Example #1
0
/*
 * Initialize a pool of keys
 * These are unique tokens that can be obtained by threads
 * calling lthread_key_create()
 */
void _lthread_key_pool_init(void)
{
	static struct rte_ring *pool;
	struct lthread_key *new_key;
	char name[MAX_LTHREAD_NAME_SIZE];

	bzero(key_table, sizeof(key_table));

	/* only one lcore should do this */
	if (rte_atomic64_cmpset(&key_pool_init, 0, 1)) {

		snprintf(name,
			MAX_LTHREAD_NAME_SIZE,
			"lthread_key_pool_%d",
			getpid());

		pool = rte_ring_create(name,
					LTHREAD_MAX_KEYS, 0, 0);
		LTHREAD_ASSERT(pool);

		int i;

		for (i = 1; i < LTHREAD_MAX_KEYS; i++) {
			new_key = &key_table[i];
			rte_ring_mp_enqueue((struct rte_ring *)pool,
						(void *)new_key);
		}
		key_pool = pool;
	}
	/* other lcores wait here till done */
	while (key_pool == NULL) {
		rte_compiler_barrier();
		sched_yield();
	};
}
Example #2
0
/* try to lock a mutex but don't block */
int lthread_mutex_trylock(struct lthread_mutex *m)
{
	struct lthread *lt = THIS_LTHREAD;

	if ((m == NULL) || (m->blocked == NULL)) {
		DIAG_EVENT(m, LT_DIAG_MUTEX_TRYLOCK, m, POSIX_ERRNO(EINVAL));
		return POSIX_ERRNO(EINVAL);
	}

	if (m->owner == lt) {
		/* no recursion */
		DIAG_EVENT(m, LT_DIAG_MUTEX_TRYLOCK, m, POSIX_ERRNO(EDEADLK));
		return POSIX_ERRNO(EDEADLK);
	}

	rte_atomic64_inc(&m->count);
	if (rte_atomic64_cmpset
	    ((uint64_t *) &m->owner, (uint64_t) NULL, (uint64_t) lt)) {
		/* got the lock */
		DIAG_EVENT(m, LT_DIAG_MUTEX_TRYLOCK, m, 0);
		return 0;
	}

	/* failed so return busy */
	rte_atomic64_dec(&m->count);
	DIAG_EVENT(m, LT_DIAG_MUTEX_TRYLOCK, m, POSIX_ERRNO(EBUSY));
	return POSIX_ERRNO(EBUSY);
}
Example #3
0
/*
 * Stop device: disable rx and tx functions to allow for reconfiguring.
 */
static void enicpmd_dev_stop(struct rte_eth_dev *eth_dev)
{
	struct rte_eth_link link;
	struct enic *enic = pmd_priv(eth_dev);

	ENICPMD_FUNC_TRACE();
	enic_disable(enic);
	memset(&link, 0, sizeof(link));
	rte_atomic64_cmpset((uint64_t *)&eth_dev->data->dev_link,
		*(uint64_t *)&eth_dev->data->dev_link,
		*(uint64_t *)&link);
}
Example #4
0
/**
 * Atomically writes the link status information into global
 * structure rte_eth_dev.
 *
 * @param dev
 *   - Pointer to the structure rte_eth_dev to write to.
 *   - Pointer to the buffer to be saved with the link status.
 *
 * @return
 *   - On success, zero.
 *   - On failure, negative value.
 */
static int
vmxnet3_dev_atomic_write_link_status(struct rte_eth_dev *dev,
				     struct rte_eth_link *link)
{
	struct rte_eth_link *dst = &(dev->data->dev_link);
	struct rte_eth_link *src = link;

	if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
					*(uint64_t *)src) == 0)
		return -1;

	return 0;
}
Example #5
0
/**
 * Atomically reads the link status information from global
 * structure rte_eth_dev.
 *
 * @param dev
 *   - Pointer to the structure rte_eth_dev to read from.
 *   - Pointer to the buffer to be saved with the link status.
 *
 * @return
 *   - On success, zero.
 *   - On failure, negative value.
 */
static inline int
rte_em_dev_atomic_read_link_status(struct rte_eth_dev *dev,
				struct rte_eth_link *link)
{
	struct rte_eth_link *dst = link;
	struct rte_eth_link *src = &(dev->data->dev_link);

	if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
					*(uint64_t *)src) == 0)
		return -1;

	return 0;
}
Example #6
0
/*
 * Try to obtain a mutex
 */
int lthread_mutex_lock(struct lthread_mutex *m)
{
	struct lthread *lt = THIS_LTHREAD;

	if ((m == NULL) || (m->blocked == NULL)) {
		DIAG_EVENT(m, LT_DIAG_MUTEX_LOCK, m, POSIX_ERRNO(EINVAL));
		return POSIX_ERRNO(EINVAL);
	}

