Example #1
0
inline
void r_and_t(MatrixXf &rot_cw, VectorXf &pos_cw,MatrixXf start_points, MatrixXf end_points,
             MatrixXf P1w,MatrixXf P2w,MatrixXf initRot_cw,VectorXf initPos_cw,
             int maxIterNum,float TerminateTh,int nargin)
{
    if(nargin<6)
    {
        return;
    }

    if(nargin<8)
    {
        maxIterNum = 8;
        TerminateTh = 1e-5;
    }

    int n = start_points.cols();

    if(n != end_points.cols() || n!= P1w.cols() || n!= P2w.cols())
    {
        return;
    }

    if(n<4)
    {
        return;
    }

    //first compute the weight of each line and the normal of
    //the interpretation plane passing through to camera center and the line

    VectorXf w = VectorXf::Zero(n);
    MatrixXf nc = MatrixXf::Zero(3,n);

    for(int i = 0 ; i < n ; i++)
    {
        //the weight of a line is the inverse of its image length
        w[i] = 1/(start_points.col(i)-end_points.col(i)).norm();
        vfloat3 v1 = start_points.col(i);
        vfloat3 v2 = end_points.col(i);
        vfloat3 temp = v1.cross(v2);
        nc.col(i) = temp/temp.norm();
    }

    MatrixXf rot_wc = initPos_cw.transpose();
    MatrixXf pos_wc = - initRot_cw.transpose() * initPos_cw;


    for(int iter = 1 ; iter < maxIterNum ; iter++)
    {
        //construct the equation (31)
        MatrixXf A = MatrixXf::Zero(6,7);
        MatrixXf C = MatrixXf::Zero(3,3);
        MatrixXf D = MatrixXf::Zero(3,3);
        MatrixXf F = MatrixXf::Zero(3,3);
        vfloat3 c_bar = vfloat3(0,0,0);
        vfloat3 d_bar = vfloat3(0,0,0);
        for(int i = 0 ; i < n ; i++)
        {
            //for first point on line
            vfloat3 Pi = rot_wc * P1w.col(i);
            vfloat3 Ni = nc.col(i);
            float wi = w[i];
            vfloat3 bi = Pi.cross(Ni);
            C = C + wi*Ni*Ni.transpose();
            D = D + wi*bi*bi.transpose();
            F = F + wi*Ni*bi.transpose();
            vfloat3 tempi = Pi + pos_wc;
            float scale = Ni.transpose() * tempi;
            scale *= wi;
            c_bar = c_bar + scale * Ni;
            d_bar = d_bar + scale*bi;
            //for second point on line
            Pi = rot_wc * P2w.col(i);
            Ni = nc.col(i);
            wi = w[i];
            bi = Pi.cross(Ni);
            C  = C + wi*Ni*Ni.transpose();
            D  = D + wi*bi*bi.transpose();
            F  = F + wi*Ni*bi.transpose();
            scale = (Ni.transpose() * (Pi + pos_wc));
            scale *= wi;
            c_bar = c_bar + scale * Ni;
            d_bar = d_bar + scale * bi;
        }
        A.block<3,3>(0,0) = C;
        A.block<3,3>(0,3) = F;
        (A.col(6)).segment(0,2) = c_bar;
        A.block<3,3>(3,0) = F.transpose();
        A.block<3,3>(2,2) = D;
        (A.col(6)).segment(3,5) = d_bar;
        //sovle the system by using SVD;
        JacobiSVD<MatrixXf> svd(A, ComputeThinU | ComputeThinV);
        VectorXf vec(7);
        //the last column of Vmat;
        vec = (svd.matrixV()).col(6);
        //the condition that the last element of vec should be 1.
        vec = vec/vec[6];

        //update the rotation and translation parameters;
        vfloat3 dT = vec.segment(0,2);
        vfloat3 dOmiga = vec.segment(3,5);
        MatrixXf rtemp(3,3);
        rtemp << 1, -dOmiga[2], dOmiga[1], dOmiga[2], 1, -dOmiga[1], -dOmiga[1], dOmiga[0], 1;
        rot_wc = rtemp * rot_wc;
        //newRot_wc = ( I + [dOmiga]x ) oldRot_wc
        //may be we can compute new R using rodrigues(r+dr)
        pos_wc = pos_wc + dT;

        if(dT.norm() < TerminateTh && dOmiga.norm() < 0.1*TerminateTh)
        {
            break;
        }
    }
    rot_cw = rot_wc.transpose();
    pos_cw = -rot_cw * pos_wc;
}
Example #2
0
bool Reed_Solomon::decode(const bvec &coded_bits, const ivec &erasure_positions, bvec &decoded_message, bvec &cw_isvalid)
{
  bool decoderfailure, no_dec_failure;
  int j, i, kk, l, L, foundzeros, iterations = floor_i(static_cast<double>(coded_bits.length()) / (n * m));
  bvec mbit(m * k);
  decoded_message.set_size(iterations * k * m, false);
  cw_isvalid.set_length(iterations);

