void be_default_lower_va_arg(ir_node *const node, bool const compound_is_ptr, unsigned const stack_param_align) { ir_node *block = get_nodes_block(node); dbg_info *dbgi = get_irn_dbg_info(node); ir_graph *irg = get_irn_irg(node); ir_type *aptype = get_method_res_type(get_Builtin_type(node), 0); ir_node *const ap = get_irn_n(node, 1); ir_node *const node_mem = get_Builtin_mem(node); ir_mode *apmode = get_type_mode(aptype); ir_node *res; ir_node *new_mem; if (apmode) { goto load; } else if (compound_is_ptr) { apmode = mode_P; aptype = get_type_for_mode(apmode); load:; ir_node *const load = new_rd_Load(dbgi, block, node_mem, ap, apmode, aptype, cons_none); res = new_r_Proj(load, apmode, pn_Load_res); new_mem = new_r_Proj(load, mode_M,pn_Load_M); } else { /* aptype has no associated mode, so it is represented as a pointer. */ res = ap; new_mem = node_mem; } unsigned const round_up = round_up2(get_type_size(aptype), stack_param_align); ir_mode *const offset_mode = get_reference_offset_mode(mode_P); ir_node *const offset = new_r_Const_long(irg, offset_mode, round_up); ir_node *const new_ap = new_rd_Add(dbgi, block, ap, offset); ir_node *const in[] = { new_mem, res, new_ap }; turn_into_tuple(node, ARRAY_SIZE(in), in); }
calling_convention_t *sparc_decide_calling_convention(ir_type *function_type, ir_graph *irg) { bool omit_fp = false; if (irg != NULL) { omit_fp = be_options.omit_fp; /* our current vaarg handling needs the standard space to store the * args 0-5 in it */ if (is_method_variadic(function_type)) omit_fp = false; /* The pointer to the aggregate return value belongs to the 92 magic bytes. * Thus, if the called functions increases the stack size, * it must copy the value to the appropriate location. * This is not implemented yet, so we forbid to omit the frame pointer. */ if (get_method_calling_convention(function_type) & cc_compound_ret) omit_fp = false; if (omit_fp) irg_walk_graph(irg, check_omit_fp, NULL, &omit_fp); sparc_get_irg_data(irg)->omit_fp = omit_fp; } mtp_additional_properties mtp = get_method_additional_properties(function_type); unsigned *caller_saves = rbitset_malloc(N_SPARC_REGISTERS); if (mtp & mtp_property_returns_twice) { rbitset_copy(caller_saves, default_returns_twice_saves, N_SPARC_REGISTERS); } else { rbitset_copy(caller_saves, default_caller_saves, N_SPARC_REGISTERS); } /* determine how parameters are passed */ int n_params = get_method_n_params(function_type); int regnum = 0; reg_or_stackslot_t *params = XMALLOCNZ(reg_or_stackslot_t, n_params); int n_param_regs = ARRAY_SIZE(param_regs); unsigned stack_offset = !omit_fp ? SPARC_MIN_STACKSIZE : 0; for (int i = 0; i < n_params; ++i) { ir_type *param_type = get_method_param_type(function_type,i); ir_mode *mode; int bits; reg_or_stackslot_t *param; if (is_compound_type(param_type)) panic("compound arguments not supported yet"); mode = get_type_mode(param_type); bits = get_mode_size_bits(mode); param = ¶ms[i]; if (i == 0 && (get_method_calling_convention(function_type) & cc_compound_ret)) { assert(mode_is_reference(mode) && bits == 32); /* special case, we have reserved space for this on the between * type */ param->type = param_type; param->offset = SPARC_AGGREGATE_RETURN_OFFSET; param->already_stored = true; continue; } if (regnum < n_param_regs) { param->offset = SPARC_PARAMS_SPILL_OFFSET + regnum * SPARC_REGISTER_SIZE; param->type = param_type; arch_register_t const *reg = param_regs[regnum++]; if (irg == NULL || omit_fp) reg = map_i_to_o_reg(reg); param->reg0 = reg; param->req0 = reg->single_req; } else { param->type = param_type; param->offset = stack_offset; param->already_stored = true; /* increase offset by at least SPARC_REGISTER_SIZE bytes so * everything is aligned */ stack_offset += MAX(bits / 8, SPARC_REGISTER_SIZE); continue; } /* we might need a 2nd 32bit component (for 64bit or double values) */ if (bits > 32) { if (bits > 64) panic("only 32 and 64bit modes supported"); if (regnum < n_param_regs) { param->offset = SPARC_PARAMS_SPILL_OFFSET + regnum * SPARC_REGISTER_SIZE; arch_register_t const *reg = param_regs[regnum++]; if (irg == NULL || omit_fp) reg = map_i_to_o_reg(reg); param->reg1 = reg; param->req1 = reg->single_req; } else { ir_mode *regmode = param_regs[0]->cls->mode; ir_type *type = get_type_for_mode(regmode); param->type = type; param->offset = stack_offset; assert(get_mode_size_bits(regmode) == 32); stack_offset += SPARC_REGISTER_SIZE; } } } unsigned n_param_regs_used = regnum; /* determine how results are passed */ int n_results = get_method_n_ress(function_type); unsigned float_regnum = 0; unsigned n_reg_results = 0; unsigned n_float_result_regs = ARRAY_SIZE(float_result_regs); reg_or_stackslot_t *results = XMALLOCNZ(reg_or_stackslot_t, n_results); regnum = 0; for (int i = 0; i < n_results; ++i) { ir_type *result_type = get_method_res_type(function_type, i); ir_mode *result_mode = get_type_mode(result_type); reg_or_stackslot_t *result = &results[i]; if (mode_is_float(result_mode)) { unsigned n_regs = determine_n_float_regs(result_mode); unsigned next_reg = round_up2(float_regnum, n_regs); if (next_reg >= n_float_result_regs) { panic("too many float results"); } else { const arch_register_t *reg = float_result_regs[next_reg]; rbitset_clear(caller_saves, reg->global_index); if (n_regs == 1) { result->req0 = reg->single_req; } else if (n_regs == 2) { result->req0 = &float_result_reqs_double[next_reg]; rbitset_clear(caller_saves, reg->global_index+1); } else if (n_regs == 4) { result->req0 = &float_result_reqs_quad[next_reg]; rbitset_clear(caller_saves, reg->global_index+1); rbitset_clear(caller_saves, reg->global_index+2); rbitset_clear(caller_saves, reg->global_index+3); } else { panic("invalid number of registers in result"); } float_regnum = next_reg + n_regs; ++n_reg_results; } } else { if (get_mode_size_bits(result_mode) > 32) { panic("results with more than 32bits not supported yet"); } if (regnum >= n_param_regs) { panic("too many results"); } else { const arch_register_t *reg = param_regs[regnum++]; if (irg == NULL || omit_fp) reg = map_i_to_o_reg(reg); result->req0 = reg->single_req; rbitset_clear(caller_saves, reg->global_index); ++n_reg_results; } } } calling_convention_t *cconv = XMALLOCZ(calling_convention_t); cconv->n_parameters = n_params; cconv->parameters = params; cconv->param_stack_size = stack_offset - SPARC_MIN_STACKSIZE; cconv->n_param_regs = n_param_regs_used; cconv->results = results; cconv->omit_fp = omit_fp; cconv->caller_saves = caller_saves; cconv->n_reg_results = n_reg_results; /* setup ignore register array */ if (irg != NULL) { be_irg_t *birg = be_birg_from_irg(irg); birg->allocatable_regs = be_cconv_alloc_all_regs(&birg->obst, N_SPARC_REGISTERS); be_cconv_rem_regs(birg->allocatable_regs, ignore_regs, ARRAY_SIZE(ignore_regs)); } return cconv; }
void layout_compound(compound_t *const compound) { bool const is_union = compound->base.kind == ENTITY_UNION; bool const is_packed = compound->packed; il_alignment_t alignment = compound->alignment; size_t bit_offset = 0; il_size_t size = 0; bool need_pad = false; for (entity_t *entry = compound->members.entities; entry; entry = entry->base.next) { if (entry->kind != ENTITY_COMPOUND_MEMBER) continue; compound_member_t *const member = &entry->compound_member; type_t *const m_type = skip_typeref(member->base.type); if (!is_type_valid(m_type)) continue; if (is_packed) { /* GCC: Specifying this attribute for `struct' and `union' types is * equivalent to specifying the `packed' attribute on each of the * structure or union members. */ member->base.alignment = 1; } il_alignment_t const m_alignment = member->base.alignment; alignment = MAX(alignment, m_alignment); unsigned const m_size = get_type_size(m_type); if (is_union) { size = MAX(size, m_size); } else if (member->bitfield) { il_alignment_t const alignment_mask = m_alignment - 1; size_t