	/* allow no recursion */
	if (m->owner == lt) {
		DIAG_EVENT(m, LT_DIAG_MUTEX_LOCK, m, POSIX_ERRNO(EDEADLK));
		return POSIX_ERRNO(EDEADLK);
	}

	for (;;) {
		rte_atomic64_inc(&m->count);
		do {
			if (rte_atomic64_cmpset
			    ((uint64_t *) &m->owner, 0, (uint64_t) lt)) {
				/* happy days, we got the lock */
				DIAG_EVENT(m, LT_DIAG_MUTEX_LOCK, m, 0);
				return 0;
			}
			/* spin due to race with unlock when
			* nothing was blocked
			*/
		} while ((rte_atomic64_read(&m->count) == 1) &&
				(m->owner == NULL));

		/* queue the current thread in the blocked queue
		 * we defer this to after we return to the scheduler
		 * to ensure that the current thread context is saved
		 * before unlock could result in it being dequeued and
		 * resumed
		 */
		DIAG_EVENT(m, LT_DIAG_MUTEX_BLOCKED, m, lt);
		lt->pending_wr_queue = m->blocked;
		/* now relinquish cpu */
		_suspend();
		/* resumed, must loop and compete for the lock again */
	}
	return 0;
}
Example #7
0
int
acl_init(int is_ipv4)
{
	unsigned int i;
	struct rte_acl_rule *acl_base_ipv4 = NULL, *acl_base_ipv6 = NULL;
	unsigned int acl_num_ipv4 = 0, acl_num_ipv6 = 0;
	struct rte_acl_ctx *acl_ctx;

	if (check_acl_config() != 0) {
		acl_log("Failed to get valid ACL options\n");
		return -1;
	}

	dump_acl_config();

	if (is_ipv4) {
		/* Load  rules from the input file */
		if (add_rules(acl_parm_config.rule_ipv4_name, &acl_base_ipv4,
			      &acl_num_ipv4, sizeof(struct acl4_rule),
			      &parse_cb_ipv4vlan_rule) < 0) {
			acl_log("Failed to add ipv4 rules\n");
			return -1;
		}

		acl_log("IPv4 ACL entries %u:\n", acl_num_ipv4);
		dump_ipv4_rules((struct acl4_rule *)acl_base_ipv4, acl_num_ipv4,
				1);
		for (i = 0; i < NB_SOCKETS; i++) {
			if ((acl_ctx = setup_acl(acl_base_ipv4, acl_num_ipv4, 0,
						 i)) != NULL) {
				ipv4_acx[i] = acl_ctx;
			} else if (acl_num_ipv4 == 0) {
				ipv4_acx[i] = NULL;
			} else {
				acl_log("setup_acl failed for ipv4 with "
					"socketid %d, keeping previous rules "
					"for that socket\n",
					i);
			}
		}
#ifdef L3FWDACL_DEBUG
		if (acl_base_ipv4) {
			acl_config.rule_ipv4 =
			    (struct acl4_rule *)acl_base_ipv4;
		}
#else
		free(acl_base_ipv4);
#endif
	} else {
		if (add_rules(acl_parm_config.rule_ipv6_name, &acl_base_ipv6,
			      &acl_num_ipv6, sizeof(struct acl6_rule),
			      &parse_cb_ipv6_rule) < 0) {
			acl_log("Failed to add ipv6 rules\n");
			return -1;
		}