  GFX rx(q, n - 1), cx(q, n - 1), mx(q, k - 1), ex(q, n - 1), S(q, 2 * t), Xi(q, 2 * t), Gamma(q), Lambda(q),
      Psiprime(q), OldLambda(q), T(q), Omega(q);
  GFX dummy(q), One(q, (char*)"0"), Omegatemp(q);
  GF delta(q), tempsum(q), rtemp(q), temp(q), Xk(q), Xkinv(q);
  ivec errorpos;

  if ( erasure_positions.length() ) {
    it_assert(max(erasure_positions) < iterations*n, "Reed_Solomon::decode: erasure position is invalid.");
  }
  
  no_dec_failure = true;
  for (i = 0; i < iterations; i++) {
    decoderfailure = false;
    //Fix the received polynomial r(x)
    for (j = 0; j < n; j++) {
      rtemp.set(q, coded_bits.mid(i * n * m + j * m, m));
      rx[j] = rtemp;
    }
    // Fix the Erasure polynomial Gamma(x)
    // and replace erased coordinates with zeros
    rtemp.set(q, -1);
    ivec alphapow = - ones_i(2);
    Gamma = One;
    for (j = 0; j < erasure_positions.length(); j++) {
      rx[erasure_positions(j)] = rtemp;
      alphapow(1) = erasure_positions(j);
      Gamma *= (One - GFX(q, alphapow));
    }
    //Fix the syndrome polynomial S(x).
    S.clear();
    for (j = 1; j <= 2 * t; j++) {
      S[j] = rx(GF(q, b + j - 1));
    }
    // calculate the modified syndrome polynomial Xi(x) = Gamma * (1+S) - 1
    Xi = Gamma * (One + S) - One;
    // Apply Berlekam-Massey algorithm
    if (Xi.get_true_degree() >= 1) { //Errors in the received word
      // Iterate to find Lambda(x), which hold all error locations
      kk = 0;
      Lambda = One;
      L = 0;
      T = GFX(q, (char*)"-1 0");
      while (kk < 2 * t) {
        kk = kk + 1;
        tempsum = GF(q, -1);
        for (l = 1; l <= L; l++) {
          tempsum += Lambda[l] * Xi[kk - l];
        }
        delta = Xi[kk] - tempsum;
        if (delta != GF(q, -1)) {
          OldLambda = Lambda;
          Lambda -= delta * T;
          if (2 * L < kk) {
            L = kk - L;
            T = OldLambda / delta;
          }
        }
        T = GFX(q, (char*)"-1 0") * T;
      }
      // Find the zeros to Lambda(x)
      errorpos.set_size(Lambda.get_true_degree());
      foundzeros = 0;
      for (j = q - 2; j >= 0; j--) {
        if (Lambda(GF(q, j)) == GF(q, -1)) {
          errorpos(foundzeros) = (n - j) % n;
          foundzeros += 1;
          if (foundzeros >= Lambda.get_true_degree()) {
            break;
          }
        }
      }
      if (foundzeros != Lambda.get_true_degree()) {
        decoderfailure = true;
      }
      else { // Forney algorithm...
        //Compute Omega(x) using the key equation for RS-decoding
        Omega.set_degree(2 * t);
        Omegatemp = Lambda * (One + Xi);
        for (j = 0; j <= 2 * t; j++) {
          Omega[j] = Omegatemp[j];
        }
        //Find the error/erasure magnitude polynomial by treating them the same
        Psiprime = formal_derivate(Lambda*Gamma);
        errorpos = concat(errorpos, erasure_positions);
        ex.clear();
        for (j = 0; j < errorpos.length(); j++) {
          Xk = GF(q, errorpos(j));
          Xkinv = GF(q, 0) / Xk;
          // we calculate ex = - error polynomial, in order to avoid the 
          // subtraction when recunstructing the corrected codeword
          ex[errorpos(j)] = (Xk * Omega(Xkinv)) / Psiprime(Xkinv);
          if (b != 1) { // non-narrow-sense code needs corrected error magnitudes
            int correction_exp = ( errorpos(j)*(1-b) ) % n;
            ex[errorpos(j)] *= GF(q, correction_exp + ( (correction_exp < 0) ? n : 0 ));
          }
        }
        //Reconstruct the corrected codeword.
        // instead of subtracting the error/erasures, we calculated 
        // the negative error with 'ex' above
        cx = rx + ex;
        //Code word validation
        S.clear();
        for (j = 1; j <= 2 * t; j++) {
          S[j] = cx(GF(q, b + j - 1));
        }
        if (S.get_true_degree() >= 1) {
          decoderfailure = true;
        }
      }
    }
    else {
      cx = rx;
      decoderfailure = false;
    }
    //Find the message polynomial
    mbit.clear();
    if (decoderfailure == false) {
      if (cx.get_true_degree() >= 1) { // A nonzero codeword was transmitted
        if (systematic) {
          for (j = 0; j < k; j++) {
            mx[j] = cx[j];
          }
        }
        else {
          mx = divgfx(cx, g);
        }
        for (j = 0; j <= mx.get_true_degree(); j++) {
          mbit.replace_mid(j * m, mx[j].get_vectorspace());
        }
      }
    }
    else { //Decoder failure.
      // for a systematic code it is better to extract the undecoded message
      // from the received code word, i.e. obtaining a bit error
      // prob. p_b << 1/2, than setting all-zero (p_b = 1/2)
      if (systematic) {
        mbit = coded_bits.mid(i * n * m, k * m);
      }
      else {
        mbit = zeros_b(k);
      }
      no_dec_failure = false;
    }
    decoded_message.replace_mid(i * m * k, mbit);
    cw_isvalid(i) = (!decoderfailure);
  }
  return no_dec_failure;
}