Example #1
0
static int s2n_sslv3_prf(struct s2n_prf_working_space *ws, struct s2n_blob *secret, struct s2n_blob *seed_a,
        struct s2n_blob *seed_b, struct s2n_blob *seed_c, struct s2n_blob *out)
{
    struct s2n_hash_state *md5 = &ws->ssl3.md5;
    struct s2n_hash_state *sha1 = &ws->ssl3.sha1;

    uint32_t outputlen = out->size;
    uint8_t *output = out->data;
    uint8_t iteration = 1;

    uint8_t A = 'A';
    while (outputlen) {
        GUARD(s2n_hash_reset(sha1));

        for (int i = 0; i < iteration; i++) {
            GUARD(s2n_hash_update(sha1, &A, 1));
        }

        GUARD(s2n_hash_update(sha1, secret->data, secret->size));
        GUARD(s2n_hash_update(sha1, seed_a->data, seed_a->size));

        if (seed_b) {
            GUARD(s2n_hash_update(sha1, seed_b->data, seed_b->size));
            if (seed_c) {
                GUARD(s2n_hash_update(sha1, seed_c->data, seed_c->size));
            }
        }

        GUARD(s2n_hash_digest(sha1, ws->ssl3.sha1_digest, sizeof(ws->ssl3.sha1_digest)));

        GUARD(s2n_hash_reset(md5));
        GUARD(s2n_hash_update(md5, secret->data, secret->size));
        GUARD(s2n_hash_update(md5, ws->ssl3.sha1_digest, sizeof(ws->ssl3.sha1_digest)));
        GUARD(s2n_hash_digest(md5, ws->ssl3.md5_digest, sizeof(ws->ssl3.md5_digest)));

        uint32_t bytes_to_copy = MIN(outputlen, sizeof(ws->ssl3.md5_digest));

        memcpy_check(output, ws->ssl3.md5_digest, bytes_to_copy);

        outputlen -= bytes_to_copy;
        output += bytes_to_copy;

        /* Increment the letter */
        A++;
        iteration++;
    }

    GUARD(s2n_hash_reset(md5));
    GUARD(s2n_hash_reset(sha1));

    return 0;
}
Example #2
0
File: s2n_hmac.c Project: ntc2/s2n
int s2n_hmac_digest(struct s2n_hmac_state *state, void *out, uint32_t size)
{
    if (state->alg == S2N_HMAC_SSLv3_SHA1 || state->alg == S2N_HMAC_SSLv3_MD5) {
        return s2n_sslv3_mac_digest(state, out, size);
    }

    GUARD(s2n_hash_digest(&state->inner, state->digest_pad, state->digest_size));
    GUARD(s2n_hash_reset(&state->outer));
    GUARD(s2n_hash_update(&state->outer, state->xor_pad, state->block_size));
    GUARD(s2n_hash_update(&state->outer, state->digest_pad, state->digest_size));

    return s2n_hash_digest(&state->outer, out, size);
}
Example #3
0
static uint32_t s2n_map_slot(struct s2n_map *map, struct s2n_blob *key)
{
    union {
        uint8_t u8[32];
        uint32_t u32[8];
    } digest;

    GUARD(s2n_hash_update(&map->sha256, key->data, key->size));
    GUARD(s2n_hash_digest(&map->sha256, digest.u8, sizeof(digest)));

    GUARD(s2n_hash_reset(&map->sha256));

    return digest.u32[0] % map->capacity;
}
Example #4
0
static int s2n_ecdsa_verify(const struct s2n_pkey *pub, struct s2n_hash_state *digest, struct s2n_blob *signature)
{
    const s2n_ecdsa_public_key *key = &pub->key.ecdsa_key;
    notnull_check(key->ec_key);

    uint8_t digest_length;
    GUARD(s2n_hash_digest_size(digest->alg, &digest_length));
    lte_check(digest_length, S2N_MAX_DIGEST_LEN);

    uint8_t digest_out[S2N_MAX_DIGEST_LEN];
    GUARD(s2n_hash_digest(digest, digest_out, digest_length));
    
    /* ECDSA_verify ignores the first parameter */
    GUARD_OSSL(ECDSA_verify(0, digest_out, digest_length, signature->data, signature->size, key->ec_key), S2N_ERR_VERIFY_SIGNATURE);

