Example #1
0
const OpStringC MIME_DecodeCache_Storage::FileName(OpFileFolder &folder, BOOL get_original_body) const
{
	if(get_original_body && source)
	{
		OpStringC rv0(source->FileName(folder, get_original_body));

		return rv0;
	}

	OpStringC rv(DecodedMIME_Storage::FileName(folder, get_original_body));

	return rv;
}
Example #2
0
template<typename SparseMatrixType> void sparse_product()
{
  typedef typename SparseMatrixType::Index Index;
  Index n = 100;
  const Index rows  = internal::random<int>(1,n);
  const Index cols  = internal::random<int>(1,n);
  const Index depth = internal::random<int>(1,n);
  typedef typename SparseMatrixType::Scalar Scalar;
  enum { Flags = SparseMatrixType::Flags };

  double density = (std::max)(8./(rows*cols), 0.1);
  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
  typedef Matrix<Scalar,Dynamic,1> DenseVector;
  typedef Matrix<Scalar,1,Dynamic> RowDenseVector;
  typedef SparseVector<Scalar,0,Index> ColSpVector;
  typedef SparseVector<Scalar,RowMajor,Index> RowSpVector;

  Scalar s1 = internal::random<Scalar>();
  Scalar s2 = internal::random<Scalar>();

  // test matrix-matrix product
  {
    DenseMatrix refMat2  = DenseMatrix::Zero(rows, depth);
    DenseMatrix refMat2t = DenseMatrix::Zero(depth, rows);
    DenseMatrix refMat3  = DenseMatrix::Zero(depth, cols);
    DenseMatrix refMat3t = DenseMatrix::Zero(cols, depth);
    DenseMatrix refMat4  = DenseMatrix::Zero(rows, cols);
    DenseMatrix refMat4t = DenseMatrix::Zero(cols, rows);
    DenseMatrix refMat5  = DenseMatrix::Random(depth, cols);
    DenseMatrix refMat6  = DenseMatrix::Random(rows, rows);
    DenseMatrix dm4 = DenseMatrix::Zero(rows, rows);
//     DenseVector dv1 = DenseVector::Random(rows);
    SparseMatrixType m2 (rows, depth);
    SparseMatrixType m2t(depth, rows);
    SparseMatrixType m3 (depth, cols);
    SparseMatrixType m3t(cols, depth);
    SparseMatrixType m4 (rows, cols);
    SparseMatrixType m4t(cols, rows);
    SparseMatrixType m6(rows, rows);
    initSparse(density, refMat2,  m2);
    initSparse(density, refMat2t, m2t);
    initSparse(density, refMat3,  m3);
    initSparse(density, refMat3t, m3t);
    initSparse(density, refMat4,  m4);
    initSparse(density, refMat4t, m4t);
    initSparse(density, refMat6, m6);

//     int c = internal::random<int>(0,depth-1);

    // sparse * sparse
    VERIFY_IS_APPROX(m4=m2*m3, refMat4=refMat2*refMat3);
    VERIFY_IS_APPROX(m4=m2t.transpose()*m3, refMat4=refMat2t.transpose()*refMat3);
    VERIFY_IS_APPROX(m4=m2t.transpose()*m3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose());
    VERIFY_IS_APPROX(m4=m2*m3t.transpose(), refMat4=refMat2*refMat3t.transpose());

    VERIFY_IS_APPROX(m4 = m2*m3/s1, refMat4 = refMat2*refMat3/s1);
    VERIFY_IS_APPROX(m4 = m2*m3*s1, refMat4 = refMat2*refMat3*s1);
    VERIFY_IS_APPROX(m4 = s2*m2*m3*s1, refMat4 = s2*refMat2*refMat3*s1);

