Example #1
0
void stop_cores(uint32_t *cores, int count)
{
	for (int i = 0; i < count; ++i) {
		if (!dppd_core_active(cores[i], 0)) {
			plog_warn("Can't stop core %u: core is not active\n", cores[i]);
		} else
			lconf_set_terminated(&lcore_cfg[cores[i]], 1);
	}

	for (int i = 0; i < count; ++i) {
		if (dppd_core_active(cores[i], 0)) {
			if ((rte_eal_get_lcore_state(cores[i]) == RUNNING) ||
			(rte_eal_get_lcore_state(cores[i]) == FINISHED)) {
				plog_info("stopping core %u...", cores[i]);
				rte_eal_wait_lcore(cores[i]);
				plog_info(" OK\n");
			}
			else {
				plog_info("core %u in state %d\n", cores[i], rte_eal_get_lcore_state(cores[i]));
			}
		}
	}

}
Example #2
0
void start_cores(uint32_t *cores, int count)
{
	for (int i = 0; i < count; ++i) {
		if (!dppd_core_active(cores[i], 0)) {
			plog_warn("Can't start core %u: core is not active\n", cores[i]);
		}
		else if (rte_eal_get_lcore_state(cores[i]) != RUNNING) {
			plog_info("Starting core %u\n", cores[i]);
			lconf_set_terminated(&lcore_cfg[cores[i]], 0);
			rte_eal_remote_launch(dppd_work_thread, NULL, cores[i]);
		}
		else {
			plog_warn("Core %u is already running\n", cores[i]);
		}
	}
}
Example #3
0
/*
 * Initialize a given port using default settings and with the RX buffers
 * coming from the mbuf_pool passed as a parameter.
 * FIXME: Starting with assumption of one thread/core per port
 */
static inline int uhd_dpdk_port_init(struct uhd_dpdk_port *port,
                                     struct rte_mempool *rx_mbuf_pool,
                                     unsigned int mtu)
{
    int retval;

    /* Check for a valid port */
    if (port->id >= rte_eth_dev_count())
        return -ENODEV;

    /* Set up Ethernet device with defaults (1 RX ring, 1 TX ring) */
    /* FIXME: Check if hw_ip_checksum is possible */
    struct rte_eth_conf port_conf = {
        .rxmode = {
            .max_rx_pkt_len = mtu,
            .jumbo_frame = 1,
            .hw_ip_checksum = 1,
        }
    };
    retval = rte_eth_dev_configure(port->id, 1, 1, &port_conf);
    if (retval != 0)
        return retval;

    retval = rte_eth_rx_queue_setup(port->id, 0, DEFAULT_RING_SIZE,
                 rte_eth_dev_socket_id(port->id), NULL, rx_mbuf_pool);
    if (retval < 0)
        return retval;

    retval = rte_eth_tx_queue_setup(port->id, 0, DEFAULT_RING_SIZE,
                 rte_eth_dev_socket_id(port->id), NULL);
    if (retval < 0)
        goto port_init_fail;

    /* Create the hash table for the RX sockets */
    char name[32];
    snprintf(name, sizeof(name), "rx_table_%u", port->id);
    struct rte_hash_parameters hash_params = {
        .name = name,
        .entries = UHD_DPDK_MAX_SOCKET_CNT,
        .key_len = sizeof(struct uhd_dpdk_ipv4_5tuple),
        .hash_func = NULL,
        .hash_func_init_val = 0,
    };
    port->rx_table = rte_hash_create(&hash_params);
    if (port->rx_table == NULL) {
        retval = rte_errno;
        goto port_init_fail;
    }

    /* Create ARP table */
    snprintf(name, sizeof(name), "arp_table_%u", port->id);
    hash_params.name = name;
    hash_params.entries = UHD_DPDK_MAX_SOCKET_CNT;
    hash_params.key_len = sizeof(uint32_t);
    hash_params.hash_func = NULL;
    hash_params.hash_func_init_val = 0;
    port->arp_table = rte_hash_create(&hash_params);
    if (port->arp_table == NULL) {
        retval = rte_errno;
        goto free_rx_table;
    }

    /* Set up list for TX queues */
    LIST_INIT(&port->txq_list);

    /* Start the Ethernet port. */
    retval = rte_eth_dev_start(port->id);
    if (retval < 0) {
        goto free_arp_table;
    }