    GUARD(s2n_hash_reset(digest));
    
    return 0;
}
Example #5
0
static int s2n_ecdsa_sign(const struct s2n_pkey *priv, struct s2n_hash_state *digest, struct s2n_blob *signature)
{
    const s2n_ecdsa_private_key *key = &priv->key.ecdsa_key;
    notnull_check(key->ec_key);

    uint8_t digest_length;
    GUARD(s2n_hash_digest_size(digest->alg, &digest_length));
    lte_check(digest_length, S2N_MAX_DIGEST_LEN);

    uint8_t digest_out[S2N_MAX_DIGEST_LEN];
    GUARD(s2n_hash_digest(digest, digest_out, digest_length));

    unsigned int signature_size = signature->size;
    GUARD_OSSL(ECDSA_sign(0, digest_out, digest_length, signature->data, &signature_size, key->ec_key), S2N_ERR_SIGN);
    S2N_ERROR_IF(signature_size > signature->size, S2N_ERR_SIZE_MISMATCH);
    signature->size = signature_size;

    GUARD(s2n_hash_reset(digest));
    
    return 0;
}
Example #6
0
static int s2n_prf(struct s2n_connection *conn, struct s2n_blob *secret, struct s2n_blob *label, struct s2n_blob *seed_a,
                   struct s2n_blob *seed_b, struct s2n_blob *seed_c, struct s2n_blob *out)
{
    /* seed_a is always required, seed_b is optional, if seed_c is provided seed_b must also be provided */
    S2N_ERROR_IF(seed_a == NULL, S2N_ERR_PRF_INVALID_SEED);
    S2N_ERROR_IF(seed_b == NULL && seed_c != NULL, S2N_ERR_PRF_INVALID_SEED);

    if (conn->actual_protocol_version == S2N_SSLv3) {
        return s2n_sslv3_prf(&conn->prf_space, secret, seed_a, seed_b, seed_c, out);
    }

    /* We zero the out blob because p_hash works by XOR'ing with the existing
     * buffer. This is a little convoluted but means we can avoid dynamic memory
     * allocation. When we call p_hash once (in the TLS1.2 case) it will produce
     * the right values. When we call it twice in the regular case, the two
     * outputs will be XORd just ass the TLS 1.0 and 1.1 RFCs require.
     */
    GUARD(s2n_blob_zero(out));

    /* Ensure that p_hash_hmac_impl is set, as it may have been reset for prf_space on s2n_connection_wipe. 
     * When in FIPS mode, the EVP API's must be used for the p_hash HMAC.
     */
    conn->prf_space.tls.p_hash_hmac_impl = s2n_is_in_fips_mode() ? &s2n_evp_hmac : &s2n_hmac;

    if (conn->actual_protocol_version == S2N_TLS12) {
        return s2n_p_hash(&conn->prf_space, conn->secure.cipher_suite->tls12_prf_alg, secret, label, seed_a, seed_b,
                          seed_c, out);
    }

    struct s2n_blob half_secret = {.data = secret->data,.size = (secret->size + 1) / 2 };

    GUARD(s2n_p_hash(&conn->prf_space, S2N_HMAC_MD5, &half_secret, label, seed_a, seed_b, seed_c, out));
    half_secret.data += secret->size - half_secret.size;
    GUARD(s2n_p_hash(&conn->prf_space, S2N_HMAC_SHA1, &half_secret, label, seed_a, seed_b, seed_c, out));

    return 0;
}

int s2n_tls_prf_master_secret(struct s2n_connection *conn, struct s2n_blob *premaster_secret)
{
    struct s2n_blob client_random = {.size = sizeof(conn->secure.client_random), .data = conn->secure.client_random};
    struct s2n_blob server_random = {.size = sizeof(conn->secure.server_random), .data = conn->secure.server_random};
    struct s2n_blob master_secret = {.size = sizeof(conn->secure.master_secret), .data = conn->secure.master_secret};

    uint8_t master_secret_label[] = "master secret";
    struct s2n_blob label = {.size = sizeof(master_secret_label) - 1, .data = master_secret_label};

    return s2n_prf(conn, premaster_secret, &label, &client_random, &server_random, NULL, &master_secret);
}

