::OrganizedNeighbor<pcl::PointXYZ>::Ptr organized_neighbor( new pcl::search::OrganizedNeighbor<pcl::PointXYZ>()); std::vector<int> nn_indices; std::vector<float> nn_dists; pcl::KdTreeFLANN<pcl::PointXYZ>::Ptr tree(new pcl::KdTreeFLANN<pcl::PointXYZ>()); // int sample_index = 0; int sample_index = 731; if (cloud->isOrganized()) { organized_neighbor->setInputCloud(cloud); organized_neighbor->radiusSearch(cloud->points[sample_index], taubin_radius, nn_indices, nn_dists); } else { tree->setInputCloud(cloud); tree->radiusSearch(cloud->points[sample_index], taubin_radius, nn_indices, nn_dists); } std::cout << "Found point neighborhood for sample " << sample_index << "\n"; Eigen::Matrix4d T_base, T_sqrt; T_base << 0, 0.445417, 0.895323, 0.22, 1, 0, 0, -0.02, 0, 0.895323, -0.445417, 0.24, 0, 0, 0, 1; T_sqrt << 0.9366, -0.0162, 0.3500, -0.2863, 0.0151, 0.9999, 0.0058, 0.0058, -0.3501, -0.0002, 0.9367, 0.0554, 0, 0, 0, 1; std::vector<Eigen::Matrix4d, Eigen::aligned_allocator<Eigen::Matrix4d> > T_cams; T_cams.push_back(T_base * T_sqrt.inverse()); std::cout << T_cams[0] << std::endl; // fit quadric Eigen::Vector3d sample = cloud->points[sample_index].getVector3fMap().cast<double>(); Quadric quadric(T_cams, cloud, sample, true); quadric.fitQuadric(nn_indices); Eigen::MatrixXi cam_source = Eigen::MatrixXi::Zero(1, cloud->points.size()); quadric.findTaubinNormalAxis(nn_indices, cam_source); quadric.print(); // fit hand tree->radiusSearch(cloud->points[sample_index], hand_radius, nn_indices, nn_dists); Eigen::VectorXi pts_cam_source = Eigen::VectorXi::Ones(1, cloud->size()); Eigen::Matrix3Xd nn_normals(3, nn_indices.size()); Eigen::VectorXi nn_cam_source(nn_indices.size()); Eigen::Matrix3Xd centered_neighborhood(3, nn_indices.size()); nn_normals.setZero(); for (int j = 0; j < nn_indices.size(); j++) { nn_cam_source(j) = pts_cam_source(nn_indices[j]); centered_neighborhood.col(j) = cloud->points[nn_indices[j]].getVector3fMap().cast<double>() - sample; } double finger_width_ = 0.01; double hand_outer_diameter_ = 0.09; double hand_depth_ = 0.06; ParallelHand finger_hand(finger_width_, hand_outer_diameter_, hand_depth_); double hand_height_ = 0.02; double init_bite_ = 0.01; RotatingHand rotating_hand(T_cams[0].block(0, 3, 3, 1) - sample, T_cams[0].block(0, 3, 3, 1) - sample, finger_hand, true, pts_cam_source(sample_index)); rotating_hand.transformPoints(centered_neighborhood, quadric.getNormal(), quadric.getCurvatureAxis(), nn_normals, nn_cam_source, hand_height_); std::vector<GraspHypothesis> h = rotating_hand.evaluateHand(init_bite_, sample, 1); for (int i = 0; i < h.size(); i++) { std::cout << "-- orientation " << i << " --\n"; h[i].print(); } // std::cout << "\n"; // rotating_hand.evaluateHand(init_bite_, sample, 1); // rotating_hand.print(); return 0; }