    VERIFY_IS_APPROX(m4=(m2*m3).pruned(0), refMat4=refMat2*refMat3);
    VERIFY_IS_APPROX(m4=(m2t.transpose()*m3).pruned(0), refMat4=refMat2t.transpose()*refMat3);
    VERIFY_IS_APPROX(m4=(m2t.transpose()*m3t.transpose()).pruned(0), refMat4=refMat2t.transpose()*refMat3t.transpose());
    VERIFY_IS_APPROX(m4=(m2*m3t.transpose()).pruned(0), refMat4=refMat2*refMat3t.transpose());

    // test aliasing
    m4 = m2; refMat4 = refMat2;
    VERIFY_IS_APPROX(m4=m4*m3, refMat4=refMat4*refMat3);

    // sparse * dense
    VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3);
    VERIFY_IS_APPROX(dm4=m2*refMat3t.transpose(), refMat4=refMat2*refMat3t.transpose());
    VERIFY_IS_APPROX(dm4=m2t.transpose()*refMat3, refMat4=refMat2t.transpose()*refMat3);
    VERIFY_IS_APPROX(dm4=m2t.transpose()*refMat3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose());

    VERIFY_IS_APPROX(dm4=m2*(refMat3+refMat3), refMat4=refMat2*(refMat3+refMat3));
    VERIFY_IS_APPROX(dm4=m2t.transpose()*(refMat3+refMat5)*0.5, refMat4=refMat2t.transpose()*(refMat3+refMat5)*0.5);

    // dense * sparse
    VERIFY_IS_APPROX(dm4=refMat2*m3, refMat4=refMat2*refMat3);
    VERIFY_IS_APPROX(dm4=refMat2*m3t.transpose(), refMat4=refMat2*refMat3t.transpose());
    VERIFY_IS_APPROX(dm4=refMat2t.transpose()*m3, refMat4=refMat2t.transpose()*refMat3);
    VERIFY_IS_APPROX(dm4=refMat2t.transpose()*m3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose());

    // sparse * dense and dense * sparse outer product
    test_outer<SparseMatrixType,DenseMatrix>::run(m2,m4,refMat2,refMat4);

    VERIFY_IS_APPROX(m6=m6*m6, refMat6=refMat6*refMat6);
    
    // sparse matrix * sparse vector
    ColSpVector cv0(cols), cv1;
    DenseVector dcv0(cols), dcv1;
    initSparse(2*density,dcv0, cv0);
    
    RowSpVector rv0(depth), rv1;
    RowDenseVector drv0(depth), drv1(rv1);
    initSparse(2*density,drv0, rv0);
    
    VERIFY_IS_APPROX(cv1=rv0*m3, dcv1=drv0*refMat3);
    VERIFY_IS_APPROX(rv1=rv0*m3, drv1=drv0*refMat3);
    VERIFY_IS_APPROX(cv1=m3*cv0, dcv1=refMat3*dcv0);
    VERIFY_IS_APPROX(cv1=m3t.adjoint()*cv0, dcv1=refMat3t.adjoint()*dcv0);
    VERIFY_IS_APPROX(rv1=m3*cv0, drv1=refMat3*dcv0);
  }
  
  // test matrix - diagonal product
  {
    DenseMatrix refM2 = DenseMatrix::Zero(rows, cols);
    DenseMatrix refM3 = DenseMatrix::Zero(rows, cols);
    DenseMatrix d3 = DenseMatrix::Zero(rows, cols);
    DiagonalMatrix<Scalar,Dynamic> d1(DenseVector::Random(cols));
    DiagonalMatrix<Scalar,Dynamic> d2(DenseVector::Random(rows));
    SparseMatrixType m2(rows, cols);
    SparseMatrixType m3(rows, cols);
    initSparse<Scalar>(density, refM2, m2);
    initSparse<Scalar>(density, refM3, m3);
    VERIFY_IS_APPROX(m3=m2*d1, refM3=refM2*d1);
    VERIFY_IS_APPROX(m3=m2.transpose()*d2, refM3=refM2.transpose()*d2);
    VERIFY_IS_APPROX(m3=d2*m2, refM3=d2*refM2);
    VERIFY_IS_APPROX(m3=d1*m2.transpose(), refM3=d1*refM2.transpose());
    