int s2n_hybrid_prf_master_secret(struct s2n_connection *conn, struct s2n_blob *premaster_secret)
{
    struct s2n_blob client_random = {.size = sizeof(conn->secure.client_random), .data = conn->secure.client_random};
    struct s2n_blob server_random = {.size = sizeof(conn->secure.server_random), .data = conn->secure.server_random};
    struct s2n_blob master_secret = {.size = sizeof(conn->secure.master_secret), .data = conn->secure.master_secret};

    uint8_t master_secret_label[] = "hybrid master secret";
    struct s2n_blob label = {.size = sizeof(master_secret_label) - 1, .data = master_secret_label};

    return s2n_prf(conn, premaster_secret, &label, &client_random, &server_random, &conn->secure.client_key_exchange_message, &master_secret);
}

static int s2n_sslv3_finished(struct s2n_connection *conn, uint8_t prefix[4], struct s2n_hash_state *md5, struct s2n_hash_state *sha1, uint8_t * out)
{
    uint8_t xorpad1[48] =
        { 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
        0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36
    };
    uint8_t xorpad2[48] =
        { 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
        0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c
    };
    uint8_t *md5_digest = out;
    uint8_t *sha_digest = out + MD5_DIGEST_LENGTH;

    lte_check(MD5_DIGEST_LENGTH + SHA_DIGEST_LENGTH, sizeof(conn->handshake.client_finished));

    GUARD(s2n_hash_update(md5, prefix, 4));
    GUARD(s2n_hash_update(md5, conn->secure.master_secret, sizeof(conn->secure.master_secret)));
    GUARD(s2n_hash_update(md5, xorpad1, 48));
    GUARD(s2n_hash_digest(md5, md5_digest, MD5_DIGEST_LENGTH));
    GUARD(s2n_hash_reset(md5));
    GUARD(s2n_hash_update(md5, conn->secure.master_secret, sizeof(conn->secure.master_secret)));
    GUARD(s2n_hash_update(md5, xorpad2, 48));
    GUARD(s2n_hash_update(md5, md5_digest, MD5_DIGEST_LENGTH));
    GUARD(s2n_hash_digest(md5, md5_digest, MD5_DIGEST_LENGTH));
    GUARD(s2n_hash_reset(md5));

    GUARD(s2n_hash_update(sha1, prefix, 4));
    GUARD(s2n_hash_update(sha1, conn->secure.master_secret, sizeof(conn->secure.master_secret)));
    GUARD(s2n_hash_update(sha1, xorpad1, 40));
    GUARD(s2n_hash_digest(sha1, sha_digest, SHA_DIGEST_LENGTH));
    GUARD(s2n_hash_reset(sha1));
    GUARD(s2n_hash_update(sha1, conn->secure.master_secret, sizeof(conn->secure.master_secret)));
    GUARD(s2n_hash_update(sha1, xorpad2, 40));
    GUARD(s2n_hash_update(sha1, sha_digest, SHA_DIGEST_LENGTH));
    GUARD(s2n_hash_digest(sha1, sha_digest, SHA_DIGEST_LENGTH));
    GUARD(s2n_hash_reset(sha1));

    return 0;
}

static int s2n_sslv3_client_finished(struct s2n_connection *conn)
{
    uint8_t prefix[4] = { 0x43, 0x4c, 0x4e, 0x54 };

    lte_check(MD5_DIGEST_LENGTH + SHA_DIGEST_LENGTH, sizeof(conn->handshake.client_finished));
    GUARD(s2n_hash_copy(&conn->handshake.prf_md5_hash_copy, &conn->handshake.md5));
    GUARD(s2n_hash_copy(&conn->handshake.prf_sha1_hash_copy, &conn->handshake.sha1));
    return s2n_sslv3_finished(conn, prefix, &conn->handshake.prf_md5_hash_copy, &conn->handshake.prf_sha1_hash_copy, conn->handshake.client_finished);
}

static int s2n_sslv3_server_finished(struct s2n_connection *conn)
{
    uint8_t prefix[4] = { 0x53, 0x52, 0x56, 0x52 };