		acl_log("IPv6 ACL entries %u:\n", acl_num_ipv6);
		dump_ipv6_rules((struct acl6_rule *)acl_base_ipv6, acl_num_ipv6,
				1);
		for (i = 0; i < NB_SOCKETS; i++) {
			if ((acl_ctx = setup_acl(acl_base_ipv6, acl_num_ipv6, 1,
						 i)) != NULL) {
				ipv6_acx[i] = acl_ctx;
			} else if (acl_num_ipv6 == 0) {
				ipv6_acx[i] = NULL;
			} else {
				acl_log("setup_acl failed for ipv6 with "
					"socketid %d, keeping previous rules "
					"for that socket\n",
					i);
			}
		}
#ifdef L3FWDACL_DEBUG
		if (acl_base_ipv6) {
			acl_config.rule_ipv6 =
			    (struct acl6_rule *)acl_base_ipv6;
		}
#else
		free(acl_base_ipv6);
#endif
	}

	int socketid, lcore_id;
	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
		if (rte_lcore_is_enabled(lcore_id) == 0)
			continue;

		if (numa_on)
			socketid = rte_lcore_to_socket_id(lcore_id);
		else
			socketid = 0;

		rte_atomic64_cmpset(
		    (uintptr_t *)&lcore_conf[lcore_id].new_acx_ipv4,
		    (uintptr_t)lcore_conf[lcore_id].new_acx_ipv4,
		    (uintptr_t)ipv4_acx[socketid]);
		rte_atomic64_cmpset(
		    (uintptr_t *)&lcore_conf[lcore_id].new_acx_ipv6,
		    (uintptr_t)lcore_conf[lcore_id].new_acx_ipv6,
		    (uintptr_t)ipv6_acx[socketid]);
	}

	return 0;
}
Example #8
0
static void
avf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
{
	struct avf_adapter *adapter =
		AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
	struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);

	memset(dev_info, 0, sizeof(*dev_info));
	dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(dev);
	dev_info->max_rx_queues = vf->vsi_res->num_queue_pairs;
	dev_info->max_tx_queues = vf->vsi_res->num_queue_pairs;
	dev_info->min_rx_bufsize = AVF_BUF_SIZE_MIN;
	dev_info->max_rx_pktlen = AVF_FRAME_SIZE_MAX;
	dev_info->hash_key_size = vf->vf_res->rss_key_size;
	dev_info->reta_size = vf->vf_res->rss_lut_size;
	dev_info->flow_type_rss_offloads = AVF_RSS_OFFLOAD_ALL;
	dev_info->max_mac_addrs = AVF_NUM_MACADDR_MAX;
	dev_info->rx_offload_capa =
		DEV_RX_OFFLOAD_VLAN_STRIP |
		DEV_RX_OFFLOAD_IPV4_CKSUM |
		DEV_RX_OFFLOAD_UDP_CKSUM |
		DEV_RX_OFFLOAD_TCP_CKSUM;
	dev_info->tx_offload_capa =
		DEV_TX_OFFLOAD_VLAN_INSERT |
		DEV_TX_OFFLOAD_IPV4_CKSUM |
		DEV_TX_OFFLOAD_UDP_CKSUM |
		DEV_TX_OFFLOAD_TCP_CKSUM |
		DEV_TX_OFFLOAD_SCTP_CKSUM |
		DEV_TX_OFFLOAD_TCP_TSO;

	dev_info->default_rxconf = (struct rte_eth_rxconf) {
		.rx_free_thresh = AVF_DEFAULT_RX_FREE_THRESH,
		.rx_drop_en = 0,
	};

	dev_info->default_txconf = (struct rte_eth_txconf) {
		.tx_free_thresh = AVF_DEFAULT_TX_FREE_THRESH,
		.tx_rs_thresh = AVF_DEFAULT_TX_RS_THRESH,
		.txq_flags = ETH_TXQ_FLAGS_NOMULTSEGS |
				ETH_TXQ_FLAGS_NOOFFLOADS,
	};

	dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
		.nb_max = AVF_MAX_RING_DESC,
		.nb_min = AVF_MIN_RING_DESC,
		.nb_align = AVF_ALIGN_RING_DESC,
	};

	dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
		.nb_max = AVF_MAX_RING_DESC,
		.nb_min = AVF_MIN_RING_DESC,
		.nb_align = AVF_ALIGN_RING_DESC,
	};
}

static const uint32_t *
avf_dev_supported_ptypes_get(struct rte_eth_dev *dev)
{
	static const uint32_t ptypes[] = {
		RTE_PTYPE_L2_ETHER,
		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
		RTE_PTYPE_L4_FRAG,
		RTE_PTYPE_L4_ICMP,
		RTE_PTYPE_L4_NONFRAG,
		RTE_PTYPE_L4_SCTP,
		RTE_PTYPE_L4_TCP,
		RTE_PTYPE_L4_UDP,
		RTE_PTYPE_UNKNOWN
	};
	return ptypes;
}

int
avf_dev_link_update(struct rte_eth_dev *dev,
		    __rte_unused int wait_to_complete)
{
	struct rte_eth_link new_link;
	struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);