    // also check with a SparseWrapper:
    DenseVector v1 = DenseVector::Random(cols);
    DenseVector v2 = DenseVector::Random(rows);
    VERIFY_IS_APPROX(m3=m2*v1.asDiagonal(), refM3=refM2*v1.asDiagonal());
    VERIFY_IS_APPROX(m3=m2.transpose()*v2.asDiagonal(), refM3=refM2.transpose()*v2.asDiagonal());
    VERIFY_IS_APPROX(m3=v2.asDiagonal()*m2, refM3=v2.asDiagonal()*refM2);
    VERIFY_IS_APPROX(m3=v1.asDiagonal()*m2.transpose(), refM3=v1.asDiagonal()*refM2.transpose());
    
    VERIFY_IS_APPROX(m3=v2.asDiagonal()*m2*v1.asDiagonal(), refM3=v2.asDiagonal()*refM2*v1.asDiagonal());
    
    // evaluate to a dense matrix to check the .row() and .col() iterator functions
    VERIFY_IS_APPROX(d3=m2*d1, refM3=refM2*d1);
    VERIFY_IS_APPROX(d3=m2.transpose()*d2, refM3=refM2.transpose()*d2);
    VERIFY_IS_APPROX(d3=d2*m2, refM3=d2*refM2);
    VERIFY_IS_APPROX(d3=d1*m2.transpose(), refM3=d1*refM2.transpose());
  }

  // test self adjoint products
  {
    DenseMatrix b = DenseMatrix::Random(rows, rows);
    DenseMatrix x = DenseMatrix::Random(rows, rows);
    DenseMatrix refX = DenseMatrix::Random(rows, rows);
    DenseMatrix refUp = DenseMatrix::Zero(rows, rows);
    DenseMatrix refLo = DenseMatrix::Zero(rows, rows);
    DenseMatrix refS = DenseMatrix::Zero(rows, rows);
    SparseMatrixType mUp(rows, rows);
    SparseMatrixType mLo(rows, rows);
    SparseMatrixType mS(rows, rows);
    do {
      initSparse<Scalar>(density, refUp, mUp, ForceRealDiag|/*ForceNonZeroDiag|*/MakeUpperTriangular);
    } while (refUp.isZero());
    refLo = refUp.adjoint();
    mLo = mUp.adjoint();
    refS = refUp + refLo;
    refS.diagonal() *= 0.5;
    mS = mUp + mLo;
    // TODO be able to address the diagonal....
    for (int k=0; k<mS.outerSize(); ++k)
      for (typename SparseMatrixType::InnerIterator it(mS,k); it; ++it)
        if (it.index() == k)
          it.valueRef() *= 0.5;

    VERIFY_IS_APPROX(refS.adjoint(), refS);
    VERIFY_IS_APPROX(mS.adjoint(), mS);
    VERIFY_IS_APPROX(mS, refS);
    VERIFY_IS_APPROX(x=mS*b, refX=refS*b);

    VERIFY_IS_APPROX(x=mUp.template selfadjointView<Upper>()*b, refX=refS*b);
    VERIFY_IS_APPROX(x=mLo.template selfadjointView<Lower>()*b, refX=refS*b);
    VERIFY_IS_APPROX(x=mS.template selfadjointView<Upper|Lower>()*b, refX=refS*b);
    
    // sparse selfadjointView * sparse 
    SparseMatrixType mSres(rows,rows);
    VERIFY_IS_APPROX(mSres = mLo.template selfadjointView<Lower>()*mS,
                     refX = refLo.template selfadjointView<Lower>()*refS);
    // sparse * sparse selfadjointview
    VERIFY_IS_APPROX(mSres = mS * mLo.template selfadjointView<Lower>(),
                     refX = refS * refLo.template selfadjointView<Lower>());
  }
  
}