    /* Display the port MAC address. */
    rte_eth_macaddr_get(port->id, &port->mac_addr);
    RTE_LOG(INFO, EAL, "Port %u MAC: %02x %02x %02x %02x %02x %02x\n",
                (unsigned)port->id,
                port->mac_addr.addr_bytes[0], port->mac_addr.addr_bytes[1],
                port->mac_addr.addr_bytes[2], port->mac_addr.addr_bytes[3],
                port->mac_addr.addr_bytes[4], port->mac_addr.addr_bytes[5]);

    struct rte_eth_link link;
    rte_eth_link_get(port->id, &link);
    RTE_LOG(INFO, EAL, "Port %u UP: %d\n", port->id, link.link_status);

    return 0;

free_arp_table:
    rte_hash_free(port->arp_table);
free_rx_table:
    rte_hash_free(port->rx_table);
port_init_fail:
    return rte_errno;
}

static int uhd_dpdk_thread_init(struct uhd_dpdk_thread *thread, unsigned int id)
{
    if (!ctx || !thread)
        return -EINVAL;

    unsigned int socket_id = rte_lcore_to_socket_id(id);
    thread->id = id;
    thread->rx_pktbuf_pool = ctx->rx_pktbuf_pools[socket_id];
    thread->tx_pktbuf_pool = ctx->tx_pktbuf_pools[socket_id];
    LIST_INIT(&thread->port_list);

    char name[32];
    snprintf(name, sizeof(name), "sockreq_ring_%u", id);
    thread->sock_req_ring = rte_ring_create(
                               name,
                               UHD_DPDK_MAX_PENDING_SOCK_REQS,
                               socket_id,
                               RING_F_SC_DEQ
                            );
    if (!thread->sock_req_ring)
        return -ENOMEM;
    return 0;
}


int uhd_dpdk_init(int argc, char **argv, unsigned int num_ports,
                  int *port_thread_mapping, int num_mbufs, int mbuf_cache_size,
                  int mtu)
{
    /* Init context only once */
    if (ctx)
        return 1;

    if ((num_ports == 0) || (port_thread_mapping == NULL)) {
        return -EINVAL;
    }

    /* Grabs arguments intended for DPDK's EAL */
    int ret = rte_eal_init(argc, argv);
    if (ret < 0)
        rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");

    ctx = (struct uhd_dpdk_ctx *) rte_zmalloc("uhd_dpdk_ctx", sizeof(*ctx), rte_socket_id());
    if (!ctx)
        return -ENOMEM;

    ctx->num_threads = rte_lcore_count();
    if (ctx->num_threads <= 1)
        rte_exit(EXIT_FAILURE, "Error: No worker threads enabled\n");

    /* Check that we have ports to send/receive on */
    ctx->num_ports = rte_eth_dev_count();
    if (ctx->num_ports < 1)
        rte_exit(EXIT_FAILURE, "Error: Found no ports\n");
    if (ctx->num_ports < num_ports)
        rte_exit(EXIT_FAILURE, "Error: User requested more ports than available\n");

    /* Get memory for thread and port data structures */
    ctx->threads = rte_zmalloc("uhd_dpdk_thread", RTE_MAX_LCORE*sizeof(struct uhd_dpdk_thread), 0);
    if (!ctx->threads)
        rte_exit(EXIT_FAILURE, "Error: Could not allocate memory for thread data\n");
    ctx->ports = rte_zmalloc("uhd_dpdk_port", ctx->num_ports*sizeof(struct uhd_dpdk_port), 0);
    if (!ctx->ports)
        rte_exit(EXIT_FAILURE, "Error: Could not allocate memory for port data\n");

    /* Initialize the thread data structures */
    for (int i = rte_get_next_lcore(-1, 1, 0);
        (i < RTE_MAX_LCORE);
        i = rte_get_next_lcore(i, 1, 0))
    {
        /* Do one mempool of RX/TX per socket */
        unsigned int socket_id = rte_lcore_to_socket_id(i);
        /* FIXME Probably want to take into account actual number of ports per socket */
        if (ctx->tx_pktbuf_pools[socket_id] == NULL) {
            /* Creates a new mempool in memory to hold the mbufs.
             * This is done for each CPU socket
             */
            const int mbuf_size = mtu + 2048 + RTE_PKTMBUF_HEADROOM;
            char name[32];
            snprintf(name, sizeof(name), "rx_mbuf_pool_%u", socket_id);
            ctx->rx_pktbuf_pools[socket_id] = rte_pktmbuf_pool_create(
                                               name,
                                               ctx->num_ports*num_mbufs,
                                               mbuf_cache_size,
                                               0,
                                               mbuf_size,
                                               socket_id
                                           );
            snprintf(name, sizeof(name), "tx_mbuf_pool_%u", socket_id);
            ctx->tx_pktbuf_pools[socket_id] = rte_pktmbuf_pool_create(
                                               name,
                                               ctx->num_ports*num_mbufs,
                                               mbuf_cache_size,
                                               0,
                                               mbuf_size,
                                               socket_id
                                           );
            if ((ctx->rx_pktbuf_pools[socket_id]== NULL) ||
                (ctx->tx_pktbuf_pools[socket_id]== NULL))
                rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
        }

        if (uhd_dpdk_thread_init(&ctx->threads[i], i) < 0)
            rte_exit(EXIT_FAILURE, "Error initializing thread %i\n", i);
    }

    unsigned master_lcore = rte_get_master_lcore();