    lte_check(MD5_DIGEST_LENGTH + SHA_DIGEST_LENGTH, sizeof(conn->handshake.server_finished));
    GUARD(s2n_hash_copy(&conn->handshake.prf_md5_hash_copy, &conn->handshake.md5));
    GUARD(s2n_hash_copy(&conn->handshake.prf_sha1_hash_copy, &conn->handshake.sha1));
    return s2n_sslv3_finished(conn, prefix, &conn->handshake.prf_md5_hash_copy, &conn->handshake.prf_sha1_hash_copy, conn->handshake.server_finished);
}

int s2n_prf_client_finished(struct s2n_connection *conn)
{
    struct s2n_blob master_secret, md5, sha;
    uint8_t md5_digest[MD5_DIGEST_LENGTH];
    uint8_t sha_digest[SHA384_DIGEST_LENGTH];
    uint8_t client_finished_label[] = "client finished";
    struct s2n_blob client_finished = {0};
    struct s2n_blob label = {0};

    if (conn->actual_protocol_version == S2N_SSLv3) {
        return s2n_sslv3_client_finished(conn);
    }

    client_finished.data = conn->handshake.client_finished;
    client_finished.size = S2N_TLS_FINISHED_LEN;
    label.data = client_finished_label;
    label.size = sizeof(client_finished_label) - 1;

    master_secret.data = conn->secure.master_secret;
    master_secret.size = sizeof(conn->secure.master_secret);
    if (conn->actual_protocol_version == S2N_TLS12) {
        switch (conn->secure.cipher_suite->tls12_prf_alg) {
        case S2N_HMAC_SHA256:
            GUARD(s2n_hash_copy(&conn->handshake.prf_tls12_hash_copy, &conn->handshake.sha256));
            GUARD(s2n_hash_digest(&conn->handshake.prf_tls12_hash_copy, sha_digest, SHA256_DIGEST_LENGTH));
            sha.size = SHA256_DIGEST_LENGTH;
            break;
        case S2N_HMAC_SHA384:
            GUARD(s2n_hash_copy(&conn->handshake.prf_tls12_hash_copy, &conn->handshake.sha384));
            GUARD(s2n_hash_digest(&conn->handshake.prf_tls12_hash_copy, sha_digest, SHA384_DIGEST_LENGTH));
            sha.size = SHA384_DIGEST_LENGTH;
            break;
        default:
            S2N_ERROR(S2N_ERR_PRF_INVALID_ALGORITHM);
        }

        sha.data = sha_digest;
        return s2n_prf(conn, &master_secret, &label, &sha, NULL, NULL, &client_finished);
    }

    GUARD(s2n_hash_copy(&conn->handshake.prf_md5_hash_copy, &conn->handshake.md5));
    GUARD(s2n_hash_copy(&conn->handshake.prf_sha1_hash_copy, &conn->handshake.sha1));

    GUARD(s2n_hash_digest(&conn->handshake.prf_md5_hash_copy, md5_digest, MD5_DIGEST_LENGTH));
    GUARD(s2n_hash_digest(&conn->handshake.prf_sha1_hash_copy, sha_digest, SHA_DIGEST_LENGTH));
    md5.data = md5_digest;
    md5.size = MD5_DIGEST_LENGTH;
    sha.data = sha_digest;
    sha.size = SHA_DIGEST_LENGTH;

    return s2n_prf(conn, &master_secret, &label, &md5, &sha, NULL, &client_finished);
}

int s2n_prf_server_finished(struct s2n_connection *conn)
{
    struct s2n_blob master_secret, md5, sha;
    uint8_t md5_digest[MD5_DIGEST_LENGTH];
    uint8_t sha_digest[SHA384_DIGEST_LENGTH];
    uint8_t server_finished_label[] = "server finished";
    struct s2n_blob server_finished = {0};
    struct s2n_blob label = {0};

    if (conn->actual_protocol_version == S2N_SSLv3) {
        return s2n_sslv3_server_finished(conn);
    }

    server_finished.data = conn->handshake.server_finished;
    server_finished.size = S2N_TLS_FINISHED_LEN;
    label.data = server_finished_label;
    label.size = sizeof(server_finished_label) - 1;