	/* Only read status info stored in VF, and the info is updated
	 *  when receive LINK_CHANGE evnet from PF by Virtchnnl.
	 */
	switch (vf->link_speed) {
	case VIRTCHNL_LINK_SPEED_100MB:
		new_link.link_speed = ETH_SPEED_NUM_100M;
		break;
	case VIRTCHNL_LINK_SPEED_1GB:
		new_link.link_speed = ETH_SPEED_NUM_1G;
		break;
	case VIRTCHNL_LINK_SPEED_10GB:
		new_link.link_speed = ETH_SPEED_NUM_10G;
		break;
	case VIRTCHNL_LINK_SPEED_20GB:
		new_link.link_speed = ETH_SPEED_NUM_20G;
		break;
	case VIRTCHNL_LINK_SPEED_25GB:
		new_link.link_speed = ETH_SPEED_NUM_25G;
		break;
	case VIRTCHNL_LINK_SPEED_40GB:
		new_link.link_speed = ETH_SPEED_NUM_40G;
		break;
	default:
		new_link.link_speed = ETH_SPEED_NUM_NONE;
		break;
	}

	new_link.link_duplex = ETH_LINK_FULL_DUPLEX;
	new_link.link_status = vf->link_up ? ETH_LINK_UP :
					     ETH_LINK_DOWN;
	new_link.link_autoneg = !!(dev->data->dev_conf.link_speeds &
				ETH_LINK_SPEED_FIXED);

	if (rte_atomic64_cmpset((uint64_t *)&dev->data->dev_link,
				*(uint64_t *)&dev->data->dev_link,
				*(uint64_t *)&new_link) == 0)
		return -1;

	return 0;
}

static void
avf_dev_promiscuous_enable(struct rte_eth_dev *dev)
{
	struct avf_adapter *adapter =
		AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
	struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
	int ret;

	if (vf->promisc_unicast_enabled)
		return;

	ret = avf_config_promisc(adapter, TRUE, vf->promisc_multicast_enabled);
	if (!ret)
		vf->promisc_unicast_enabled = TRUE;
}

static void
avf_dev_promiscuous_disable(struct rte_eth_dev *dev)
{
	struct avf_adapter *adapter =
		AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
	struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
	int ret;

	if (!vf->promisc_unicast_enabled)
		return;

	ret = avf_config_promisc(adapter, FALSE, vf->promisc_multicast_enabled);
	if (!ret)
		vf->promisc_unicast_enabled = FALSE;
}

static void
avf_dev_allmulticast_enable(struct rte_eth_dev *dev)
{
	struct avf_adapter *adapter =
		AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
	struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
	int ret;

	if (vf->promisc_multicast_enabled)
		return;

	ret = avf_config_promisc(adapter, vf->promisc_unicast_enabled, TRUE);
	if (!ret)
		vf->promisc_multicast_enabled = TRUE;
}

static void
avf_dev_allmulticast_disable(struct rte_eth_dev *dev)
{
	struct avf_adapter *adapter =
		AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
	struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
	int ret;

	if (!vf->promisc_multicast_enabled)
		return;

	ret = avf_config_promisc(adapter, vf->promisc_unicast_enabled, FALSE);
	if (!ret)
		vf->promisc_multicast_enabled = FALSE;
}

static int
avf_dev_add_mac_addr(struct rte_eth_dev *dev, struct ether_addr *addr,
		     __rte_unused uint32_t index,
		     __rte_unused uint32_t pool)
{
	struct avf_adapter *adapter =
		AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
	struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
	int err;

	if (is_zero_ether_addr(addr)) {
		PMD_DRV_LOG(ERR, "Invalid Ethernet Address");
		return -EINVAL;
	}

	err = avf_add_del_eth_addr(adapter, addr, TRUE);
	if (err) {
		PMD_DRV_LOG(ERR, "fail to add MAC address");
		return -EIO;
	}