const base_size = m_size * BITS_PER_BYTE; size_t const bit_size = member->bit_size; if (!is_packed) { bit_offset += (size & alignment_mask) * BITS_PER_BYTE; size &= ~alignment_mask; if (bit_offset + bit_size > base_size || bit_size == 0) { size += (bit_offset + BITS_PER_BYTE - 1) / BITS_PER_BYTE; size = round_up2(size, m_alignment); bit_offset = 0; } } if (target.byte_order_big_endian) { member->offset = size & ~alignment_mask; member->bit_offset = base_size - bit_offset - bit_size; } else { member->offset = size; member->bit_offset = bit_offset; } bit_offset += bit_size; size += bit_offset / BITS_PER_BYTE; bit_offset %= BITS_PER_BYTE; } else { if (bit_offset != 0) { bit_offset = 0; size += 1; } il_size_t const new_size = round_up2(size, m_alignment); if (new_size > size) { need_pad = true; size = new_size; } member->offset = size; size += m_size; } } if (bit_offset != 0) size += 1; il_size_t const new_size = round_up2(size, alignment); if (new_size > size) { need_pad = true; size = new_size; } position_t const *const pos = &compound->base.pos; if (need_pad) { warningf(WARN_PADDED, pos, "'%N' needs padding", compound); } else if (is_packed) { warningf(WARN_PACKED, pos, "superfluous packed attribute on '%N'", compound); } compound->size = size; compound->alignment = alignment; }
void layout_compound(compound_t *const compound) { bool const is_union = compound->base.kind == ENTITY_UNION; unsigned alignment = compound->alignment; size_t bit_offset = 0; unsigned size = 0; bool need_pad = false; for (entity_t *entry = compound->members.first_entity; entry; entry = entry->base.next) { if (entry->kind != ENTITY_COMPOUND_MEMBER) continue; compound_member_t *const member = &entry->compound_member; type_t *const m_type = skip_typeref(member->base.type); if (!is_type_valid(m_type)) continue; unsigned m_alignment = get_declaration_alignment(&member->base); alignment = MAX(alignment, m_alignment); unsigned const m_size = get_ctype_size(m_type); if (is_union) { size = MAX(size, m_size); } else if (member->bitfield) { unsigned const alignment_mask = m_alignment - 1; size_t const base_size = m_size * BITS_PER_BYTE; size_t const bit_size = member->bit_size; bit_offset += (size & alignment_mask) * BITS_PER_BYTE; size &= ~alignment_mask; if (bit_offset + bit_size > base_size || (bit_size == 0 && !(member->base.modifiers & DM_PACKED))) { size += (bit_offset + BITS_PER_BYTE - 1) / BITS_PER_BYTE; size = round_up2(size, m_alignment); bit_offset = 0; } if (target.byte_order_big_endian) { member->offset = size & ~alignment_mask; member->bit_offset = base_size - bit_offset - bit_size; } else { member->offset = size; member->bit_offset = bit_offset; } bit_offset += bit_size; size += bit_offset / BITS_PER_BYTE; bit_offset %= BITS_PER_BYTE; } else { if (bit_offset != 0) { bit_offset = 0; size += 1; } unsigned const new_size = round_up2(size, m_alignment); if (new_size > size) { need_pad = true; size = new_size; } member->offset = size; size += m_size; } } if (bit_offset != 0) size += 1; unsigned const new_size = round_up2(size, alignment); if (new_size > size) { need_pad = true; size = new_size; } position_t const *const pos = &compound->base.pos; if (need_pad) { warningf(WARN_PADDED, pos, "%N needs padding", compound); } else if (compound->packed) { warningf(WARN_PACKED, pos, "superfluous packed attribute on %N", compound); } compound->size = size; compound->alignment = alignment; }