    master_secret.data = conn->secure.master_secret;
    master_secret.size = sizeof(conn->secure.master_secret);
    if (conn->actual_protocol_version == S2N_TLS12) {
        switch (conn->secure.cipher_suite->tls12_prf_alg) {
        case S2N_HMAC_SHA256:
            GUARD(s2n_hash_copy(&conn->handshake.prf_tls12_hash_copy, &conn->handshake.sha256));
            GUARD(s2n_hash_digest(&conn->handshake.prf_tls12_hash_copy, sha_digest, SHA256_DIGEST_LENGTH));
            sha.size = SHA256_DIGEST_LENGTH;
            break;
        case S2N_HMAC_SHA384:
            GUARD(s2n_hash_copy(&conn->handshake.prf_tls12_hash_copy, &conn->handshake.sha384));
            GUARD(s2n_hash_digest(&conn->handshake.prf_tls12_hash_copy, sha_digest, SHA384_DIGEST_LENGTH));
            sha.size = SHA384_DIGEST_LENGTH;
            break;
        default:
            S2N_ERROR(S2N_ERR_PRF_INVALID_ALGORITHM);
        }

        sha.data = sha_digest;
        return s2n_prf(conn, &master_secret, &label, &sha, NULL, NULL, &server_finished);
    }

    GUARD(s2n_hash_copy(&conn->handshake.prf_md5_hash_copy, &conn->handshake.md5));
    GUARD(s2n_hash_copy(&conn->handshake.prf_sha1_hash_copy, &conn->handshake.sha1));

    GUARD(s2n_hash_digest(&conn->handshake.prf_md5_hash_copy, md5_digest, MD5_DIGEST_LENGTH));
    GUARD(s2n_hash_digest(&conn->handshake.prf_sha1_hash_copy, sha_digest, SHA_DIGEST_LENGTH));
    md5.data = md5_digest;
    md5.size = MD5_DIGEST_LENGTH;
    sha.data = sha_digest;
    sha.size = SHA_DIGEST_LENGTH;

    return s2n_prf(conn, &master_secret, &label, &md5, &sha, NULL, &server_finished);
}

static int s2n_prf_make_client_key(struct s2n_connection *conn, struct s2n_stuffer *key_material)
{
    struct s2n_blob client_key = {0};
    client_key.size = conn->secure.cipher_suite->record_alg->cipher->key_material_size;
    client_key.data = s2n_stuffer_raw_read(key_material, client_key.size);
    notnull_check(client_key.data);

    if (conn->mode == S2N_CLIENT) {
        GUARD(conn->secure.cipher_suite->record_alg->cipher->set_encryption_key(&conn->secure.client_key, &client_key));
    } else {
        GUARD(conn->secure.cipher_suite->record_alg->cipher->set_decryption_key(&conn->secure.client_key, &client_key));
    }

    return 0;
}

static int s2n_prf_make_server_key(struct s2n_connection *conn, struct s2n_stuffer *key_material)
{
    struct s2n_blob server_key = {0};
    server_key.size = conn->secure.cipher_suite->record_alg->cipher->key_material_size;
    server_key.data = s2n_stuffer_raw_read(key_material, server_key.size);

    notnull_check(server_key.data);
    if (conn->mode == S2N_SERVER) {
        GUARD(conn->secure.cipher_suite->record_alg->cipher->set_encryption_key(&conn->secure.server_key, &server_key));
    } else {
        GUARD(conn->secure.cipher_suite->record_alg->cipher->set_decryption_key(&conn->secure.server_key, &server_key));
    }

    return 0;
}

int s2n_prf_key_expansion(struct s2n_connection *conn)
{
    struct s2n_blob client_random = {.data = conn->secure.client_random,.size = sizeof(conn->secure.client_random) };
    struct s2n_blob server_random = {.data = conn->secure.server_random,.size = sizeof(conn->secure.server_random) };
    struct s2n_blob master_secret = {.data = conn->secure.master_secret,.size = sizeof(conn->secure.master_secret) };
    struct s2n_blob label, out;
    uint8_t key_expansion_label[] = "key expansion";
    uint8_t key_block[S2N_MAX_KEY_BLOCK_LEN];

    label.data = key_expansion_label;
    label.size = sizeof(key_expansion_label) - 1;
    out.data = key_block;
    out.size = sizeof(key_block);

    struct s2n_stuffer key_material = {{0}};
    GUARD(s2n_prf(conn, &master_secret, &label, &server_random, &client_random, NULL, &out));
    GUARD(s2n_stuffer_init(&key_material, &out));
    GUARD(s2n_stuffer_write(&key_material, &out));