    /* Assign ports to threads and initialize the port data structures */
    for (unsigned int i = 0; i < num_ports; i++) {
        int thread_id = port_thread_mapping[i];
        if (thread_id < 0)
            continue;
        if (((unsigned int) thread_id) == master_lcore)
            RTE_LOG(WARNING, EAL, "User requested master lcore for port %u\n", i);
        if (ctx->threads[thread_id].id != (unsigned int) thread_id)
            rte_exit(EXIT_FAILURE, "Requested inactive lcore %u for port %u\n", (unsigned int) thread_id, i);

        struct uhd_dpdk_port *port = &ctx->ports[i];
        port->id = i;
        port->parent = &ctx->threads[thread_id];
        ctx->threads[thread_id].num_ports++;
        LIST_INSERT_HEAD(&ctx->threads[thread_id].port_list, port, port_entry);

        /* Initialize port. */
        if (uhd_dpdk_port_init(port, port->parent->rx_pktbuf_pool, mtu) != 0)
            rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n",
                    i);
    }

    RTE_LOG(INFO, EAL, "Init DONE!\n");

    /* FIXME: Create functions to do this */
    RTE_LOG(INFO, EAL, "Starting I/O threads!\n");

    for (int i = rte_get_next_lcore(-1, 1, 0);
        (i < RTE_MAX_LCORE);
        i = rte_get_next_lcore(i, 1, 0))
    {
        struct uhd_dpdk_thread *t = &ctx->threads[i];
        if (!LIST_EMPTY(&t->port_list)) {
            rte_eal_remote_launch(_uhd_dpdk_driver_main, NULL, ctx->threads[i].id);
        }
    }
    return 0;
}

/* FIXME: This will be changed once we have functions to handle the threads */
int uhd_dpdk_destroy(void)
{
    if (!ctx)
        return -ENODEV;

    struct uhd_dpdk_config_req *req = (struct uhd_dpdk_config_req *) rte_zmalloc(NULL, sizeof(*req), 0);
    if (!req)
        return -ENOMEM;

    req->req_type = UHD_DPDK_LCORE_TERM;

    for (int i = rte_get_next_lcore(-1, 1, 0);
        (i < RTE_MAX_LCORE);
        i = rte_get_next_lcore(i, 1, 0))
    {
        struct uhd_dpdk_thread *t = &ctx->threads[i];

        if (LIST_EMPTY(&t->port_list))
            continue;

        if (rte_eal_get_lcore_state(t->id) == FINISHED)
            continue;

        pthread_mutex_init(&req->mutex, NULL);
        pthread_cond_init(&req->cond, NULL);
        pthread_mutex_lock(&req->mutex);
        if (rte_ring_enqueue(t->sock_req_ring, req)) {
            pthread_mutex_unlock(&req->mutex);
            RTE_LOG(ERR, USER2, "Failed to terminate thread %d\n", i);
            rte_free(req);
            return -ENOSPC;
        }
        struct timespec timeout = {
            .tv_sec = 1,
            .tv_nsec = 0
        };
        pthread_cond_timedwait(&req->cond, &req->mutex, &timeout);
        pthread_mutex_unlock(&req->mutex);
    }

    rte_free(req);
    return 0;
}
Example #4
0
static int
nvmf_allocate_reactor(uint64_t cpumask)
{
	int i, selected_core;
	enum rte_lcore_state_t state;
	int master_lcore = rte_get_master_lcore();
	int32_t num_pollers, min_pollers;

	cpumask &= spdk_app_get_core_mask();
	if (cpumask == 0) {
		return 0;
	}

	min_pollers = INT_MAX;
	selected_core = 0;

	for (i = 0; i < RTE_MAX_LCORE; i++) {
		if (!((1ULL << i) & cpumask)) {
			continue;
		}

		/*
		 * DPDK returns WAIT for the master lcore instead of RUNNING.
		 * So we always treat the reactor on master core as RUNNING.
		 */
		if (i == master_lcore) {
			state = RUNNING;
		} else {
			state = rte_eal_get_lcore_state(i);
		}
		if (state == FINISHED) {
			rte_eal_wait_lcore(i);
		}

		switch (state) {
		case WAIT:
		case FINISHED:
			/* Idle cores have 0 pollers */
			if (0 < min_pollers) {
				selected_core = i;
				min_pollers = 0;
			}
			break;
		case RUNNING:
			/* This lcore is running, check how many pollers it already has */
			num_pollers = rte_atomic32_read(&g_num_connections[i]);

			/* Fill each lcore to target minimum, else select least loaded lcore */
			if (num_pollers < (SPDK_NVMF_DEFAULT_NUM_SESSIONS_PER_LCORE *
					   g_nvmf_tgt.MaxConnectionsPerSession)) {
				/* If fewer than the target number of session connections
				 * exist then add to this lcore
				 */
				return i;
			} else if (num_pollers < min_pollers) {
				/* Track the lcore that has the minimum number of pollers
				 * to be used if no lcores have already met our criteria
				 */
				selected_core = i;
				min_pollers = num_pollers;
			}
			break;
		}
	}

	return selected_core;
}