	vf->mac_num++;

	return 0;
}

static void
avf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
{
	struct avf_adapter *adapter =
		AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
	struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
	struct ether_addr *addr;
	int err;

	addr = &dev->data->mac_addrs[index];

	err = avf_add_del_eth_addr(adapter, addr, FALSE);
	if (err)
		PMD_DRV_LOG(ERR, "fail to delete MAC address");

	vf->mac_num--;
}

static int
avf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
{
	struct avf_adapter *adapter =
		AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
	struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
	int err;

	if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
		return -ENOTSUP;

	err = avf_add_del_vlan(adapter, vlan_id, on);
	if (err)
		return -EIO;
	return 0;
}

static int
avf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask)
{
	struct avf_adapter *adapter =
		AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
	struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
	struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
	int err;

	if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
		return -ENOTSUP;

	/* Vlan stripping setting */
	if (mask & ETH_VLAN_STRIP_MASK) {
		/* Enable or disable VLAN stripping */
		if (dev_conf->rxmode.hw_vlan_strip)
			err = avf_enable_vlan_strip(adapter);
		else
			err = avf_disable_vlan_strip(adapter);

		if (err)
			return -EIO;
	}
	return 0;
}

static int
avf_dev_rss_reta_update(struct rte_eth_dev *dev,
			struct rte_eth_rss_reta_entry64 *reta_conf,
			uint16_t reta_size)
{
	struct avf_adapter *adapter =
		AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
	struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
	uint8_t *lut;
	uint16_t i, idx, shift;
	int ret;

	if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
		return -ENOTSUP;

	if (reta_size != vf->vf_res->rss_lut_size) {
		PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
			"(%d) doesn't match the number of hardware can "
			"support (%d)", reta_size, vf->vf_res->rss_lut_size);
		return -EINVAL;
	}

	lut = rte_zmalloc("rss_lut", reta_size, 0);
	if (!lut) {
		PMD_DRV_LOG(ERR, "No memory can be allocated");
		return -ENOMEM;
	}
	/* store the old lut table temporarily */
	rte_memcpy(lut, vf->rss_lut, reta_size);

	for (i = 0; i < reta_size; i++) {
		idx = i / RTE_RETA_GROUP_SIZE;
		shift = i % RTE_RETA_GROUP_SIZE;
		if (reta_conf[idx].mask & (1ULL << shift))
			lut[i] = reta_conf[idx].reta[shift];
	}

	rte_memcpy(vf->rss_lut, lut, reta_size);
	/* send virtchnnl ops to configure rss*/
	ret = avf_configure_rss_lut(adapter);
	if (ret) /* revert back */
		rte_memcpy(vf->rss_lut, lut, reta_size);
	rte_free(lut);

	return ret;
}

static int
avf_dev_rss_reta_query(struct rte_eth_dev *dev,
		       struct rte_eth_rss_reta_entry64 *reta_conf,
		       uint16_t reta_size)
{
	struct avf_adapter *adapter =
		AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
	struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
	uint16_t i, idx, shift;

	if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
		return -ENOTSUP;

	if (reta_size != vf->vf_res->rss_lut_size) {
		PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
			"(%d) doesn't match the number of hardware can "
			"support (%d)", reta_size, vf->vf_res->rss_lut_size);
		return -EINVAL;
	}

	for (i = 0; i < reta_size; i++) {
		idx = i / RTE_RETA_GROUP_SIZE;
		shift = i % RTE_RETA_GROUP_SIZE;
		if (reta_conf[idx].mask & (1ULL << shift))
			reta_conf[idx].reta[shift] = vf->rss_lut[i];
	}

	return 0;
}

static int
avf_dev_rss_hash_update(struct rte_eth_dev *dev,
			struct rte_eth_rss_conf *rss_conf)
{
	struct avf_adapter *adapter =
		AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
	struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);

	if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
		return -ENOTSUP;