x86_cconv_t *amd64_decide_calling_convention(ir_type *function_type, ir_graph *irg) { bool omit_fp = false; if (irg != NULL) { omit_fp = be_options.omit_fp; if (omit_fp) irg_walk_graph(irg, check_omit_fp, NULL, &omit_fp); amd64_get_irg_data(irg)->omit_fp = omit_fp; } unsigned *caller_saves = rbitset_malloc(N_AMD64_REGISTERS); unsigned *callee_saves = rbitset_malloc(N_AMD64_REGISTERS); rbitset_copy(caller_saves, default_caller_saves, N_AMD64_REGISTERS); rbitset_copy(callee_saves, default_callee_saves, N_AMD64_REGISTERS); /* determine how parameters are passed */ size_t n_params = get_method_n_params(function_type); size_t param_regnum = 0; size_t float_param_regnum = 0; reg_or_stackslot_t *params = XMALLOCNZ(reg_or_stackslot_t, n_params); /* x64 always reserves space to spill the first 4 arguments to have it * easy in case of variadic functions. */ unsigned stack_offset = amd64_use_x64_abi ? 32 : 0; for (size_t i = 0; i < n_params; ++i) { ir_type *param_type = get_method_param_type(function_type,i); if (is_compound_type(param_type)) panic("compound arguments NIY"); ir_mode *mode = get_type_mode(param_type); int bits = get_mode_size_bits(mode); reg_or_stackslot_t *param = ¶ms[i]; if (mode_is_float(mode) && float_param_regnum < n_float_param_regs && mode != x86_mode_E) { param->reg = float_param_regs[float_param_regnum++]; if (amd64_use_x64_abi) { ++param_regnum; } } else if (!mode_is_float(mode) && param_regnum < n_param_regs) { param->reg = param_regs[param_regnum++]; if (amd64_use_x64_abi) { ++float_param_regnum; } } else { param->type = param_type; param->offset = stack_offset; /* increase offset by at least AMD64_REGISTER_SIZE bytes so * everything is aligned */ stack_offset += round_up2(bits / 8, AMD64_REGISTER_SIZE); } } /* If the function is variadic, we add all unused parameter * passing registers to the end of the params array, first GP, * then XMM. */ if (irg && is_method_variadic(function_type)) { if (amd64_use_x64_abi) { panic("Variadic functions on Windows ABI not supported"); } int params_remaining = (n_param_regs - param_regnum) + (n_float_param_regs - float_param_regnum); params = XREALLOC(params, reg_or_stackslot_t, n_params + params_remaining); size_t i = n_params; for (; param_regnum < n_param_regs; param_regnum++, i++) { params[i].reg = param_regs[param_regnum]; } for (; float_param_regnum < n_float_param_regs; float_param_regnum++, i++) { params[i].reg = float_param_regs[float_param_regnum]; } } unsigned n_param_regs_used = amd64_use_x64_abi ? param_regnum : param_regnum + float_param_regnum; /* determine how results are passed */ size_t n_results = get_method_n_ress(function_type); unsigned n_reg_results = 0; reg_or_stackslot_t *results = XMALLOCNZ(reg_or_stackslot_t, n_results); unsigned res_regnum = 0; unsigned res_float_regnum = 0; unsigned res_x87_regnum = 0; size_t n_result_regs = ARRAY_SIZE(result_regs); size_t n_float_result_regs = ARRAY_SIZE(float_result_regs); size_t n_x87_result_regs = ARRAY_SIZE(x87_result_regs); for (size_t i = 0; i < n_results; ++i) { ir_type *result_type = get_method_res_type(function_type, i); ir_mode *result_mode = get_type_mode(result_type); reg_or_stackslot_t *result = &results[i]; const arch_register_t *reg; if (result_mode == x86_mode_E) { if (res_x87_regnum >= n_x87_result_regs) panic("too manu x87 floating point results"); reg = x87_result_regs[res_x87_regnum++]; } else if (mode_is_float(result_mode)) { if (res_float_regnum >= n_float_result_regs) { panic("too many floating points results"); } reg = float_result_regs[res_float_regnum++]; } else { if (res_regnum >= n_result_regs) { panic("too many results"); } reg = result_regs[res_regnum++]; } result->reg = reg; rbitset_clear(caller_saves, reg->global_index); ++n_reg_results; } x86_cconv_t *cconv = XMALLOCZ(x86_cconv_t); cconv->parameters = params; cconv->n_parameters = n_params; cconv->param_stacksize = stack_offset; cconv->n_param_regs = n_param_regs_used; cconv->n_xmm_regs = float_param_regnum; cconv->results = results; cconv->omit_fp = omit_fp; cconv->caller_saves = caller_saves; cconv->callee_saves = callee_saves; cconv->n_reg_results = n_reg_results; if (irg != NULL) { be_irg_t *birg = be_birg_from_irg(irg); birg->allocatable_regs = be_cconv_alloc_all_regs(&birg->obst, N_AMD64_REGISTERS); be_cconv_rem_regs(birg->allocatable_regs, ignore_regs, ARRAY_SIZE(ignore_regs)); if (!omit_fp) rbitset_clear(birg->allocatable_regs, REG_RBP); } return cconv; }