    GUARD(conn->secure.cipher_suite->record_alg->cipher->init(&conn->secure.client_key));
    GUARD(conn->secure.cipher_suite->record_alg->cipher->init(&conn->secure.server_key));

    /* Check that we have a valid MAC and key size */
    uint8_t mac_size;
    if (conn->secure.cipher_suite->record_alg->cipher->type == S2N_COMPOSITE) {
        mac_size = conn->secure.cipher_suite->record_alg->cipher->io.comp.mac_key_size;
    } else {
        GUARD(s2n_hmac_digest_size(conn->secure.cipher_suite->record_alg->hmac_alg, &mac_size));
    }

    /* Seed the client MAC */
    uint8_t *client_mac_write_key = s2n_stuffer_raw_read(&key_material, mac_size);
    notnull_check(client_mac_write_key);
    GUARD(s2n_hmac_reset(&conn->secure.client_record_mac));
    GUARD(s2n_hmac_init(&conn->secure.client_record_mac, conn->secure.cipher_suite->record_alg->hmac_alg, client_mac_write_key, mac_size));

    /* Seed the server MAC */
    uint8_t *server_mac_write_key = s2n_stuffer_raw_read(&key_material, mac_size);
    notnull_check(server_mac_write_key);
    GUARD(s2n_hmac_reset(&conn->secure.server_record_mac));
    GUARD(s2n_hmac_init(&conn->secure.server_record_mac, conn->secure.cipher_suite->record_alg->hmac_alg, server_mac_write_key, mac_size));

    /* Make the client key */
    GUARD(s2n_prf_make_client_key(conn, &key_material));

    /* Make the server key */
    GUARD(s2n_prf_make_server_key(conn, &key_material));

    /* Composite CBC does MAC inside the cipher, pass it the MAC key. 
     * Must happen after setting encryption/decryption keys.
     */
    if (conn->secure.cipher_suite->record_alg->cipher->type == S2N_COMPOSITE) {
        GUARD(conn->secure.cipher_suite->record_alg->cipher->io.comp.set_mac_write_key(&conn->secure.server_key, server_mac_write_key, mac_size));
        GUARD(conn->secure.cipher_suite->record_alg->cipher->io.comp.set_mac_write_key(&conn->secure.client_key, client_mac_write_key, mac_size));
    }

    /* TLS >= 1.1 has no implicit IVs for non AEAD ciphers */
    if (conn->actual_protocol_version > S2N_TLS10 && conn->secure.cipher_suite->record_alg->cipher->type != S2N_AEAD) {
        return 0;
    }

    uint32_t implicit_iv_size = 0;
    switch (conn->secure.cipher_suite->record_alg->cipher->type) {
    case S2N_AEAD:
        implicit_iv_size = conn->secure.cipher_suite->record_alg->cipher->io.aead.fixed_iv_size;
        break;
    case S2N_CBC:
        implicit_iv_size = conn->secure.cipher_suite->record_alg->cipher->io.cbc.block_size;
        break;
    case S2N_COMPOSITE:
        implicit_iv_size = conn->secure.cipher_suite->record_alg->cipher->io.comp.block_size;
        break;
    /* No-op for stream ciphers */
    default:
        break;
    }

    struct s2n_blob client_implicit_iv = {.data = conn->secure.client_implicit_iv,.size = implicit_iv_size };
    struct s2n_blob server_implicit_iv = {.data = conn->secure.server_implicit_iv,.size = implicit_iv_size };
    GUARD(s2n_stuffer_read(&key_material, &client_implicit_iv));
    GUARD(s2n_stuffer_read(&key_material, &server_implicit_iv));

    return 0;
}
Example #7
0
static int s2n_prf(struct s2n_connection *conn, struct s2n_blob *secret, struct s2n_blob *label, struct s2n_blob *seed_a, struct s2n_blob *seed_b, struct s2n_blob *out)
{
    if (conn->actual_protocol_version == S2N_SSLv3) {
        return s2n_sslv3_prf(&conn->prf_space, secret, seed_a, seed_b, out);
    }