	/* HENA setting, it is enabled by default, no change */
	if (!rss_conf->rss_key || rss_conf->rss_key_len == 0) {
		PMD_DRV_LOG(DEBUG, "No key to be configured");
		return 0;
	} else if (rss_conf->rss_key_len != vf->vf_res->rss_key_size) {
		PMD_DRV_LOG(ERR, "The size of hash key configured "
			"(%d) doesn't match the size of hardware can "
			"support (%d)", rss_conf->rss_key_len,
			vf->vf_res->rss_key_size);
		return -EINVAL;
	}

	rte_memcpy(vf->rss_key, rss_conf->rss_key, rss_conf->rss_key_len);

	return avf_configure_rss_key(adapter);
}

static int
avf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
			  struct rte_eth_rss_conf *rss_conf)
{
	struct avf_adapter *adapter =
		AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
	struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);

	if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
		return -ENOTSUP;

	 /* Just set it to default value now. */
	rss_conf->rss_hf = AVF_RSS_OFFLOAD_ALL;

	if (!rss_conf->rss_key)
		return 0;

	rss_conf->rss_key_len = vf->vf_res->rss_key_size;
	rte_memcpy(rss_conf->rss_key, vf->rss_key, rss_conf->rss_key_len);

	return 0;
}

static int
avf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
{
	struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
	uint32_t frame_size = mtu + AVF_ETH_OVERHEAD;
	int ret = 0;

	if (mtu < ETHER_MIN_MTU || frame_size > AVF_FRAME_SIZE_MAX)
		return -EINVAL;

	/* mtu setting is forbidden if port is start */
	if (dev->data->dev_started) {
		PMD_DRV_LOG(ERR, "port must be stopped before configuration");
		return -EBUSY;
	}

	if (frame_size > ETHER_MAX_LEN)
		dev->data->dev_conf.rxmode.offloads |=
				DEV_RX_OFFLOAD_JUMBO_FRAME;
	else
		dev->data->dev_conf.rxmode.offloads &=
				~DEV_RX_OFFLOAD_JUMBO_FRAME;

	dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;

	return ret;
}

static void
avf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
			     struct ether_addr *mac_addr)
{
	struct avf_adapter *adapter =
		AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
	struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
	struct ether_addr *perm_addr, *old_addr;
	int ret;

	old_addr = (struct ether_addr *)hw->mac.addr;
	perm_addr = (struct ether_addr *)hw->mac.perm_addr;

	if (is_same_ether_addr(mac_addr, old_addr))
		return;

	/* If the MAC address is configured by host, skip the setting */
	if (is_valid_assigned_ether_addr(perm_addr))
		return;

	ret = avf_add_del_eth_addr(adapter, old_addr, FALSE);
	if (ret)
		PMD_DRV_LOG(ERR, "Fail to delete old MAC:"
			    " %02X:%02X:%02X:%02X:%02X:%02X",
			    old_addr->addr_bytes[0],
			    old_addr->addr_bytes[1],
			    old_addr->addr_bytes[2],
			    old_addr->addr_bytes[3],
			    old_addr->addr_bytes[4],
			    old_addr->addr_bytes[5]);

	ret = avf_add_del_eth_addr(adapter, mac_addr, TRUE);
	if (ret)
		PMD_DRV_LOG(ERR, "Fail to add new MAC:"
			    " %02X:%02X:%02X:%02X:%02X:%02X",
			    mac_addr->addr_bytes[0],
			    mac_addr->addr_bytes[1],
			    mac_addr->addr_bytes[2],
			    mac_addr->addr_bytes[3],
			    mac_addr->addr_bytes[4],
			    mac_addr->addr_bytes[5]);

	ether_addr_copy(mac_addr, (struct ether_addr *)hw->mac.addr);
}

static int
avf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
{
	struct avf_adapter *adapter =
		AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
	struct virtchnl_eth_stats *pstats = NULL;
	int ret;

	ret = avf_query_stats(adapter, &pstats);
	if (ret == 0) {
		stats->ipackets = pstats->rx_unicast + pstats->rx_multicast +
						pstats->rx_broadcast;
		stats->opackets = pstats->tx_broadcast + pstats->tx_multicast +
						pstats->tx_unicast;
		stats->imissed = pstats->rx_discards;
		stats->oerrors = pstats->tx_errors + pstats->tx_discards;
		stats->ibytes = pstats->rx_bytes;
		stats->obytes = pstats->tx_bytes;
	} else {
		PMD_DRV_LOG(ERR, "Get statistics failed");
	}
	return -EIO;
}

static int
avf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
{
	struct avf_adapter *adapter =
		AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
	struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
	uint16_t msix_intr;

	msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
	if (msix_intr == AVF_MISC_VEC_ID) {
		PMD_DRV_LOG(INFO, "MISC is also enabled for control");
		AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
			      AVFINT_DYN_CTL01_INTENA_MASK |
			      AVFINT_DYN_CTL01_ITR_INDX_MASK);
	} else {
		AVF_WRITE_REG(hw,
			      AVFINT_DYN_CTLN1(msix_intr - AVF_RX_VEC_START),
			      AVFINT_DYN_CTLN1_INTENA_MASK |
			      AVFINT_DYN_CTLN1_ITR_INDX_MASK);
	}