std::vector<GraspHypothesis> HandSearch::findHands(const PointCloud::Ptr cloud, const Eigen::VectorXi& pts_cam_source, const std::vector<Quadric>& quadric_list, const Eigen::VectorXi& hands_cam_source, const pcl::KdTreeFLANN<pcl::PointXYZ>& kdtree) { double t1 = omp_get_wtime(); std::vector<int> nn_indices; std::vector<float> nn_dists; Eigen::Matrix3Xd nn_normals(3, nn_indices.size()); Eigen::VectorXi nn_cam_source(nn_indices.size()); Eigen::Matrix3Xd centered_neighborhood(3, nn_indices.size()); std::vector<RotatingHand> hand_list(quadric_list.size()); // std::vector<RotatingHand> hand_list; double time_eval_hand = 0.0; double time_iter = 0.0; double time_nn = 0.0; double time_tf = 0.0; std::vector< std::vector<GraspHypothesis> > grasp_lists(quadric_list.size(), std::vector<GraspHypothesis>(0)); #ifdef _OPENMP // parallelization using OpenMP #pragma omp parallel for private(nn_indices, nn_dists, nn_normals, nn_cam_source, centered_neighborhood) num_threads(num_threads_) #endif for (std::size_t i = 0; i < quadric_list.size(); i++) { double timei = omp_get_wtime(); pcl::PointXYZ sample; sample.x = quadric_list[i].getSample()(0); sample.y = quadric_list[i].getSample()(1); sample.z = quadric_list[i].getSample()(2); // std::cout << "i: " << i << ", sample: " << sample << std::endl; if (kdtree.radiusSearch(sample, nn_radius_hands_, nn_indices, nn_dists) > 0) { time_nn += omp_get_wtime() - timei; nn_normals.setZero(3, nn_indices.size()); nn_cam_source.setZero(nn_indices.size()); centered_neighborhood.setZero(3, nn_indices.size()); for (int j = 0; j < nn_indices.size(); j++) { nn_cam_source(j) = pts_cam_source(nn_indices[j]); centered_neighborhood.col(j) = (cloud->points[nn_indices[j]].getVector3fMap() - sample.getVector3fMap()).cast<double>(); nn_normals.col(j) = cloud_normals_.col(nn_indices[j]); } FingerHand finger_hand(finger_width_, hand_outer_diameter_, hand_depth_); Eigen::Vector3d sample_eig = sample.getVector3fMap().cast<double>(); RotatingHand rotating_hand(cam_tf_left_.block<3, 1>(0, 3) - sample_eig, cam_tf_right_.block<3, 1>(0, 3) - sample_eig, finger_hand, tolerant_antipodal_, hands_cam_source(i)); const Quadric& q = quadric_list[i]; double time_tf1 = omp_get_wtime(); rotating_hand.transformPoints(centered_neighborhood, q.getNormal(), q.getCurvatureAxis(), nn_normals, nn_cam_source, hand_height_); time_tf += omp_get_wtime() - time_tf1; double time_eval1 = omp_get_wtime(); std::vector<GraspHypothesis> grasps = rotating_hand.evaluateHand(init_bite_, sample_eig, true); time_eval_hand += omp_get_wtime() - time_eval1; if (grasps.size() > 0) { // grasp_list.insert(grasp_list.end(), grasps.begin(), grasps.end()); grasp_lists[i] = grasps; } } time_iter += omp_get_wtime() - timei; } time_eval_hand /= quadric_list.size(); time_nn /= quadric_list.size(); time_iter /= quadric_list.size(); time_tf /= quadric_list.size(); //std::cout << " avg time for transforming point neighborhood: " << time_tf << " sec.\n"; //std::cout << " avg time for NN search: " << time_nn << " sec.\n"; //std::cout << " avg time for rotating_hand.evaluate(): " << time_eval_hand << " sec.\n"; //std::cout << " avg time per iteration: " << time_iter << " sec.\n"; std::vector<GraspHypothesis> grasp_list; for (std::size_t i = 0; i < grasp_lists.size(); i++) { // std::cout << i << " " << grasp_lists[i].size() << "\n"; if (grasp_lists[i].size() > 0) grasp_list.insert(grasp_list.end(), grasp_lists[i].begin(), grasp_lists[i].end()); } double t2 = omp_get_wtime(); //std::cout << " Found " << grasp_list.size() << " robot hand poses in " << t2 - t1 << " sec.\n"; return grasp_list; }