    /* We zero the out blob because p_hash works by XOR'ing with the existing
     * buffer. This is a little convuloted but means we can avoid dynamic memory
     * allocation. When we call p_hash once (in the TLS1.2 case) it will produce
     * the right values. When we call it twice in the regular case, the two
     * outputs will be XORd just ass the TLS 1.0 and 1.1 RFCs require.
     */
    GUARD(s2n_blob_zero(out));

    if (conn->actual_protocol_version == S2N_TLS12) {
        return s2n_p_hash(&conn->prf_space, conn->secure.cipher_suite->tls12_prf_alg, secret, label, seed_a, seed_b, out);
    }

    struct s2n_blob half_secret = {.data = secret->data,.size = (secret->size + 1) / 2 };

    GUARD(s2n_p_hash(&conn->prf_space, S2N_HMAC_MD5, &half_secret, label, seed_a, seed_b, out));
    half_secret.data += secret->size - half_secret.size;
    GUARD(s2n_p_hash(&conn->prf_space, S2N_HMAC_SHA1, &half_secret, label, seed_a, seed_b, out));

    return 0;
}

int s2n_prf_master_secret(struct s2n_connection *conn, struct s2n_blob *premaster_secret)
{
    struct s2n_blob client_random, server_random, master_secret;
    struct s2n_blob label;
    uint8_t master_secret_label[] = "master secret";

    client_random.data = conn->secure.client_random;
    client_random.size = sizeof(conn->secure.client_random);
    server_random.data = conn->secure.server_random;
    server_random.size = sizeof(conn->secure.server_random);
    master_secret.data = conn->secure.master_secret;
    master_secret.size = sizeof(conn->secure.master_secret);
    label.data = master_secret_label;
    label.size = sizeof(master_secret_label) - 1;

    return s2n_prf(conn, premaster_secret, &label, &client_random, &server_random, &master_secret);
}

static int s2n_sslv3_finished(struct s2n_connection *conn, uint8_t prefix[4], struct s2n_hash_state *md5, struct s2n_hash_state *sha1, uint8_t *out)
{
    uint8_t xorpad1[48] =
        { 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
        0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36
    };
    uint8_t xorpad2[48] =
        { 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
        0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c
    };
    uint8_t *md5_digest = out;
    uint8_t *sha_digest = out + MD5_DIGEST_LENGTH;

    lte_check(MD5_DIGEST_LENGTH + SHA_DIGEST_LENGTH, sizeof(conn->handshake.client_finished));

    GUARD(s2n_hash_update(md5, prefix, 4));
    GUARD(s2n_hash_update(md5, conn->secure.master_secret, sizeof(conn->secure.master_secret)));
    GUARD(s2n_hash_update(md5, xorpad1, 48));
    GUARD(s2n_hash_digest(md5, md5_digest, MD5_DIGEST_LENGTH));
    GUARD(s2n_hash_reset(md5));
    GUARD(s2n_hash_update(md5, conn->secure.master_secret, sizeof(conn->secure.master_secret)));
    GUARD(s2n_hash_update(md5, xorpad2, 48));
    GUARD(s2n_hash_update(md5, md5_digest, MD5_DIGEST_LENGTH));
    GUARD(s2n_hash_digest(md5, md5_digest, MD5_DIGEST_LENGTH));
    GUARD(s2n_hash_reset(md5));

    GUARD(s2n_hash_update(sha1, prefix, 4));
    GUARD(s2n_hash_update(sha1, conn->secure.master_secret, sizeof(conn->secure.master_secret)));
    GUARD(s2n_hash_update(sha1, xorpad1, 40));
    GUARD(s2n_hash_digest(sha1, sha_digest, SHA_DIGEST_LENGTH));
    GUARD(s2n_hash_reset(sha1));
    GUARD(s2n_hash_update(sha1, conn->secure.master_secret, sizeof(conn->secure.master_secret)));
    GUARD(s2n_hash_update(sha1, xorpad2, 40));
    GUARD(s2n_hash_update(sha1, sha_digest, SHA_DIGEST_LENGTH));
    GUARD(s2n_hash_digest(sha1, sha_digest, SHA_DIGEST_LENGTH));
    GUARD(s2n_hash_reset(sha1));

    return 0;
}