	AVF_WRITE_FLUSH(hw);

	rte_intr_enable(&pci_dev->intr_handle);

	return 0;
}

static int
avf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
{
	struct avf_adapter *adapter =
		AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
	struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
	uint16_t msix_intr;

	msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
	if (msix_intr == AVF_MISC_VEC_ID) {
		PMD_DRV_LOG(ERR, "MISC is used for control, cannot disable it");
		return -EIO;
	}

	AVF_WRITE_REG(hw,
		      AVFINT_DYN_CTLN1(msix_intr - AVF_RX_VEC_START),
		      0);

	AVF_WRITE_FLUSH(hw);
	return 0;
}

static int
avf_check_vf_reset_done(struct avf_hw *hw)
{
	int i, reset;

	for (i = 0; i < AVF_RESET_WAIT_CNT; i++) {
		reset = AVF_READ_REG(hw, AVFGEN_RSTAT) &
			AVFGEN_RSTAT_VFR_STATE_MASK;
		reset = reset >> AVFGEN_RSTAT_VFR_STATE_SHIFT;
		if (reset == VIRTCHNL_VFR_VFACTIVE ||
		    reset == VIRTCHNL_VFR_COMPLETED)
			break;
		rte_delay_ms(20);
	}

	if (i >= AVF_RESET_WAIT_CNT)
		return -1;

	return 0;
}

static int
avf_init_vf(struct rte_eth_dev *dev)
{
	int i, err, bufsz;
	struct avf_adapter *adapter =
		AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
	struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
	struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);

	err = avf_set_mac_type(hw);
	if (err) {
		PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
		goto err;
	}

	err = avf_check_vf_reset_done(hw);
	if (err) {
		PMD_INIT_LOG(ERR, "VF is still resetting");
		goto err;
	}

	avf_init_adminq_parameter(hw);
	err = avf_init_adminq(hw);
	if (err) {
		PMD_INIT_LOG(ERR, "init_adminq failed: %d", err);
		goto err;
	}

	vf->aq_resp = rte_zmalloc("vf_aq_resp", AVF_AQ_BUF_SZ, 0);
	if (!vf->aq_resp) {
		PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory");
		goto err_aq;
	}
	if (avf_check_api_version(adapter) != 0) {
		PMD_INIT_LOG(ERR, "check_api version failed");
		goto err_api;
	}

	bufsz = sizeof(struct virtchnl_vf_resource) +
		(AVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource));
	vf->vf_res = rte_zmalloc("vf_res", bufsz, 0);
	if (!vf->vf_res) {
		PMD_INIT_LOG(ERR, "unable to allocate vf_res memory");
		goto err_api;
	}
	if (avf_get_vf_resource(adapter) != 0) {
		PMD_INIT_LOG(ERR, "avf_get_vf_config failed");
		goto err_alloc;
	}
	/* Allocate memort for RSS info */
	if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
		vf->rss_key = rte_zmalloc("rss_key",
					  vf->vf_res->rss_key_size, 0);
		if (!vf->rss_key) {
			PMD_INIT_LOG(ERR, "unable to allocate rss_key memory");
			goto err_rss;
		}
		vf->rss_lut = rte_zmalloc("rss_lut",
					  vf->vf_res->rss_lut_size, 0);
		if (!vf->rss_lut) {
			PMD_INIT_LOG(ERR, "unable to allocate rss_lut memory");
			goto err_rss;
		}
	}
	return 0;
err_rss:
	rte_free(vf->rss_key);
	rte_free(vf->rss_lut);
err_alloc:
	rte_free(vf->vf_res);
	vf->vsi_res = NULL;
err_api:
	rte_free(vf->aq_resp);
err_aq:
	avf_shutdown_adminq(hw);
err:
	return -1;
}